
Seminar Ultracategories Exercise 9: model solution
Tim Baanen

In the presentation, we discussed categories with unique factorisation: if a category has small products and
all objects are products of coconnected objects, then this product of coconnected objects is essentially unique.
In this hand-in exercise, we will study the converse: if a category has essentially unique factorisation into
some subcategory of factors, are these factors always coconnected?

1. (3pt) Fix a category E with all small products and finite colimits, such that Eop is extensive. In
particular E satisfies: projections from finite products are epimorphisms and pushforwards preserve
products. Let X ∈ E be an object such that X ≃ U × V implies that exactly one of U and V is
terminal. Show that Hom(_, X) sends binary products to disjoint unions.

We want to show for all f : Y × Z → X that there is a unique f0 : Y → X, or f1 : Z → X such that
f0 ◦πY = f or f1 ◦πZ = f , i.e. Hom(_, X) preserves binary products. Let f ∈ Hom(Y ×Z,X) for arbitrary
Y, Z, and define u : X → U to be the pushforward of πY : Y × Z → Y along f , and v : X → V be the
pushforward of πZ : Y × Z → Z along f , as in the following diagrams:

Y × Z X

Y U

f

πY u

f0 ⌜

Y × Z X

Z V.

f

πZ v

f1 ⌜

Since pushforwards preserve products, we have that X ≃ (Y ×Z)+Y×Z X ≃ (Y +Y×Z X)× (Z +Y×Z X) =
U × V . Now we have WLOG that V ≃ 1, and U ≃ X, so f factors as f0 ◦ πY .

Moreover, f0 is the unique map such that composing with πY gives f , since πY is epi by assumption. If f
factors as f1 ◦ πZ for f1 : Z → X, then we have that a pushout of f along πZ is given by f1, so X ≃ V ≃ 1.
This implies that X ≃ U ≃ 1. Thus, we have that f factors only through one of πY or πZ .

Grading: 1pt for U and V as pushforward along f , 1pt for finding f0, 1pt for showing f0 is unique.

2. (2pt) Suppose E as in the first exercise has a full subcategory C such that each X ∈ E is an essentially
unique product of objects in C.1 Show that E is a category with unique factorisation, and in particular
C ⊆ Ecc.

Let X ∈ C, U, V ∈ E such that X ≃ U × V . Factor U as U ≃
∏

i∈I Ci and V as V ≃
∏

j∈J Cj for
Ci, Cj ∈ C, so that we get X ≃

∏
i∈I⊔J Ci. Note that we can factor X essentially uniquely as the unary

product of X itself, so we have that I ⊔ J has exactly one object. Thus, exactly one of I and J is empty, so
exactly one of U and V is a terminal object.

We want to use this to prove all X ∈ C are coconnected, i.e. Hom(_, X) send finite products to disjoint
unions. It remains to show Hom(1, X) = ∅ for all such X since the first exercise takes care of binary
products. Moreover, because Hom(_, X) sends binary products to disjoint unions and 1×X ≃ X, we have
Hom(1, X) ⊔ Hom(X,X) ≃ Hom(1 × X,X) ≃ Hom(X,X). In the second alternative, this isomorphism
restricts to id : Hom(X,X) → Hom(X,X), so we must have that the first alternative, Hom(1, X) is empty.
In other words, Hom(_, X) sends terminal objects to the initial object. Together with preserving binary
products, this gives that Hom(_, X) sends all finite products in E to coproducts in Set, i.e. X is coconnected.

1That is: if X ≃
∏

s∈S Xs ≃
∏

t∈T X′
t for Xs, X′

t ∈ C then there is a bijection ϕ : S ≃ T and isomorphisms Xs ≃ X′
ϕ(s)

.
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We assumed that E has all small products and each object in E is an essentially unique product of objects
in C, which implies that each object in E is a product of coconnected objects, since we have C ⊆ Ecc. Now
we already assumed E has all small products, so E is a unique factorisation category.

Grading: 1pt for applying the first exercise (verifying its conditions), 1pt for checking the terminal
object.

3. (3pt) Let Y be a compact Hausdorff space, which we will view as a discrete ultracategory. Show that
Env(Y ) has has all small products, finite colimits and that Env(Y )op is extensive.
Hint: first prove that Env(Y ) ⊆ Stoneop

Y is equivalent to the opposite of the slice category, (Set/Y )op.

Since Env(Y ) is constructed to be an envelope of Y , it has all small products, so it remains to show that
Env(Y ) has all finite colimits and that Env(Y )op is extensive, or after we prove the hint, that Set/Y has all
finite limits and is extensive. Still, we will explicitly show that Set/Y also has all small coproducts. To show
the equivalence of the hint, there are multiple approaches:

1. Here, the first step is showing that the larger category StoneY is equivalent to Stone/Y . (See also Ex-
ample 4.1.4.) The objects of Stoneop

Y are Stone spaces X ∈ Stone with a left ultrafunctor f ∈ FunLUlt(X,Y ),
and left ultrafunctors between compact Hausdorff spaces are just continuous functions. The morphisms from
(X, f) → (X ′, f ′) in StoneY are continuous maps g : X → X ′, together with a natural transformation of left
ultrafunctors α : f ′ ◦ g ⇒ f , and since the categories are discrete, these are just equalities between the two
continuous maps f ′ ◦ g = f . We can see that writing out the definition of StoneY gives exactly the definition
of Stone/Y . In this equivalence, an object of Env(Y ) (which is defined to be a product of coconnected
objects) corresponds to a coproduct in Stone/Y of a family of constant maps {const(ys) : {s} → Y }s∈S .
Coproducts in the slice category Stone/Y are computed by taking the coproduct of the underlying space
in Stone and giving the unique map from this coproduct to Y , and the coproduct of one-point spaces are
exactly the discrete spaces, i.e. just all sets. We conclude that the objects of Env(Y ) correspond dually
to sets S together with a map f : S → Y to the underlying set of the space Y , and since we take the full
subcategory of (Stone/Y )op of discrete spaces, we conclude Env(Y ) is equivalent to (Set/Y )op.

2. An alternative approach is based on Example 8.4.2: we show Env(Y ) is the subcategory of Stoneop
Y

spanned by (βS,OβS). Then we have that the spaces βS are dual, via Stone duality, to complete atomic
boolean algebras, which are themselves dual to sets via the powerset functor. Composing gives an equivalence
that sends Stone spaces βS to sets S and continuous maps βS → Y into functions of sets S → Y , so applying
this to the objects of the form (βS,OβS) in Stoneop

Y gives the objects of (Set/Y )op.
3. Finally, we can consider the functor β : Set → Stone, and prove it extends to a full and faithful functor

F : Set/Y → StoneY . Its essential image consists of objects of the form (βS,OβS), which again by Example
8.4.2 is Env(Y )op.

Now it remains to verify Set/Y has all finite limits and small coproducts, and is extensive. Since Set is a
topos, and the fundamental theorem of topos theory states that slices of toposes are themselves toposes, we
have that Set/Y is a topos, and in particular extensive and has all colimits. More explicitly: the terminal
object is given by id : Y → Y , and the product in Set/Y of f : X → Y and f ′ : X ′ → Y is the pullback in
Set of f and f ′, while pullbacks and coproducts in Set/Y are given by pullbacks and coproducts respectively
in Set, making use of the unique mapping property of (co)limits. Extensivity of the slice category is then
exactly the same condition as extensivity in Set. Thus, the equivalence Env(Y ) ∼= (Set/Y )op, together with
the result that Set/Y is extensive and has all finite limits and small coproducts, shows that Env(Y ) satisfies
the required conditions.

Grading: 2pt for Env(Y ) ∼= (Set/Y )op (through one of the various methods), 1pt for extensivity and
finite limits in Set/Y .

4. (2pt) A partial counterexample: let the dual factor lattice Fop
ω be the category with an object for each

positive natural number n ∈ N>0, and a unique arrow c : a → b if there is a c ∈ N with a = bc. Show
that there is a subcategory C ⊆ Fop

ω such that each object in Fop
ω is an essentially unique product2 of

objects in C, but the objects of C are not all coconnected.
2Warning: the product in Fop

ω is not necessarily given by multiplication in N!
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The categorical binary product a×b for a, b ∈ Fop
ω is the least common multiple lcm(a, b), since lcm(b, c) | a

if and only if b | a and c | a.
Note that 1 is the terminal object, so it is the empty product, and moreover this factorisation is unique

since positive prime powers do not divide 1, so there is no arrow from 1 into an element of P ∗.
Moreover, we cannot uniquely factor objects in Fop

ω as coconnected objects, since no objects in Fop
ω are

coconnected. More precisely, for all n ∈ Fop
ω we have that n × n = lcm(n, n) = n, and Hom(n × n, n) =

Hom(n, n) ̸≃ Hom(n, n) ⊔ Hom(n, n). Thus, we cannot write objects in Fop
ω as products of coconnected

objects.
Unfortunately, at this point I did not realize that this means we can change the number of copies of

prime powers appearing in the prime factorisation: since lcm(p, p) = p we can factor each prime as p or as
p × p. The only arrows going into p are the identity from p itself, so the only object in Fop

ω with unique
factorisation in Fop

ω is 1.
I thought that the following would work: Let P ∗ be the set of positive prime powers: P ∗ = {pn |

p is prime and n > 0}, and we want to show that P ∗ satisfies the conditions of C. The fundamental theorem
of arithmetic states that each natural number n > 1 can be written uniquely as a product of (finitely many)
prime powers up to permutation of the factors. This permutation is the bijection ϕ between the indices,
while the isomorphisms between the factors are just the identity maps. But we do not have to factor n into
distinct prime powers if we take the least common multiple, so this argument fails.

Grading: 1pt for noticing the flaw in the exercise, 1pt for showing that C cannot be all coconnected.
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