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This hand-in consists of three exercises.

Exercise 1. (5 points) Let M be an interpretation of some language L(S) of signature S. Then for
t1, t2 terms of type Y with free variables among z : Z we have that {z|t1 = t2}(M) is represented by the
equalizer of
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Show that more generally for t1 = (t1,1, t1,2, ..., t1,n), t2 = (t2,1, t2,2, ..., t2,n) finite tupples of terms with free
variables among z : Z such that ti,j is of type Yj that {z|t1 = t2}(M) is represented by the equalizer of
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Here t1 = t2 stands for
∧n

i (t1,i = t2,i) and Y
(M)

= Y
(M)
1 × Y

(M)
2 × ...× Y

(M)
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Solution. By induction it suffices to prove the following statement: For φ,ψ formulas with free variables
among z : Z and arrows f1, g1 : Z → Y1, f2, g2 : X → Y2 such that {z|φ} is represented by the equalizer of
f1, g1 and {z|ψ} by the equalizer of f2, g2 then {z|φ ∧ ψ} is given by the equalizer of ⟨f1, f2⟩ and ⟨g1, g2⟩.

Let φ,ψ, f1, f2, g1, g2 be as in the hypothesis above. Then we have the following diagram

{z|φ ∧ ψ}(M) {z|ψ}(M)

{z|φ}(M) Z
(M)

Y1

Y2

f2 g2

e2

f1

g1

p2
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e1

where the square is a pullback square. We defne e = e1 ◦ p1 = e2 ◦ p2 and show that e is the equalizer of
⟨f1, f2⟩ and ⟨g1, g2⟩. It is clear from e1, e2 being equalizers that e makes ⟨f1, f2⟩, ⟨g1, g2⟩ equal. It remains

to show that e has the equalizer property. Let e′ : E → Z
(M)

also make ⟨f1, f2⟩, ⟨g1, g2⟩. Then we have

f1 ◦ e′ = π1 ◦ ⟨f1, f2⟩ ◦ e′ = p1 ◦ ⟨g1, g2⟩ ◦ e′ = g1 ◦ e′

such that by the equalizer property for e1 we get unique h1 : E → {z|φ} such that e′ = e1 ◦ h1. Simi-
larly we get unique h2 : E → {z|ψ} such that e′ = e1 ◦ h2. In particular e1 ◦ h1 = e2 ◦ h2 such that by
the pullback property we get unique h : E → {z|φ ∧ ψ} such that h1 = p1 ◦ h, h2 = p2 ◦ h. Note that
e′ = e1 ◦ h1 = e1 ◦ p1 ◦ h = e ◦ h. Let now k : E → {z|φ ∧ ψ}(M) be such that e′ = e ◦ k. We define
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k1 = p1 ◦ k, k2 = p2 ◦ k. Then we have e1 ◦ k1 = e1 ◦ p1 ◦ k = e ◦ k = e′ such that by uniqueness of h1 we get
h1 = k1 = p1 ◦ k. Similarly h2 = p2 ◦ k. We now have by uniqueness of h that k = h. This completes the
proof. △

Exericse 2. (3 + 7 points) Let T be a theory and M a model of T . Prove the following:

a. Let p(z), q(z) be formulas with free variables among z : Z. Then we have

{z|p(z) ∧ q(z)}(M) ≤ {z|p(z)}(M).

Solution. By Lemma 4.1 it suffices to display a deduction of T, (p(z) ∧ q(z)) ⊢z p(z). An example is given
below

(1.1)
T, p(z) ∧ q(z) ⊢z p(z) ∧ q(z)

(2.2)
T, p(z) ∧ q(z) ⊢z p(z)

where the labels indicate the deduction rule used. △

b. Let now p(x, y) be a formula with free variables among x : X and y : Y . Let also q(y), r(y) be for-
mulas with as free variables y or none such that the sequent q(y) ⇒ r(y) is in T . Then we have

{x|∃y(p(x, y) ∧ q(y))}(M) ≤ {x|∃y(p(x, y) ∧ r(y))}(M)

Solution. By Lemma 4.1 it suffices to display a deduction of T, ∃y(p(x, y) ∧ q(y)) ⊢x ∃y(p(x, y) ∧ r(y)). An
example is given below. We have left out the ”T”s

(1.1)
∃y(p(x, y) ∧ q(y)) ⊢x ∃y(p(x, y) ∧ q(y))

(2.3)
p(x, y) ∧ q(y) ⊢x,y p(x, y) ∧ q(y)

(2.2)
p(x, y) ∧ q(y) ⊢x,y q(y)

(T + 1.3)
q(y) ⊢x,y r(y)

(1.2)
p(x, y) ∧ q(y) ⊢x,y r(y)

(1.1)
∃y(p(x, y) ∧ q(y)) ⊢x ∃y(p(x, y) ∧ q(y))

(2.3)
p(x, y) ∧ q(y) ⊢x,y p(x, y) ∧ q(y)

(2.2)
p(x, y) ∧ q(y) ⊢x,y p(x, y)

(2.2)
p(x, y) ∧ q(y) ⊢x,y p(x, y) ∧ r(y)

(2.3)
∃y(p(x, y) ∧ q(y)) ⊢x ∃y(p(x, y) ∧ r(y))

where the labels indicate the deduction rule(s) used. △

Exercise 3. (Exercise E.4, 5 points) Prove the following statement which was used in the proof of Lemma
5.1: For an arrow f : X → Y a monomorphism m representing the subobject graph(f) is an equalizer of the
two parallel arrows f ◦ π1, π2 : X × Y ⇒ Y .

Solution. By definition graph(f) is represented by the mono ⟨IdX , f⟩ : X → X × Y so it suffices to
show that ⟨IdX , f⟩ is an equalizer of f ◦ π1, π2. Note that

f ◦ π1 ◦ ⟨IdX , f⟩ = f ◦ IdX = f = π2 ◦ ⟨IdX , f⟩.

We see that ⟨IdX , F ⟩ makes f ◦ π1, π2 equal. It remains to prove the equalizer property. Let e : E → X × Y
make f ◦ π1, π2 equal. Then we have h := π1 ◦ e : E → X. Note now that

π1 ◦ ⟨IdX , f⟩ ◦ h = IdX ◦ h = h = π1 ◦ e

and
π2 ◦ ⟨IdX , f⟩ ◦ h = f ◦ h = f ◦ π1 ◦ e = π2 ◦ e.

We see ⟨IdX , f⟩ ◦ h = e. Let now k : E → X also be such that ⟨IdX , f⟩ ◦ k = e. Then we have

k = IdX ◦ k = π1 ◦ ⟨IdX , f⟩ ◦ k = π1 ◦ e = h.

We see that ⟨IdX , f⟩ is indeed an equalizer of f ◦ π1, π2. △
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