Hand-in 2
 Course: Seminar Logic - Categorical Logic

Universiteit Utrecht

February 26, 2024

This hand-in consists of three exercises.

Exercise 1. (5 points) Let M be an interpretation of some language $\mathcal{L}(S)$ of signature S. Then for t_{1}, t_{2} terms of type Y with free variables among $\bar{z}: \bar{Z}$ we have that $\left\{\bar{z} \mid t_{1}=t_{2}\right\}^{(M)}$ is represented by the equalizer of

$$
\bar{Z}^{(M)} \xlongequal[t_{2}^{(M)}]{t_{1}^{(M)}} Y^{(M)} .
$$

Show that more generally for $\overline{t_{1}}=\left(t_{1,1}, t_{1,2}, \ldots, t_{1, n}\right), \overline{t_{2}}=\left(t_{2,1}, t_{2,2}, \ldots, t_{2, n}\right)$ finite tupples of terms with free variables among $\bar{z}: \bar{Z}$ such that $t_{i, j}$ is of type Y_{j} that $\left\{\bar{z} \mid \overline{t_{1}}=\overline{t_{2}}\right\}^{(M)}$ is represented by the equalizer of

$$
\bar{Z}^{(M)} \underset{\left\langle t_{2,1}^{(M)}, \ldots, t_{2, n}^{(M)}\right\rangle}{\stackrel{\left\langle t_{1,1}^{(M)}, \ldots, t_{1, n}^{(M)}\right\rangle}{\langle }} \bar{Y}^{(M)} .
$$

Here $\overline{t_{1}}=\overline{t_{2}}$ stands for $\bigwedge_{i}^{n}\left(t_{1, i}=t_{2, i}\right)$ and $\bar{Y}^{(M)}=Y_{1}^{(M)} \times Y_{2}^{(M)} \times \ldots \times Y_{n}^{(M)}$.

Solution. By induction it suffices to prove the following statement: For φ, ψ formulas with free variables among $\bar{z}: \bar{Z}$ and arrows $f_{1}, g_{1}: \bar{Z} \rightarrow Y_{1}, f_{2}, g_{2}: X \rightarrow Y_{2}$ such that $\{\bar{z} \mid \varphi\}$ is represented by the equalizer of f_{1}, g_{1} and $\{\bar{z} \mid \psi\}$ by the equalizer of f_{2}, g_{2} then $\{\bar{z} \mid \varphi \wedge \psi\}$ is given by the equalizer of $\left\langle f_{1}, f_{2}\right\rangle$ and $\left\langle g_{1}, g_{2}\right\rangle$.

Let $\varphi, \psi, f_{1}, f_{2}, g_{1}, g_{2}$ be as in the hypothesis above. Then we have the following diagram

where the square is a pullback square. We defne $e=e_{1} \circ p_{1}=e_{2} \circ p_{2}$ and show that e is the equalizer of $\left\langle f_{1}, f_{2}\right\rangle$ and $\left\langle g_{1}, g_{2}\right\rangle$. It is clear from e_{1}, e_{2} being equalizers that e makes $\left\langle f_{1}, f_{2}\right\rangle,\left\langle g_{1}, g_{2}\right\rangle$ equal. It remains to show that e has the equalizer property. Let $e^{\prime}: E \rightarrow \bar{Z}^{(M)}$ also make $\left\langle f_{1}, f_{2}\right\rangle,\left\langle g_{1}, g_{2}\right\rangle$. Then we have

$$
f_{1} \circ e^{\prime}=\pi_{1} \circ\left\langle f_{1}, f_{2}\right\rangle \circ e^{\prime}=p_{1} \circ\left\langle g_{1}, g_{2}\right\rangle \circ e^{\prime}=g_{1} \circ e^{\prime}
$$

such that by the equalizer property for e_{1} we get unique $h_{1}: E \rightarrow\{\bar{z} \mid \varphi\}$ such that $e^{\prime}=e_{1} \circ h_{1}$. Similarly we get unique $h_{2}: E \rightarrow\{\bar{z} \mid \psi\}$ such that $e^{\prime}=e_{1} \circ h_{2}$. In particular $e_{1} \circ h_{1}=e_{2} \circ h_{2}$ such that by the pullback property we get unique $h: E \rightarrow\{\bar{z} \mid \varphi \wedge \psi\}$ such that $h_{1}=p_{1} \circ h, h_{2}=p_{2} \circ h$. Note that $e^{\prime}=e_{1} \circ h_{1}=e_{1} \circ p_{1} \circ h=e \circ h$. Let now $k: E \rightarrow\{\bar{z} \mid \varphi \wedge \psi\}^{(M)}$ be such that $e^{\prime}=e \circ k$. We define
$k_{1}=p_{1} \circ k, k_{2}=p_{2} \circ k$. Then we have $e_{1} \circ k_{1}=e_{1} \circ p_{1} \circ k=e \circ k=e^{\prime}$ such that by uniqueness of h_{1} we get $h_{1}=k_{1}=p_{1} \circ k$. Similarly $h_{2}=p_{2} \circ k$. We now have by uniqueness of h that $k=h$. This completes the proof.

Exericse 2. $(3+7$ points $)$ Let T be a theory and M a model of T. Prove the following:
a. Let $p(\bar{z}), q(\bar{z})$ be formulas with free variables among $\bar{z}: \bar{Z}$. Then we have

$$
\{\bar{z} \mid p(\bar{z}) \wedge q(\bar{z})\}^{(M)} \leq\{\bar{z} \mid p(\bar{z})\}^{(M)}
$$

Solution. By Lemma 4.1 it suffices to display a deduction of $T,(p(\bar{z}) \wedge q(\bar{z})) \vdash_{\bar{z}} p(\bar{z})$. An example is given below

$$
\begin{equation*}
\frac{\overline{T, p(\bar{z}) \wedge q(\bar{z}) \vdash_{\bar{z}} p(\bar{z}) \wedge q(\bar{z})}}{T, p(\bar{z}) \wedge q(\bar{z}) \vdash_{\bar{z}} p(\bar{z})} \tag{1.1}
\end{equation*}
$$

where the labels indicate the deduction rule used.
b. Let now $p(\bar{x}, y)$ be a formula with free variables among $\bar{x}: \bar{X}$ and $y: Y$. Let also $q(y), r(y)$ be formulas with as free variables y or none such that the sequent $q(y) \Rightarrow r(y)$ is in T. Then we have

$$
\{\bar{x} \mid \exists y(p(\bar{x}, y) \wedge q(y))\}^{(M)} \leq\{\bar{x} \mid \exists y(p(\bar{x}, y) \wedge r(y))\}^{(M)}
$$

Solution. By Lemma 4.1 it suffices to display a deduction of $T, \exists y(p(\bar{x}, y) \wedge q(y)) \vdash_{\bar{x}} \exists y(p(\bar{x}, y) \wedge r(y))$. An example is given below. We have left out the "T"s
where the labels indicate the deduction rule(s) used.
Exercise 3. (Exercise E.4, 5 points) Prove the following statement which was used in the proof of Lemma 5.1: For an arrow $f: X \rightarrow Y$ a monomorphism m representing the subobject graph (f) is an equalizer of the two parallel arrows $f \circ \pi_{1}, \pi_{2}: X \times Y \rightrightarrows Y$.

Solution. By definition $\operatorname{graph}(f)$ is represented by the mono $\left\langle\operatorname{Id}_{X}, f\right\rangle: X \rightarrow X \times Y$ so it suffices to show that $\left\langle\operatorname{Id}_{X}, f\right\rangle$ is an equalizer of $f \circ \pi_{1}, \pi_{2}$. Note that

$$
f \circ \pi_{1} \circ\left\langle\operatorname{Id}_{X}, f\right\rangle=f \circ \operatorname{Id}_{X}=f=\pi_{2} \circ\left\langle\operatorname{Id}_{X}, f\right\rangle
$$

We see that $\left\langle\operatorname{Id}_{X}, F\right\rangle$ makes $f \circ \pi_{1}, \pi_{2}$ equal. It remains to prove the equalizer property. Let $e: E \rightarrow X \times Y$ make $f \circ \pi_{1}, \pi_{2}$ equal. Then we have $h:=\pi_{1} \circ e: E \rightarrow X$. Note now that

$$
\pi_{1} \circ\left\langle\operatorname{Id}_{X}, f\right\rangle \circ h=\operatorname{Id}_{X} \circ h=h=\pi_{1} \circ e
$$

and

$$
\pi_{2} \circ\left\langle\operatorname{Id}_{X}, f\right\rangle \circ h=f \circ h=f \circ \pi_{1} \circ e=\pi_{2} \circ e
$$

We see $\left\langle\operatorname{Id}_{X}, f\right\rangle \circ h=e$. Let now $k: E \rightarrow X$ also be such that $\left\langle\operatorname{Id}_{X}, f\right\rangle \circ k=e$. Then we have

$$
k=\operatorname{Id}_{X} \circ k=\pi_{1} \circ\left\langle\operatorname{Id}_{X}, f\right\rangle \circ k=\pi_{1} \circ e=h
$$

We see that $\left\langle\operatorname{Id}_{X}, f\right\rangle$ is indeed an equalizer of $f \circ \pi_{1}, \pi_{2}$.

