Hand-in 2 Course: Seminar Logic - Categorical Logic

Universiteit Utrecht

February 26, 2024

This hand-in consists of three exercises.

Exercise 1. (5 points) Let M be an interpretation of some language $\mathcal{L}(S)$ of signature S. Then for t_1, t_2 terms of type Y with free variables among $\overline{z} : \overline{Z}$ we have that $\{\overline{z}|t_1 = t_2\}^{(M)}$ is represented by the equalizer of

$$\overline{Z}^{(M)} \xrightarrow[t_2^{(M)}]{t_2^{(M)}} Y^{(M)}$$

Show that more generally for $\overline{t_1} = (t_{1,1}, t_{1,2}, ..., t_{1,n}), \overline{t_2} = (t_{2,1}, t_{2,2}, ..., t_{2,n})$ finite tupples of terms with free variables among $\overline{z} : \overline{Z}$ such that $t_{i,j}$ is of type Y_j that $\{\overline{z} | \overline{t_1} = \overline{t_2}\}^{(M)}$ is represented by the equalizer of

$$\overline{Z}^{(M)} \xrightarrow[\langle t_{2,1}^{(M)}, \dots, t_{1,n}^{(M)} \rangle} \overline{Y}^{(M)} .$$

Here $\overline{t_1} = \overline{t_2}$ stands for $\bigwedge_i^n (t_{1,i} = t_{2,i})$ and $\overline{Y}^{(M)} = Y_1^{(M)} \times Y_2^{(M)} \times \ldots \times Y_n^{(M)}$.

Solution. By induction it suffices to prove the following statement: For φ, ψ formulas with free variables among $\overline{z}: \overline{Z}$ and arrows $f_1, g_1: \overline{Z} \to Y_1, f_2, g_2: X \to Y_2$ such that $\{\overline{z}|\varphi\}$ is represented by the equalizer of f_1, g_1 and $\{\overline{z}|\psi\}$ by the equalizer of f_2, g_2 then $\{\overline{z}|\varphi \land \psi\}$ is given by the equalizer of $\langle f_1, f_2 \rangle$ and $\langle g_1, g_2 \rangle$.

Let $\varphi, \psi, f_1, f_2, g_1, g_2$ be as in the hypothesis above. Then we have the following diagram

$$\begin{aligned} \{\overline{z} | \varphi \wedge \psi \}^{(M)} & \xrightarrow{p_2} \{\overline{z} | \psi \}^{(M)} \\ & p_1 \downarrow & \downarrow^{e_2} \\ \{\overline{z} | \varphi \}^{(M)} & \xrightarrow{e_1} \overline{Z}^{(M)} \xrightarrow{f_1} \\ & f_2 \downarrow \downarrow^{g_2} \\ & Y_2 \end{aligned}$$

where the square is a pullback square. We define $e = e_1 \circ p_1 = e_2 \circ p_2$ and show that e is the equalizer of $\langle f_1, f_2 \rangle$ and $\langle g_1, g_2 \rangle$. It is clear from e_1, e_2 being equalizers that e makes $\langle f_1, f_2 \rangle, \langle g_1, g_2 \rangle$ equal. It remains to show that e has the equalizer property. Let $e' : E \to \overline{Z}^{(M)}$ also make $\langle f_1, f_2 \rangle, \langle g_1, g_2 \rangle$. Then we have

$$f_1 \circ e' = \pi_1 \circ \langle f_1, f_2 \rangle \circ e' = p_1 \circ \langle g_1, g_2 \rangle \circ e' = g_1 \circ e'$$

such that by the equalizer property for e_1 we get unique $h_1 : E \to \{\overline{z}|\varphi\}$ such that $e' = e_1 \circ h_1$. Similarly we get unique $h_2 : E \to \{\overline{z}|\psi\}$ such that $e' = e_1 \circ h_2$. In particular $e_1 \circ h_1 = e_2 \circ h_2$ such that by the pullback property we get unique $h : E \to \{\overline{z}|\varphi \land \psi\}$ such that $h_1 = p_1 \circ h, h_2 = p_2 \circ h$. Note that $e' = e_1 \circ h_1 = e_1 \circ p_1 \circ h = e \circ h$. Let now $k : E \to \{\overline{z}|\varphi \land \psi\}^{(M)}$ be such that $e' = e \circ k$. We define

 $k_1 = p_1 \circ k, k_2 = p_2 \circ k$. Then we have $e_1 \circ k_1 = e_1 \circ p_1 \circ k = e \circ k = e'$ such that by uniqueness of h_1 we get $h_1 = k_1 = p_1 \circ k$. Similarly $h_2 = p_2 \circ k$. We now have by uniqueness of h that k = h. This completes the proof.

Exercise 2. (3 + 7 points) Let T be a theory and M a model of T. Prove the following:

a. Let $p(\overline{z}), q(\overline{z})$ be formulas with free variables among $\overline{z} : \overline{Z}$. Then we have

$$\{\overline{z}|p(\overline{z}) \land q(\overline{z})\}^{(M)} \le \{\overline{z}|p(\overline{z})\}^{(M)}$$

Solution. By Lemma 4.1 it suffices to display a deduction of $T, (p(\overline{z}) \land q(\overline{z})) \vdash_{\overline{z}} p(\overline{z})$. An example is given below

$$\frac{\overline{T, p(\overline{z}) \land q(\overline{z}) \vdash_{\overline{z}} p(\overline{z}) \land q(\overline{z})}}{T, p(\overline{z}) \land q(\overline{z}) \vdash_{\overline{z}} p(\overline{z})} (2.2)$$

where the labels indicate the deduction rule used.

b. Let now $p(\overline{x}, y)$ be a formula with free variables among $\overline{x} : \overline{X}$ and y : Y. Let also q(y), r(y) be formulas with as free variables y or none such that the sequent $q(y) \Rightarrow r(y)$ is in T. Then we have

$$\{\overline{x}|\exists y(p(\overline{x},y) \land q(y))\}^{(M)} \le \{\overline{x}|\exists y(p(\overline{x},y) \land r(y))\}^{(M)}$$

Solution. By Lemma 4.1 it suffices to display a deduction of $T, \exists y(p(\overline{x}, y) \land q(y)) \vdash_{\overline{x}} \exists y(p(\overline{x}, y) \land r(y))$. An example is given below. We have left out the "T"s

$$\frac{\overline{\exists y(p(\overline{x},y) \land q(y)) \vdash_{x} \exists y(p(\overline{x},y) \land q(y))}}{p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y)}} (2.3) \xrightarrow{(1.1)} (2.3) \xrightarrow{p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} q(y)} (2.2)} \xrightarrow{(q(y) \vdash_{\overline{x},y} r(y))} (1.2) \xrightarrow{(1.2)} \xrightarrow{(\overline{y}(\overline{x},y) \land q(y)) \vdash_{\overline{x}} \exists y(p(\overline{x},y) \land q(y))} (2.3)} \xrightarrow{(2.3)} \xrightarrow{p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y)} (2.2)} \xrightarrow{(2.3)} \xrightarrow{(p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y)} (2.2)} \xrightarrow{(2.3)} \xrightarrow{(\overline{y}(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y)} (2.2)} \xrightarrow{(2.3)} \xrightarrow{(\overline{y}(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y)} (2.2)} \xrightarrow{(2.3)} \xrightarrow{(\overline{y}(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y)} (2.3)} \xrightarrow{(\overline{y}(\overline{x},y) \land q(y) \vdash_{\overline{x},y} p(\overline{x},y) \land q(y)} (2.3)}$$

where the labels indicate the deduction rule(s) used.

Exercise 3. (Exercise E.4, 5 points) Prove the following statement which was used in the proof of Lemma 5.1: For an arrow $f: X \to Y$ a monomorphism m representing the subobject graph(f) is an equalizer of the two parallel arrows $f \circ \pi_1, \pi_2: X \times Y \rightrightarrows Y$.

Solution. By definition graph(f) is represented by the mono $(\operatorname{Id}_X, f) : X \to X \times Y$ so it suffices to show that (Id_X, f) is an equalizer of $f \circ \pi_1, \pi_2$. Note that

$$f \circ \pi_1 \circ \langle \mathrm{Id}_X, f \rangle = f \circ \mathrm{Id}_X = f = \pi_2 \circ \langle \mathrm{Id}_X, f \rangle$$

We see that (Id_X, F) makes $f \circ \pi_1, \pi_2$ equal. It remains to prove the equalizer property. Let $e : E \to X \times Y$ make $f \circ \pi_1, \pi_2$ equal. Then we have $h := \pi_1 \circ e : E \to X$. Note now that

$$\pi_1 \circ \langle \mathrm{Id}_X, f \rangle \circ h = \mathrm{Id}_X \circ h = h = \pi_1 \circ e$$

and

$$\pi_2 \circ \langle \mathrm{Id}_X, f \rangle \circ h = f \circ h = f \circ \pi_1 \circ e = \pi_2 \circ e.$$

We see $(\operatorname{Id}_X, f) \circ h = e$. Let now $k : E \to X$ also be such that $(\operatorname{Id}_X, f) \circ k = e$. Then we have

$$k = \mathrm{Id}_X \circ k = \pi_1 \circ \langle \mathrm{Id}_X, f \rangle \circ k = \pi_1 \circ e = h.$$

We see that (Id_X, f) is indeed an equalizer of $f \circ \pi_1, \pi_2$.

 \triangle

 \triangle

 \triangle