Homework 3 model solutions

March 12, 2024
Rob Schellingerhout

Since this material is about classifying categories and not about the basic logical calculus I am not too fussy about basic logical rules. I allow most of the rules from pages 19 and 20 of Butz to be used implicitly for example.

Exercise 1. (4 points)
We have the following chain of entailments

$$
\begin{array}{rlr}
\gamma\left(\bar{x}, \bar{y}_{1}\right) \wedge \chi\left(\bar{y}_{1}, \bar{z}_{1}\right) \wedge \gamma\left(\bar{x}, \bar{y}_{2}\right) \wedge \chi\left(\bar{y}_{2}, \bar{z}_{2}\right) & \vdash_{\Gamma}^{T} y_{1}=y_{2} \wedge \chi\left(\bar{y}_{1}, \bar{z}_{1}\right) \wedge \chi\left(\bar{y}_{2}, \bar{z}_{2}\right) & (\gamma \text { functional }) \\
& \vdash_{\Gamma}^{T} \chi\left(\bar{y}_{2}, \bar{z}_{1}\right) \wedge \chi\left(\bar{y}_{2}, \bar{z}_{2}\right) & (\text { Lemma 4.2(ii)) } \\
& \vdash_{\Gamma}^{T} \bar{z}_{1}=\bar{z}_{2}, & (\chi \text { functional })
\end{array}
$$

where $\Gamma=\bar{x}, \bar{z}_{1}, \overline{z_{2}}, \overline{y_{1}}, \overline{y_{2}}$. Hence we conclude by 2.3 (adjusted version or Lemma $4.2(\mathrm{i})$) that

$$
\exists \bar{y}_{1}\left(\gamma\left(\bar{x}, \bar{y}_{1}\right) \wedge \chi\left(\bar{y}_{1}, \bar{z}_{1}\right)\right) \wedge \exists \bar{y}_{2}\left(\gamma\left(\bar{x}, \bar{y}_{2}\right) \wedge \chi\left(\bar{y}_{2}, \bar{z}_{2}\right)\right) \vdash_{\bar{x}, \bar{z}_{1}, \bar{z}_{2}}^{T} \bar{z}_{1}=\bar{z}_{2}
$$

i.e

$$
T \vdash_{\bar{x}, \bar{z}_{1}, \bar{z}_{2}} \chi \gamma\left(\bar{x}, \bar{z}_{1}\right) \wedge \chi \gamma\left(\bar{x}, \bar{z}_{2}\right) \Rightarrow \bar{z}_{1}=\bar{z}_{2} .
$$

Grading. These are all worth one point each:

- Eliminating quantifiers using 2.3 and 4.2(i) or something similar.
- Correctly applying functionality.
- Using Lemma 4.2(ii) for substitution.
- The remaining details.

Exercise 2. (7 points)
(\Rightarrow) Choose $q=\exists \bar{x}(p(\bar{x}))$ and define maps

$$
\{\cdot \mid q\} \underset{\{\psi\}}{\stackrel{\{\phi\}}{\leftrightarrows}}\{\bar{x} \mid p(\bar{x})\}
$$

given by $\phi(\bar{x})=p(\bar{x})$ and $\psi(\bar{x})=p(\bar{x})$. We must check that these are indeed arrows in $\mathcal{R}(T)$. Since there is an injection $\{\gamma\}:\{\bar{x} \mid p(\overline{(x)})\} \rightarrow\{\cdot \mid \top\}$ we know by totality of γ and Lemma 6.2 that

$$
\begin{equation*}
p\left(\bar{x}_{1}\right) \wedge p\left(\bar{x}_{2}\right) \vdash_{\bar{x}_{1}, \bar{x}_{2}} \gamma\left(\bar{x}_{1}\right) \wedge \gamma\left(\bar{x}_{2}\right) \vdash_{\bar{x}_{1}, \bar{x}_{2}} \bar{x}_{1}=\bar{x}_{2} \tag{1}
\end{equation*}
$$

Additionally we know that

$$
\begin{equation*}
p(\bar{x}) \vdash_{\bar{x}} \exists \bar{x}(p(\bar{x})) \tag{2}
\end{equation*}
$$

by rule (2.3).
For ϕ we have

1. $\phi(\bar{x}) \vdash_{\bar{x}} q \wedge p(\bar{x})$ by (2) and the definitions of ϕ and q,
2. $q \vdash_{\bar{x}} \exists \bar{x}(\phi(\bar{x}))$ by rule (1.1),
3. and $\phi\left(\bar{x}_{1}\right) \wedge \phi\left(\bar{x}_{2}\right) \vdash_{\bar{x}_{1}, \bar{x}_{2}} \bar{x}_{1}=\bar{x}_{2}$ by (11).

For ψ we obtain

1. $\psi(\bar{x}) \vdash_{\bar{x}} p(\bar{x}) \wedge q$ (same argument as ϕ),
2. $p(\bar{x}) \vdash_{\bar{x}} \psi(\bar{x})=\exists_{\emptyset} \psi(\bar{x})$ by rule (1.1),
3. and $\psi(\bar{x}) \wedge \psi(\bar{x}) \vdash_{\bar{x}} \top$ by rule (2.1).

We check explicitly that they define an isomoprhism. Computations yield

$$
\begin{aligned}
\psi \phi & =\exists \bar{x}(\phi(\bar{x}) \wedge \psi(\bar{x})) \\
& =\exists \bar{x}(p(\bar{x}) \wedge p(\bar{x})) \\
& \Leftrightarrow \exists \bar{x}(p(\bar{x})) \\
& \Leftrightarrow q \wedge \top \\
& =\mathrm{id}_{\{. \mid q\}},
\end{aligned}
$$

and

$$
\begin{array}{rlr}
\phi \psi\left(\bar{x}_{1}, \bar{x}_{2}\right) & =\exists_{\emptyset} \psi\left(\bar{x}_{1}\right) \wedge \phi\left(\bar{x}_{2}\right) \\
& =p\left(\bar{x}_{1}\right) \wedge p\left(\bar{x}_{2}\right) \\
& \Leftrightarrow p\left(\bar{x}_{1}\right) \wedge p\left(\bar{x}_{2}\right) \wedge \bar{x}_{1}=\bar{x}_{2} & \\
& \Leftrightarrow p\left(\bar{x}_{1}\right) \wedge \bar{x}_{1}=\bar{x}_{2} & \text { by (1) } \\
& =\operatorname{id}_{\{\bar{x} \mid p(x)\}}\left(\bar{x}_{1}, \bar{x}_{2}\right) . & \text { by Lemma 4.2(ii) }
\end{array}
$$

We conclude that $\{\bar{x} \mid p(\bar{x}\}$ and $\{\cdot \mid q\}$ are isomorphic.
(\Leftarrow) The context of $\{\cdot \mid q\}$ being empty implies that the unique arrow $\{\cdot \mid q\} \rightarrow\{\cdot \mid \top\}$ is vacuously injective. This makes $\{\cdot \mid q\}$ (and hence $\{\bar{x} \mid p(\bar{x})\}$) a subobject of the terminal object $\{\cdot \mid \top\}$.

Grading. These are all worth one point each:

- Find $q=\exists \bar{x}(p(\bar{x}))$.
- Use lemma 6.2 to conclude (1).
- Define the maps ϕ and ψ.
- Check that ϕ defines an arrow.
- Check that ψ defines an arrow.
- Check that they define an isomorphism.
- The other direction.

Exercise 3. ($3+2$ points)
(a) Let

$$
\Gamma \xrightarrow{f}[y: \sigma] \xrightarrow[{[F(y)}]]{\stackrel{[y]}{\longrightarrow}}[y: \sigma]
$$

be an equalizer diagram. In this case $f=[M]$ for some term M such that $M: \sigma[\Gamma]$. Note that in this language all terms are of the form $F^{n}(x)$ for some variable x and some $n \in \mathbb{N}$. Hence $M=F^{n}(x)$ for some variable x. Composition is given by substitution hence

$$
\left[F^{n}(x)\right]=[y] \circ[M]=[F(y)] \circ[M]=\left[F^{n+1}(x)\right],
$$

and since equality is defined to be provable equality we have that

$$
F^{n}(x)=F^{n+1}(x)[x: \sigma]
$$

is provable.
Grading. These are all worth one point each:

- Use the equalizer $[y],[F(y)]$.
- Observe that all terms are of the form $F^{n}(x)$.
- Use the definitions of equality and composition to complete the argument.
(b) Suppose for the sake of a contradiction that $\mathcal{R}(T)$ and $C \ell(T)$ are equivalent. Since $\mathcal{R}(T)$ is regular it has equalizers. This would then imply that $C \ell(T)$ had equalizers and hence by the previous part

$$
F^{n}(x)=F^{n+1}(x)[x: \sigma]
$$

would be a theorem of T. However, this cannot be true as this statement fails in the following model N of T given in Set by

$$
N \llbracket \sigma \rrbracket=\mathbb{N} \quad \text { and } \quad N \llbracket F \rrbracket=n \mapsto n+1 .
$$

Grading. These are all worth one point each:

- Use the equivalence and (a) to conclude that $F^{n}(x)=F^{n+1}(x)[x: \sigma]$ is provable.
- Prove that this entails a contradiction by constructing a model.

