Hand-in 6
 Course: Seminar Logic - Categorical Logic

Universiteit Utrecht

March 25, 2024

This hand-in consists of three exercises.

Exercise 1. ($3+7$ points) In this exercise we consider the category Top of topological spaces and continuous function. We make it into a prop-category by taking for X a topological space, $\operatorname{Prop}_{\text {Top }}(X)$ to be the topology on X ordered by inclusion and for $f: Y \rightarrow X$ a continuous function, the pullback operation $f^{*}: \operatorname{Prop}_{\text {Top }}(X) \rightarrow \operatorname{Prop}_{\text {Top }}(Y)$ to be defined by taking the preimage through f. This prop-category has binary meets given by taking the intersection and for each topological space X a top element $\top_{X}=X$ of $\operatorname{Prop}_{\mathrm{Top}}(X)$. Both are preserved by the pullback operations such that in conclusion Top has finite meets. We will now study if Top has universal quantifiers.
a. Show that for I, X topological spaces the pullback operation $\pi_{1}^{*}: \operatorname{Prop}_{\text {Top }}(I) \rightarrow \operatorname{Prop}_{\text {Top }}(I \times X)$ induced by the projection $\pi_{1}: I \times X \rightarrow I$ has a right adjoint $\bigwedge_{I, X}: \operatorname{Prop}_{\text {Top }}(I \times X) \rightarrow \operatorname{Prop}_{\text {Top }}(I)$ and describe it explicitly.

Solution. Inspired by the case for Set we define for some open $A \subseteq I \times X$ the open $\bigwedge_{I, X}(A) \subseteq I$ to be the interior of $\{i \in I \mid \forall x \in X((i, x) \in A)\}$. We show that this gives the adjoint of $\pi_{1}^{*}: \operatorname{Prop}_{\text {Top }}(I) \rightarrow \operatorname{Prop}_{\text {Top }}(I \times X)$. Let $A \in \operatorname{prop}_{\text {Top }}(I), B \in \operatorname{prop}_{\text {Top }}(I \times X)$. Suppose that $A \subseteq \bigwedge_{I, X}(B)$. We need to show $\pi_{1}^{*}(A) \subseteq B$. Let $(i, x) \in \pi_{1}^{*}(A)$. Then

$$
i=\pi_{1}(i, x) \in A \subseteq \bigwedge_{I, X}(B) \subseteq\{i \in I \mid \forall x \in X((i, x) \in B)\}
$$

It follows that $(i, x) \in B$. We conclude that $\pi_{1}^{*}(A) \subseteq B$.
Suppose conversely that $\pi_{1}^{*}(A) \subseteq B$. We need to show that $A \subseteq \bigwedge_{I, X}(B)$. Let $i \in A$ and let $x \in X$. Then $\pi_{1}^{*}(i, x)=i \in A$ so $(i, x) \in \pi_{1}^{*}(A) \subseteq B$. We see $i \in\{j \in I \mid \forall x \in X((i, x) \in B)\}$ and more general $A \subseteq\{j \in I \mid \forall x \in X((i, x) \in B)\}$. By definition of $\bigwedge_{I, X}$ we now get that $A \subseteq \bigwedge_{I, X}(B)$. We conclude that

$$
A \subseteq \bigwedge_{I, X}(B) \Leftrightarrow \pi_{1}^{*}(A) \subseteq B
$$

such that $\bigwedge_{I, X}$ is the adjoint of π_{1}^{*}.
b. Show that Top does not have universal quantifiers. Hint. Suppose for a contradiction that Top does have universal quantifiers and consider the case where $I=\mathbb{R}_{\geq 0}$ with the regular topology and $X=\mathbb{R}_{>0}$ with the discrete topology.

Solution. Suppose for a contradiction that Top has universal quantifiers. Then for any continuous $f: I^{\prime} \rightarrow I$ and topological space X we have the naturality condition:

$$
f^{*}\left(\bigwedge_{I, A}(A)\right)=\bigwedge_{I^{\prime}, X}\left(\left(f \times 1_{X}\right)^{*}(A)\right)
$$

for each $A \in \operatorname{prop}_{\text {Top }}(I \times X)$.
Let now I, X be topological spaces and $A \in \operatorname{prop}_{\text {Top }}(I \times X)$. We will shows $\bigwedge_{I, X}(A)=\{j \in I \mid \forall x \in$ $X((i, x) \in A)\}$. The inclusion $\bigwedge_{I, X}(A) \subseteq\{j \in I \mid \forall x \in X((i, x) \in A)\}$ is a direct consequence of the definition of $\bigwedge_{I, X}$ so it remains to prove the inverse inclusion. Let $i \in\{j \in I \mid \forall x \in X((i, x) \in A)\}$. We take $I^{\prime}=\{*\}$. Then there is unique continuous function $f: I^{\prime} \rightarrow I$ sending $*$ to i and for each $x \in X$ we have $\left(f \times 1_{X}\right)(*, x)=(i, x) \in A$. We see that for each $x \in X$ we have $(*, x) \in\left(f \times 1_{X}\right)^{*}(A)$. Consequently we have

$$
I^{\prime}=\{*\} \subseteq\left\{j \in I^{\prime} \mid \forall x \in X\left((j, x) \in\left(f \times 1_{X}\right)^{*}(A)\right)\right\} \subseteq I^{\prime}
$$

so $\left.\left\{j \in I^{\prime} \mid \forall x \in X\left((i, x) \in\left(f \times 1_{X}\right)^{*}(A)\right)\right)\right\}=I^{\prime}$. As I^{\prime} is open in itself we have by definition of $\bigwedge_{I^{\prime}, X}$ that $\bigwedge_{I^{\prime}, X}\left(\left(f \times 1_{X}\right)^{*}(A)\right)=I^{\prime}$. In particular $* \in \bigwedge_{I^{\prime}, X}\left(\left(f \times 1_{X}\right)^{*}(A)\right)$ such that by the naturality condition $* \in f^{*}\left(\bigwedge_{I, X}(A)\right)$ and therefor $i=f(*) \in \bigwedge_{I, X}(A)$. This proves the inverse inclusion.

We now consider the case where $I=\mathbb{R}_{\geq 0}$ equipped with the regular Euclidean topology and $X=\mathbb{R}_{>0}$ equipped with the discrete topology. We consider the subset $A=\{(x, y) \in I \times X \mid x<y\}$. Note that we may also write this set as

$$
A=\bigcup_{y \in \mathbb{R}_{>0}}[0, y) \times\{y\}=\bigcup_{y \in \mathbb{R}_{>0}}\left((-y, y) \cap \mathbb{R}_{\geq 0}\right) \times\{y\}=\bigcup_{y \in X}((-y, y) \cap I) \times\{y\}
$$

from which it is clear that A is open in $I \times X$. We now show $\bigwedge_{I, X}(A)=\{0\}$. By the preceding we have $\bigwedge_{I, X}(A)=\{j \in I \mid \forall x \in X((i, x) \in A)\}$. By our choice for X, A we now get $0 \in \bigwedge_{I, X}(A)$. Let now $x \in I$ be not equal to 0 . Then $x>0$ and consequently $x>\frac{x}{2}>0$. As $\frac{x}{2} \in \mathbb{R}_{>0}=I$, but not $x<\frac{x}{2}$ so $\left(x, \frac{x}{2}\right) \notin A$ we have by our expression for $\bigwedge_{I, X}(A)$ that $x \notin \bigwedge_{I, X}(A)$. We conclude that 0 is the unique element of $\bigwedge_{I, X}(A)$, or equivalently $\bigwedge_{I, X}(A)=\{0\}$. By $\mathbb{R}_{\geq 0}$ being haussdorff we have that all singleton and therefor in particular $\{0\}$ is closed. Also, $\mathbb{R}_{\geq 0}$ is path connected and therefor also connected such that the only clopen subsets are $\emptyset, \mathbb{R}_{\geq 0}$. In particular $\{0\}$ is not open. However we defined $\bigwedge_{I, X}(A)=\{0\}$ as an interior so this is a contradiction. We conclude that Top does not have universal quantifiers.

Exercise 2. (7 points) In this exercise we consider the category Grp of groups and group morphisms. We make it into a prop-category by taking for X a group, $\operatorname{Prop}_{\text {Grp }}(X)$ to be the set of subgroups ordered by inclusion and for $f: Y \rightarrow X$ a group morphism, the pullback operation $f^{*}: \operatorname{Prop}_{\operatorname{Grp}}(X) \rightarrow \operatorname{Prop}_{\operatorname{Grp}}(Y)$ to be defined by taking the preimage through f. Show that Grp has equality.

Solution. We first show that Grp has finite meets. Let X be a group and let U, V be subgroups. Then $U \cap V$ is again a subgroup. Furthermore if W is another subgroup then considering U, V, W as set we see

$$
W \subseteq U, W \subseteq V \Leftrightarrow W \subseteq U \cap V
$$

such that $U \cap V$ is the meet of U, V. Let now U again be a subgroup of X. Then $U \subseteq X$. We see that X is a maximal element of $\operatorname{prop}_{\operatorname{Grp}}(X)$. For $f: Y \rightarrow X$ a group homomorphism we have $f^{*}(X)=Y$ and $f^{*}(U \cap V)=f^{*}(U) \cap f^{*}(V)$ such that the maximal element and binary meets are preserved. We conclude that X has finite meets.

Let again X be a group. We define a subset $\mathrm{Eq}_{X}=\{(x, x) \mid x \in X\}$. It is easily seen that this gives a subgroup of $X \times X$.

Let now I, X be groups and let A be a subgroup of $I \times X$ and B a subgroup of $I \times X \times X$. Suppose $A \subseteq\left(1_{I} \times \Delta_{X}\right)^{*}(B)$. We need to show $\left(1_{I} \times \pi_{1}\right)^{*}(A) \cap \pi_{2}^{*}\left(\mathrm{Eq}_{X}\right) \subseteq B$. Let $(i, x, y) \in\left(1_{I} \times \pi_{1}\right)^{*}(A) \cap \pi_{2}^{*}\left(\mathrm{Eq}_{X}\right)$. Then $(i, x, y) \in\left(1_{I} \times \pi_{1}\right)^{*}(A)$ and $(i, x, y) \in \pi_{2}^{*}\left(\mathrm{Eq}_{X}\right)$. Consequently $(i, x) \in A \subseteq\left(1_{I} \times \Delta_{X}\right)^{*}(B)$ and $(x, y) \in \mathrm{Eq}_{X}$. We now find $(i, x, x) \in B$ and $x=y$. Combining this gives $(i, x, y) \in B$. This proves $\left(1_{I} \times \pi_{1}\right)^{*}(A) \cap \pi_{2}^{*}\left(\mathrm{Eq}_{X}\right) \subseteq B$.

Suppose conversely that $\left(1_{I} \times \pi_{1}\right)^{*}(A) \cap \pi_{2}^{*}\left(\mathrm{Eq}_{X}\right) \subseteq B$. We need to show $A \subseteq\left(1_{I} \times \Delta_{X}\right)^{*}(B)$. Let
$(i, x) \in A$. Note that $\left(1_{I} \times \pi_{1}\right)(i, x, x)=(i, x) \in A$ and $\pi_{2}(i, x, x)=(x, x) \in \mathrm{Eq}_{X}$. Consequently

$$
(i, x, x) \in\left(1_{I} \times \pi_{1}\right)^{*}(A) \cap \pi_{2}^{*}(\mathrm{Eq}) \subseteq B
$$

We now find that

$$
\left(1_{I} \times \Delta_{X}\right)(i, x)=(i, x, x) \in B
$$

and therefor $(i, x) \in\left(1_{I} \times \Delta_{X}\right)^{*}(B)$. This proves $A \subseteq\left(1_{I} \times \Delta_{X}\right)^{*}(B)$. We conclude that

$$
A \subseteq\left(1_{I} \times \Delta_{X}\right)^{*}(B) \Leftrightarrow\left(1_{I} \times \pi_{1}\right)^{*}(A) \cap \pi_{2}^{*}\left(\mathrm{Eq}_{X}\right) \subseteq B
$$

which shows that Grp has equality.
Exercise 3. (3 points) Prove the statement preceding Proposition 5.7.1 that the assignment (-)* is functorial.

Solution. Let

$$
\Gamma^{\prime \prime} \xrightarrow{\delta=\left[N_{1}, \ldots, N_{n}\right]} \Gamma^{\prime}=\left[x_{1}^{\prime}: \sigma_{1}^{\prime}, \ldots, x_{n}^{\prime}: \sigma_{n}^{\prime}\right] \xrightarrow{\gamma=\left[M_{1}, \ldots, M_{m}\right]} \Gamma=\left[x_{1}: \sigma_{1}, \ldots, x_{m}: \sigma_{m}\right]
$$

be morphisms in $\mathcal{C} \ell(T h)$. Let $[\phi] \in \operatorname{prop}_{\mathcal{C} \ell(T h)}(\Gamma)$. Then we find

$$
1_{\Gamma}^{*}([\phi])=\left[x_{1}, \ldots, x_{m}\right]^{*}([\phi])=\left[\phi\left[x_{1} / x_{1}, \ldots, x_{n} / x_{n}\right]\right]=[\phi]=1_{\operatorname{prop}_{\mathcal{C \ell}(T h)}}([\phi])
$$

such that in general $1_{\Gamma}^{*}=1_{\text {prop }_{\mathcal{C \ell}(T h)}}([\phi])$ and

$$
\begin{aligned}
\left(\delta^{*} \circ \gamma^{*}\right)([\phi]) & =\delta^{*}\left(\left[\phi\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]\right]\right) \\
& \left.=\left[\phi\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]\left[N_{1} / x_{1}^{\prime}, \ldots, N_{m}, x_{m}^{\prime}\right]\right]\right) \\
& =\left[\phi\left[M_{1}\left[N_{1} / x_{1}^{\prime}, \ldots, N_{n} / x_{n}^{\prime}\right], \ldots, M_{m}\left[N_{1} / x_{1}^{\prime}, \ldots, N_{n} / x_{n}^{\prime}\right]\right]\right] \\
& =\left[M_{1}\left[N_{1} / x_{1}^{\prime}, \ldots, N_{n} / x_{n}^{\prime}\right], \ldots, M_{m}\left[N_{1} / x_{1}^{\prime}, \ldots, N_{n} / x_{n}^{\prime}\right]\right]^{*}([\phi]) \\
& =(\gamma \circ \delta)^{*}([\phi])
\end{aligned}
$$

such that in general $(\gamma \circ \delta)^{*}=\delta^{*} \circ \gamma^{*}$.

