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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 73, Number 1, January 1979

 CTo IS STRONGER THAN CTo!

 VLADIMIR LIFSCHITZ

 ABsTRAcT. CTO! is the result of adding the uniqueness condition to the
 antecedent of CTO. HA + CTO is shown to be essentially stronger than
 HA + CTO!.

 According to Church's thesis, every intuitively computable arithmetical

 function is recursive. In constructive mathematics, Church's thesis can be

 expressed by the following formula of second order arithmetic:

 Vf3zVx3v(T(z, x, v) &f(x) = U(v)) (CT)

 (T, U are Kleene's T-predicate and result-extracting function).'
 The most straightforward counterpart of CT in first order language is the

 following schema, proposed by Dr. Dragalin:

 Vx3!yA (x, y) -> 3zVx3v( T(z, x, v) & A (x, U(v))). (CTo!)

 The antecedent here expresses that [<x, y>: A (x, y)] is the graph of a total
 function; this function corresponds tof in the second order version.

 However, in the current literature on formal systems of constructive

 mathematics, another schema is usually considered to be the first order

 counterpart of CT. This other schema is less restrictive; it is obtained from

 CTo! by dropping the uniqueness condition:

 Vx3yA (x, y) -* 3zVx3v (T(z, x, v) & A (x, U(v))). (CTO)
 This schema is motivated as follows. Assume Vx3yA (x, y). This means in

 constructive mathematics that a computable function f exists such that

 VxA (x, f(x)). By Church's thesis, f is recursive; take z to be a godelnumber

 of f.

 Thus, CTo is CT combined with a choice principle [1, 1.1 1.7].
 We show that CTo is essentially stronger than the more straightforward

 formulation of Dragalin's: there exists a closed instance of CTo underivable
 in intuitionistic arithmetic HA from CT0!.

 Familiarity with Kleene's realizability is assumed [1, 3.2.2]. By j, 'I, j2 we
 denote a pairing function and its inverses:

 jlj(x, Y) = x, 121(x, Y) = Y, j(j (Z),J2(Z)) = Z;
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 102 VLADIMIR LIFSCHITZ

 { ) denotes partial recursive function application. We consider disjunction a
 defined connective [1, 1.3.7].

 1. The proof is based on a modification of Kleene's realizability in which

 the clause for existential quantifier only is changed. We define a sequence V0,

 VI,... of sets of natural numbers and define e to be a number realizing
 3xA(x) if V, #-0 and every element of V, realizes 3xA(x) in the sense of
 Kleene. If the family ( V,) has sufficiently good closure properties then HA is
 correct w.r.t. this modification of realizability. Assume, on the other hand,
 that (Ve) is chosen in such a way that the following hold:

 (a) there is no effective procedure for finding an element in any given
 nonempty member of (lVe).

 (b) there is such a procedure for the one-element members of (V,).
 One can expect then that CTO! is correct under this realizability interpre-

 tation, and CTo is not.
 Conditions (a), (b) suggest the following choice of Ve:

 DEFINITION 1. For any natural e, V, = [n: n j< 2(e) & -i!(j1(e)}(n)].
 DEFINITION 2. A natural number e realizes a sentence A if

 A is atomic and true, or

 A is B & C,jI(e) realizes B,j2(e) realizes C, or
 A is B -) C and for every n which realizes B {e)(n) is defined and realizes

 C, or

 A is VxB(x) and for every n { e)(n) is defined and realizes A (h), or
 A is 3xB(x), Vl' #0, and for every n E Vl,j2(n) realizes A(jQ(n)).

 2. The following two properties of (V,) are obvious:

 LEMMA 1. There exists a unary partial recursive function a such that for every

 e IVel = 1 implies !a(e), a(e) E Ve.

 LEMMA 2. There exists a unary total recursive function 18 such that for every n

 V(n)= {n).

 LEMMA 3. There exists a unary total recursive function y such that for every e

 Vy(e) = U Vn.

 PROOF. For any m, n, e,

 m E U Vn=*m E U V=* m < max U2(n)),
 nEVe n<j2(e) n<j2(e)

 hence U ne Ve Vn is bounded uniformly effectively w.r.t. e. Furthermore,

 m~ U V"13n(mE V &nEV)

 X'1 3nn<j2(e)(m E Vn & n EiVe)

 \/n'<i2(e)(m e Vn V n M Ve),
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 CT0 IS STRONGER THAN CT0! 103

 hence the complement of U ,, e v V V is r.e. uniformly effectively w.r.t. e.

 LEMMA 4. For every unary partial recursive function 0 there exists a unary

 partial recursive function 9* such that for every e Ve C dom 0 implies ! 0*(e),
 VG*(e) = 0(Ve).

 PROOF. Take an e with Ve c dom 0. dom 0 and the complement of Ve are
 both r.e. and cover the set of natural numbers. It follows that there exists a set

 Pe recursive uniformly effectively w.r.t. e which is contained in dom 0 and
 disjoint with the complement of Ve, so that Ve c Pe c dom 0. For any
 m E0 O(Ve)

 m <max 0(n) <max 0(n);

 hence 0 ( Ve) is bounded uniformly effectively w.r.t. e. Moreover, for any m

 m 2O 0(Ve)4 3n(n E Ve&m~ (n))

 - 1 3n~pe(n C Ve & m 0(n))

 i3n",,E (np Ve &(n dom 0 & m @0(n)))
 <=Vn ep (n p VeV1 (n E dom 0 & m @0(n))).

 The first disjunctive member is r.e., and the second is recursive, uniformly
 effectively w.r.t. e; hence the disjunction is uniformly r.e. too. On the other
 hand, the condition restricting the universal quantifier is uniformly recursive;
 hence the quantifier can)\be replaced by one with a recursive bound. It
 follows that the complement of 0 ( Ve) is r.e. uniformly effectively w.r.t. e.

 LEMMA 5. For every formula A there exists a unary partial recursive function

 9pA with the following property: for any nonempty Ve, if every element of Ve

 realizes a closed instance A of A then pA (e) is defined and realizes A .

 PROOF. For atomic E define qpE(e) = 0. Let A be B & C, and PB' ic are
 already defined. Consider the set

 V)t(e) = { j, (n): n E Ve}

 (notation from Lemma 4). If Ve is nonempty then so is V if every element
 of Ve realizes A then every element of Vj)(e) realizes B. Hence under these
 assumptions pB(j*(e)) realizes B. Similarly, Pc(j2*(e)) realizes C. Hence we
 can define

 PA (e) = j(pB(j* (e)), cpc (j2* (e))).

 Let A be B -) C. Define O.m(n) = {n)(m), and consider

 V<,(e) = [ n}(m): n E Ve].

 Assume Ve #0 and every element of Ve realizes A. Take n E Ve and any m
 which realizes B; then {n)(m) is defined and realizes C. Hence VG*(e) is
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 104 VLADIMIR LIFSCHITZ

 nonempty, and its elements realize C. Hence we can define

 pA (e) = Am.cO,* (e).
 Let A be VxC (x). Define 6m and cpA as in the preceding case.

 Let A be 3xC(x). Take 4pA to be y from Lemma 3.

 3. LEMMA 6. Every theorem of HA + CTO! is realizable.

 PROOF. The correctness of all postulates which do not contain existential

 quantifiers explicitly is verified in exactly the same way as for Kleene's

 realizability. Hence the only postulates to be considered are the postulates of

 predicate calculus for existential quantifier and CTo!.
 Consider an axiom of the form A (t) -* 3xA (x); assume for simplicity that

 x is the only parameter in A (x). Assume that m realizes A (t). Then /8 (j(m, t))
 realizes 3xA (x) for /3 from Lemma 2; hence Am.,8 (j(m; t)) realizes A (t)
 3xA (x).

 Consider an inference of the form

 A (b)-* C

 3xA (x) -C '
 and assume for simplicity that b is the only parameter in A (b), C is closed.

 Let T be a unary partial recursive function such that for every m cp(m)

 realizes A (iii) -* C, and assume that e realizes 3xA (x). Then V, #0, and for
 every n E V, j2(n) realizes A(jl(n)). It follows that for every such n

 {((j1(n))}(j2(n)) realizes C.
 Define 0(n) to be {f p(jj(n))}(j2(n)) and consider

 V#-(n) = [ { ( j, (n)) } (j2 (n)): n E- Vj

 For pc from Lemma 5, (pc(O*(n)) realizes C. Hence Ae. cpc(O*(e)) realizes
 3xA (x)-* C.

 Consider an instance (for simplicity, closed) of CTO!. Assume that e realizes
 Vx3!yA (x, y). Then for every n {e}(n) realizes 3yA (ii, y) & VY I y2[(A (ii,
 y) & A (i, Y2)) -*YI = Y2]. It follows, on the one hand, that j1({e}(n)) realizes

 3yA(n,y), i.e. Vj ( #e(n)) 7&0 and for every m E Vj (fe(n)) j2(m) realizes
 A (n,j(, (m-)).

 Define 4(n) = j"(j1({e)(n))); then Vo,(n) = [11(m): m E $jl((e)(n))] 7#0 and
 for every q E V,(n) A (n-, q) is realizable.

 On the other hand, j2({e}(n)) realizes VyIy2[(A (ii, y1) & A (ni, Y2)) ->Y1 =
 Y2]. It follows that there exists at most one q such that A (ni, q) is realizable.

 Hence I Vo(n)j = 1. Then for a from Lemma 1 V()= {a(4(n))}. Hence, by
 the definition of 4, for every m E Vj.((e(n))9

 jl(m) a(=(n)),
 which implies thatj2(m) realizes A (ii, a (+ (n))).

 Define v(e, n) = j2*(jj({e}(n))); then V = [j2(m): m E Vj)((e)(n))I &#0
 and every s E V,(en) realizes A(i, a(+ (n))). Hence this formula is realized
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 CTO IS STRONGER THEN CTO! 105

 also by TA (i'(e, n)). Let be be An.a((e, n)), and take 4 such that T(be, n, 4)

 Then CPA ( (e, n)) realizes A (n-, U(4e)), 0 realizes T(be, n, le)' j(0 'PA (i'(e, n)))
 realizes (T(be, n, le) & A (n, U(4e))); hence a(e) defined by

 a(e) = An.11[ j l,J (0, T)A (P(e, n)))]]

 realizes Vx3v(T(beg x, v) & A (x, U(v))). It follows that ,B (j(be, a(e))) real-
 izes the consequent of the instance of CTo! in question, and Ae.,8(j(be, a(e)))
 realizes the instance itself.

 4. Consider now the following "binary" version of CTo:

 Vx(A (x) V B(x)) -- 3zVx3v(T(z, x, v)

 & (U(v) = 0- A (x)) & (U(v) # 0- B(x))). (CrbO)

 Every instance of CTo clearly follows from an instance of CTo: take A (x, y)
 to be (A(x) &y = 0) V (B(x) &yy 7 0). We shall find a closed instance of
 CTb which is not realizable.

 Let [m: 3nT(a, m, n)], [m: 3nT(b, m, n)] be disjoint recursively

 inseparable r.e. sets. Take A (x), B(x) to be respectively Vz 1 T(a, x, z),

 Vz 1 T(b, x, z). Assume the instance of CTo is realizable. Consider its
 antecedent Vx(Vz 1 T(a, x, z)V W/z i T(b, x, z))and show that it is realizable
 too. According to the definition of disjunction, this formula is an abbre-
 viation for

 Vx3y[(y = 0 -Vz 1 T(a, x, z)) & (y =7 0 -Vz 1 T(b, x, z))1.

 Every true closed instance of the subformula in the brackets is realized by

 j(Al.0, A1.0); denote this number by d. For any k define sets Wk,' Wk", Wk as
 follows:

 W' = f { j(O, d)} if Vn 1 T(a, m, n),
 Wk 0 otherwise;

 "' = {{j(lg d)} if Vn:1 T(b, m, n),
 Wk 0, otherwise,

 Wk = Wk, U Wk". The sets Wk,' Wk" are uniformly bounded, and their
 complements are uniformly effectively r.e.; hence the sets Wk have the same
 properties, and there exists a total recursive function 'T such that for every k

 Wk = V,(k). Wk #70 because a, b are godelnumbers of disjoint r.e. sets.
 Consider an element of Wk. If it isj(0, d) then Vn 1 T(a, m, n); hence

 (0 = 0-Vz T(a, x, z)) & (O 0-+Vzl T(b, x, z))

 is true and consequently realized by d.

 Similarly, if it isj(l, d) then

This content downloaded from 131.211.22.160 on Mon, 20 Mar 2017 14:12:06 UTC
All use subject to http://about.jstor.org/terms



 106 VLADIMIR LIFSCHITZ

 is realized by d. It follows that 7T(k) realizes

 3y[(y = O-Vz1 T(a, x, z)) &y / 0-Vzl T(b, x,z)

 and the antecedent of the instance of CT'o in question is realized by Ak.7T(k).
 Hence its consequent is realizable too.

 Furthermore, the consequent has the following property: every implication

 occurring in it has the atomic conclusion. For such formulas, the realizability

 implies the truth. Hence the consequent is true, i.e. there exists a total
 recursive function p such that for every m p(m) = 0 implies Vn 1 T(a, m, n),

 p(m) 7# 0 implies Vn 1 T(b, m, n). But this is impossible, because the r.e. sets

 with the godelnumbers a, b are recursively inseparable. Thus we proved

 THEOREM. There exists a closed instance of CT,O underivable in HA + CTO!.

 COROLLARY. There exists a closed instance of CTO underivable in HA +
 CTo!.

 REFERENCES
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 Lecture Notes in Math., vol. 344, Springer-Verlag, Berlin, 1973.
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