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FINITE PROBLEMS

Ju. T. MEDVEDEY

The completeness of the intuitionist propositional calculus H, formulated by Heyting {!], has
been smdied by many authors. An algebraic model with respect to which H is complete was con-
structed by Jaskowski [2]. McKinsey and Tarski [3] proved the completeness of H in a topologi-
cal sense. From a significant point of view, these and related results still have not solved the prob-
lem of the completeness of H because they have been obtained for models having the character of
ad hoc interpretations. A. N. Kolmogorov [4] proposed a constructive interpretation of intuition-
ist logic, the idea of which consists in identifying true logical formulas with identically “'solvable’’
problems. In accordance with this idea, the completeness of the calculus interpreted as a calculus
of problems means the derivability of any formula which answers an “‘identically solvable'’ problem.
Rose [5] discovered the incompleteness of H interpreted as a calculus of problems related to the
recursive realizability of formulas fél.

The present paper is devoted tothe problem of the completeness of Il, the positive part of i
(i.e., that part in which negation is not considered). The models are formed by problems of the
Kolmogorov type which we call finitc, because we can study them by means of the theory of finite
sets. For such models one can prove the completeness of 1l in the sense indicated above (Theo-
rem 1). An analogous result (Theorem 2) holds for the infinite analogue of finite problems, mass
problems in the sense of carlier papers by the author {7.8]. In the final section some remarks are
made about formulas containing negation.

1. By a finite problem we mean, in the preseat paper, any problem the solution of which is an
element of some previously known nonempty finite set F of admissible possibilities. As examples
of finite problems we may use the problems of determining the truth or falsity of propositions: here
the set F consists of two elements, '‘true’’ and ''false”, and that one of the two which is the truth
value of the proposition serves as the solution. Chess problems also may be considered as finite
under the appropriate interpretation.

We remark that to every precisely formulated (not necessarily finite) problem % one can associ-
ate a finite “'approximating’’ problem !In. To do this, let us consider a language R about which it
is known that the solution of the problem ¥ can be expressed in it. As the set F of admissible
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possibilities for 21”, we take the set of all phrases of the language R having length <n, and as
solutions those elements of Fn which express a solution of ¥l. (For sufficiently large n the finite
problem ?In becomes equivalent to the problem U. However, it can turn out that the determination
of such an n can be realized only after the solution of U.)

The set of solutions of a finite problem may be empty (in contradistinction to the set of admiss-
ible possibilites).

If F is the set of admissible possibilities for ¥, and X is the set of all solutions, then we
shall write

F=g@), X=y®.

The adjective "*finite’’, modifying the word “*problem'’, will sometimes be omitted for the sake
of brevity.

2. Let us introduce the operations of conjugation, implication, and disjunction of problems. As
a preliminary step, let us agree on some notation. Let £, and E2 be arbitrary sets. Then:

1) By E| x E, we denote the Cartesian product of E| and £, i.e., the set of all ordered pairs
(x,5), where s € £, y € EZ'

2) By E.f‘ we designate the set of all mappings of £ into Ez.

3) By |E|E,} we denote the union of the sets £, x {1} and E, x {2}, where {1} and {2}
are single-element sets consisting, respectively, of the numbers 1 and 2, It is natural to call
{E|E,] the ordered union of E,and E,

Now, let %, and U, be arbitrary finite problems, where

_ SEN=F, xW) =X, ¢WU)=F, xE)=X,
Each of the operations on problems introduced below yields the indicated set F of possibilities and
the set X of solutions of the problem U which is the result of the application of this operation.

L. For the conjunction ¥ = U, & U,, we set F =F, x Fp X=X, xX,

II. For the implication Y = U, DU, we set F = F3*, and X = the set of all those mappings of
F, iato F, which rassform X, iato X,

1. For the disjunction U = U, \/?12, we set

F=1F|Fl, X =1X,|X,}
It is easy to verify that our definitions agree with the constructive standpoint given in the paper

by A. N. Kolmogorov mentioned above.

3. Let us define the notion of an identically solvable composite problem. A logical formula

Uz Pt zm) containing no cononectives other than &, J,and \/can be considered as a composite
problem which is a function of the problems z,--+, z_. The lacter play the role of independent
variables in place of which one cac substitute concrete problems U, ---, &  obtaining as a result
the problem U = U (Y,,---, & ). From the definition of the operarions on problems it follows thar,

in addition, F = ¢ (U} depends upon F = ¢(¥,),--+, F = ¢(U ) and does not depend upon X, =
x (U)o, X = x(U ). Lecus at first consider fixed sets Fi,--+, F,. To the choice of different
systems of sets X; (X;CF, i=1,--., m) will correspond various U,,-++, % ) with one and
the same set F and different sets X. If there is an element of F belonging to all such sets X (i.e.,
the intersection of all such X is nonempty), then we shall say that the given composite problem U

is solvable for the system of sets F,--+, F . If U(z},---, z) is solvable for any system of
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(finite) sets Fl’ cee, Fm, then we call it identically solvable. This definition has a wansparent
meaning: the identical solvability of U means that we are able to solve any problem U(Y,,---

--+, U_), knowing only the sets of admissible possibilities of the problems ¥, ..., U .
4. The axioms of the positive calculus Il are the following eight formulas:

1.xD(y Dx). 5.(x & ¥) Dy.

2.(x2(22)2({x 29} 2 22)). 6.2z Vy).

3.22(y Dz & y)). 7.5 2= Vy),

4 (x&xy)Ddx 8.(x22)2(y 22)2(x Vy)d2)).

If A is a finite (possibly empty) sequence of formulas and 4 is a formula, then the expression
A - A means that 4 is derivable from A and axioms 1-B using the rule of modus ponens and the
rule of substitution.

In the sequel we shall use the term "identically solvable formula’’, understanding by this the
identical solvability of the corresponding composite problem. Formulas which are not identically
solvable are called refutable,

Lemma 1. /f A | A and every formula of the sequence A is identically solvable, then the for-
mule A is alse identically solvable.

From this, for empty A, follows

Corollary. Every derivable formula of the calculus Il is identically solvable.

In order to describe the essential factors in the proof of the converse proposition, we introduce
some terminology. First, we shall write Ilicn C instead of the conjunction C; &---& C,, and
2icn C; instead of.the disjunction C V. A \/Cn, and each formula C; is called a member of the
given conjunction or disjunction, If all the C; are variables (i.e., simple letters), then the given
conjunction or disjunction is called elementary. We say that the formula J is a critical implication
if J bas the form

(HK,, ((P;20Q,)20,)) DR,
where the formulas P, are elementary conjunctions, and the formulas {; and R are elementary dis-
junctions, and if, in addition, forall i =1,---, n the following condition is satisfied: no member of
the conjunction P; is a member of the disjunction (J;. One easily proves

Lemma 2. If J is a criticel implication, then | is a refutable formula.

The basic difficulty is presented by the proof of the following fact.

Lemma 3. For every formula A one of the following assertions is valid: 1) A is derivable, or
2) there is a critical implication ] such that 4 — ].

From Lemmas 1, 2, and 3, our basic result follows.
Theorem 1. Any identically solvable formula of the caleulus Ul is derivable,

This result permits of strengthening, leading to an algorithm for derivability of formulas of the
calculus Il. Namely, for any formula U one can effectively determine a number k& = &k (U) such that
the derivability of U is equivalent to the solvability of U for a system of sets, each consisting of
{>k elements. The expression for the function %(l/), which one can find by analysis of the proofs
of Lemmas 1, 2, and 3, we shall not give here. We mention only that it gives too large a value for
k for the algorithm of derivability based upon it to have practical value,

5. We shall indicate the application of Theorem 1 to the problem of the completeness of Il as a
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positive calculus of mass problems [7] (in fact, the solution of just this problem suggested to the

author of this paper the consideration of finite problems). The following theorem is obtained as a

quite simple consequence of Theorem 1, if we use the construction of operations on mass problems
indicated in the author’s dissertation [B].

Theorem 2. Let the formula U(z,---, z,)) of the caleulus 11, upon substitution of any degrees
of difficulty ay,-++, a_ for z|,---, z , give (as a result of the application to a,---, a_ of the
operations indicated in U) the degree of difficulty 0. Then U(z Pt Eg) dS derivable in T1.

Thus, Il turns out to be complete also as a calculus of mass problems,

6. One can introduce the operation of negation | I, defined for any finite problem , by set-
ting |A=UD U,, where U, is a fixed problem with an empty set of solutions. This permits us
(as in the case of formulas of the calculus 1) to introduce the notion of identical solvability for
formulas of the caleulus /[. It is easy to see that every formula derivable in the calculus // will
be identicaliy solvable, but that there exist identically solvable nonderivable formulas. Among the
latcer belongs, for example, the formula considered for an analogous purpose by Rose [5] (and the
formulza (( 17220 2( 170 VD)) (1P V7 D), where D is any formula), and the
formula ( (2240 VN2 122 V(222

Thus, i is incomplete with respect to the given interpretation.
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*' INTERPRETATION OF LOGICAL FORMULAS BY MEANS OF FINITE PROBLEMS
AND ITS RELATION TO THE REALIZABILITY THEORY

Ju. T. MEDVEDEV

in [1] we investigated a concept of the validity of logical formulas that was based on their inter-
B pretation as being composite problems of the Kolmogorov type. Theorems 1 and 2 of the present paper
i and the previous results show that for those formulas of Heyting's calculus H that contain none of the
: connectives |, \/, or 2, this validity is equivalent to deducibility in H. From Theorem 7 it follows
that this assertion remains true if we replace validity in our sense by the realizability of Kleene and
Rose. The latter fact was known at least in part with respect to the connective 2 ([2], Theorem 7.5).
1, The class of formulas of the calculus H that are valid in the sense of [!] (i.e., the class of
ideatically solvable formulas) will be denoted by T,
Theotem 1, If a formula A does not contain the disjunction N, then it follows from A € T that 4
is deducible in H.
The proof is by the same method as in Theorem 1in [1). (It is based on a lemma analogous to
Lemma 3 in [1] which is formulated in exactly the same way except that the term *'critical implication"’
_ is defined differently.)
3 Theotem 2. If a formula A does not contain the implication O, then it follows from A € T that A
is deducible in H.
4 This theorem results from the following three easily proven theorems that are also of interest in
themselves.

Theorem 3 (Rose, (2], Theorem 7.1). Ifa formula A of the calculus H is not deducible in H and
does not contain implication, then A is equivalent inH to the disjunction of a certain number of formu-
i las that are not deducible in the classical propositional calculus.

d Theorem 4. If a formula A has the form of a disjunction, then it follows from A € T that at least
4 one of the members of this disjunction € T.

; Theotem 5. If A € T, then A is deducible in the classical propositional calculus.

; 2. We denote the class of realizable formulas of the calculus H by P. 4

: Theotem 6. It follows from UEP that UE T,

In view of the comparative simplicity of the proof of this theorem, it will be given below (with some

abbreviation).
Definition 1. Let EI' seny, En be some system of sets of parural pumbers. We will say that this
system has an effectively empty intersection if there exists a geaeral recursive function p for which it :
follows from p(z) =y that 1 Sy <nand x € Ey. .
Remark. In analogy with the concept of multiple separability in descriptive set theory [3], it is J
possible to make the following definition: sets of natural numbers El’ e, E" will be said to be re-
cursively multiply separable if there exist recursive sets B,--+, B, such that E,CB;forlgign,
and the intersection of all the B, is empty. It is easy to show that the property of the system of sets
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E,,---, E_ having an effectively empty intersection is equivalent to the property of the sets of this
system being recursively multiply separable,

Lemma 1. For any natural number n > 2 there exists a system of n mutually disjoint recursively
enumerable sets that does not have ar effectively empty intersection,

We consider for the proof the partial recursive function w in two variables that is universal for the
class of all partial recursive functions in one variable. We denote by g the partial recursive function
q(x) = ulx, x), and we let E; (1 <i < n) be the set of all x for which q(x) = i. We will show that the
system of sets £, -+, E_has the desired properties. Itis first clear that the sets of this system
are recursively enumerable and murually disjoint. We will show that the system has an effectively
empty intersection and that p is the general recursive function required by Definition 1. In view of the
universality of w, there exists an e such that plx} = we, x) for all x. Denoting p(e) by &, we will
have k = wle, ¢) = gle). It follows from the definition of the function p that 1 = k<nand e € Ek’
from which it follows that g(e) # k. The contradiction thus obtained shows that the system £, -+, E
does not have an effectively empty intersection,

Lemma 2. For any natural number N > 2 there exists a system of N - 1 mutually disjoint recur-

sively enumerable sets E|,-++, Ey_, that possesses the following property: the system of the N sets

N=1
Ep,-o+s Ey_ys Ey, where Ey is the complement of the set Llj E;, does not have an effectively empty
intersection.

It is sufficient to take for El' vesy EN-! the sets constructed for the proof of Lemma 1, Thee for
N = 2, the proposition to be proved follows from the fact that E, is not a recursive set. For N>2,if
one assumes that there exists a general recursive function p satisfying the condition of Definition 1
with respect to the system E, -+, Ey_}, £y, one can easily construct (using the recursive enumer-
ability of the sets E,,-+-, Ey_;) a general recursive function p satisfying that condition with respect
to the system EI’ «++, Ep_ 4. This would contradict Lemma 1, and the proof of Lemma 2 is thus
complete.

Now let the formula U{(z P zm), constructed from the propositional symboels z,°+, 2z, not
be identically solvable, i.e., U € T. Our goal is to show that then U € P, In view of the refutability
of U this formula is not solvable for some system of finite sets Fy,--+, F . One may assume that all
the Fi are identical and coincide with the set /| of natural numbers k satisfying the inequality 1 <k<n
for some natural number n > 1. This follows from the following proposition, the proof of which we omir:
if a formula is solvable in a system of sets Gl' cee, Gm, then it is also solvable in a system of sets
F,-«-, F, for which, for all i=1,+-+, m, the number of the elements in the set F; < the number of
elements in the set ;.

We enumerate in some definite manner all the possible ordered sequences of m elements having
the form ¢ = (X, -+, X_), where X are the subsets of I: Xl' CI, for 1 <j<m. We obtain the se-
quence c,*+*, ¢y, Where ¢ = (X(I’), e, Xf’:)) for 1 < s <N, where N =2"" 32,

Let E|,-+-, Ey be a system of sets, the existence of which was established in Lemma 2, There
exist logical-arithmetic formulas o (e)-0n, a.N(t) containing 2 unique free number variable ¢ and pos-
sessing the property that a;(t) expresses the predicate k € £;. This means that if for any natural num-
ber k one denotes by k* the term representing k in the formula system of arithmetic indicated, then for
any s, 1 <s <N, the relationship k € E_ is equivalent to the truth of the proposition @, (") underthe
intensional interpretation of the predicate a_{t). We denote by ¢, and ¢; the arithmetical formulas ex-
pressing the propositions 0 = 0 and 0 = 1 respectively, and by Bj (t) the arithmetic formula
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zrgnnsgN (8], s \/_‘ g (e)),

where 5’-' hs coincides with ¢, for r € X(;) and with €, for r € Xfl.s ),

We will show that the arithmetic formula w(t), obtained from Ulzyo---s .‘:m) by substituting
By (y+++y B, (D for zp,+++, 2., is oot realizable. With this it will also be shown that U EP. Ve
denote by Qll.(k) the finite problem for which ¢(?I}.(k)) =1, x(ul-(k)) = X(l.s). where s (1 <5< N) is de-
fined from the condition k € E_ (in view of the properties of the system E,---, E_, suchan s exists
and is unigue).

Lemma 3. For the realizability of the formula “sgw (5].' rs Vol a (k') i.e., of the member
with the number r of the disjunction Bj(k*), it is necessary and sufficient that the condition rG,\’(QIi(k))
be satisfied.

We note that a formula of the form o (k*) is cealizable if and only if the predicate expressed by
the formula a.(¢) is true for ¢ = k. This follows from well-known results in realizability theory [4] and
from the fact that & (k*) has the form (@u) y () (for L <5 <V ~ 1} or the form (Vu) y (1) (for s = N),
whete the formula y(u) expresses a primitive recursive predicate. Thus, for the realizabilicy of the
given conjunction, it is necessary and sufficient that for all those s for whic_l.a 5.’ o is ¢, the formula
a (k") expresses a false proposition. In other wortds, it must follow from r € X(is) that £ € E_. This
is equivalent to the condition 7 € X (?lj(k)).

Lemma 4, Let A(zy,++, 2,,) be any formula of the calcuius H, We denote by w (k*) the formula
AB ", -y B, k")) and by U, (k) the finite problem AL (R), -+, U (k). Then there exist com-
putable functions f, and g4 such that for all k, e, and k the following conditions cre satisfied:

1) If e realizes w , (k*), then f,{e) € (*, (k).

2) Ifh € x (U, (K), then g4 (k) realizes w (&*).

In this formulation the domain of definition of the function g, and the range of the function [, are
assumed to coincide with ¢(¥ , (K) (clearly, it does not depend on k)

The proof is by induction on the number of logical connectives in the formula A, If this oumber is
equal to zero, then A coincides with the letter z; for some j, 1 < j<m. Then @y (k*) coincides with
ﬁ}- (k") and U ; (k) coincides with ﬂi(k). In this case the existence of the functions f, and g, follows
almost directly from Lemma 3 and the definition of the realizability of formulas (with consideration of
the form of the formulas B-(k')). We now assume that the number of logical connectives of the formula
A is not equal to zero and that for formulas with a smaller aumber of connectives the assertion of the
lemma is valid. Then 4 is a formula of one of four types: BaC B \V4 C,BoC, er _| B. We restrict
ourselves to an analysis of the third case, i.e., to a formula A of the form 8 > C. As for the proof of
Lemma 1, let w be a universal partial recursive function and let x realize w (k*)s For every
b€ p(Uy (k) let h{b) = fo(wix, gp (b))). It is easy to show that if b € x (U g(£)) then E(B) € x (U (k).
Thus, with each x realizing @4 (k*) the above expression associates (clearly in a computable way) a
function k € x (¥ ,(k)) and at the same time defines some function f4 with the required property. The
function g, is constructed analogously with the use of the functions fg and g¢.

We turn directly to the proof of Theorem 6. Let us assume that the formula w(¢f) is realizable,
This implies the existence of a general recursive function r such that for any natural number & the num-
ber r(k) realizes w(k*). We will designate U, (k) simply by W(k). In view of Lemma 4, there exists a
computable function f such thar for any natural number k and for any x realizing w(k*), it is zue that
f(x) € x(E (k). Coosequently, fora computable function f; {(k} = { (r(k)) for any k we bave f, (k) €
(L), Let U (1 < s < V) be the finite problem U @), .., 4, where ¢(21§.")=1n,
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x(ﬂ}s)) = X(J.s). Clearly, it follows from k € E_ that U(*) coincides with L(k). Since U(zy,---, 2.}
is not solvable in the system of sets F,+ -+, F,, where each Fis [ , therefore for any k there exists
a smallest s, 1 < s < N, for which f; (k) € x(U(s)), and thus £ € E. Using the computabiliry of fis it
is easy to find a general recursive function which will locate the s for a given 4. Denoting this func-
tion by p, we have 1 < p(k) < N, where it follows from plk) = s hat k € E_. Thus the system Eleve
ey EN bas an effectively empty intersection, contrary to the original assumption. We must thus as-
sume that the formula w(¢) is not realizable, which is what was required to be shown.

From Theorems 1, 2, 6, and the fundamental result of [1] (Theorem 1) we obtain the following
tesult.

Theotem 7. Let a formula U of the calculus H contain none of the connectives _|, \/ 2. Then
it follows from U € P that U is deducible in H.
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INTERPRETATION OF LOGICAL FORMULAS BY MEANS OF FINITE PROBLEMS

Ju. T. MEDVEDEV

The present wotk is a continuation of [1:2]. Logical formulas that are valid in the sense of those
articles (formulas always decidable) will also be called finitel) valid formulas in the future. The
first section of this article contins a description of the finitely valid formulas in algebraic terms

i
¥
4

(Theorems 1 and 2). The second section introduces a new operation over finite problems, namely eak
disjunction. The third section is concerned with the extension of the concept of finite validity to the
class of formulas of the restricted predicate caleulus,
1 1. Let n > 1 be a nawral number. We denote by In the set of natural numbers i such that
: 1<i<n, and by ¢" the class of all nonempry subsets of the set I such that the condition E € o
is equivalent to the two conditions: E C/ and E # A, where A is the empty set.

Definition 1. Let o C ¢®. The closure of the class ¢ with respect to o* is the class ¢* C g for
which E € o* if and only if E C E Cl, for atleast one E € o0

The operation of closure with respect to o" just introduced is defined for each class ¢ C " and
* &

- [possesses the followmg properties: 1) A* = A for the empry class A; 2) o 203 3) o = o
'(01 U 02) = 01 4] 02 This operation, considered in a collection with the set-theoretic operations

I on, .ml:c:sccnon, nnd complementauon with respect to o“, turns the set of all g€ " into a

=0 N oy 7l o,=(g,)* o, D0,= , N 02),* where the upper line denotes complementa-
respect o o™, These operations mum the set 9" into a Brauer algebra [4,5], which we will

L 'é'st element o € D for which o, & a2 0y The element | ¢ the same as g2 o". We will
smallest element of each of the algebras X% and ®" (corresponding to the empty class A)

» X, be the corresponding sets of solutions. The

he system § is the class a(S) of sets defined by the conditions: 1) o(5) € o";
2 n,ﬂ € 0(5) if and only if the intersection of all the X, for which { € E is the empry

-

er for aclass g C o to be the characteristic of some reduced system S of prob-



i element of o, contains some element of 4. ;
' Clearly the class oy is a basis of the class o, if and only if o] 2 0, in the algebra 2%, :
Definition 5. Let .’31 = {U} and 5,= lEii be two reduced systems of problems of the same order
2. We introduce logical operations over §, and §,, yielding new systems of order n, by means of the
stipulations: Sl & 52= !'U.i & Bi}, Sl \/52 - {?,I‘- \/ﬁf';,‘l Sl o {_ﬂ[il, Sl :’Sz = ﬂli ) 931-1.
It turns out that the characteristics of the new systems are completely determined by the charac-

teristics of the systems Sl and 52. Moreover, we have the following lemma.

_.": Lemma 2. Let §; and §, be two reduced systems of problems of the same order n, and let oy

o, respectively be bases of their characteristics. Then for the system S obtained as a result of one of

i logical operations over §, and S, abasis ¢ of the characteristic can be defined in the following

. manner:

*1 1)5=8, & Sy;: g=0; &0y

:{;‘j 2)§=5, /5, E€g if and only if E=E U E, for some E €0 and £, € a5

‘;'] 3} §=7] Sl: =0y} _

3 4 5=8,05;:E€0 if and only if E € o, and there does not exist an E, € oy such that

Eyc b .

' ! The following assertion follows casily from the above lemma. 5
_‘: Lemma 3. The following relations hold for reduced systems S, and S, of the same order n: 'f
o(S, & §) = 0lS,) & 0{S3), olS, \VS,) = 0(5) Vol8,), 615 = 1018, (5, 2 S,)=a(8,) 2a(8,)
: where the operations in the right-hand sides are understood in the sense of the algebra ®". |

i Let Uzg,-evs z,,) be a logical formula containing no logical connectives other than & AVARREEE
aed D, and let F -0y F,, be nonempty finite sets. We consider a sequence X}, of sets ; !
U= 1,000 m; Pmlyeees n) for which Xj C Fy. We denote by W, a finite problem for which Uy &
Fr» x¥}) = Xj,. For fixed k we have a reduced system 5; of order n of the problems ¥ (= 1,+++n).3
Let §=U(S; -+, S_) be the reduced system obtained by applying to Sy, *+, S,, the logical opera: A
tions found in the formula U. Let us assume that the formula U is refutable in some system of sets 1
Fl’ eve, F_. From the definition of refutabiliry it follows that for some collection 51, veey Sy, of the
described form the system S has as a characteristic a nonempty class alS) € o". By Lemma 3 we
have ¢(S)=U(a(5)), -+, o(S,,)), where the operations in the dght-hand side of the equation are understood
in the sense of the algebra @". Thus, U does not vanish identically as a function on &". Assume,
conversely, that Uloy, «++s G, )= 0 in the algebra @". Then it is easy to establish by Lemma 1 that

U is refutable in some system of sets FI’ s, F . Wearrive at the following result.

Theotem 1. In order for a formula U to be finitely valid it is necessary and sufficient that U 8

vanish identically on the Brauer algebra @" for some n 2 1.

e

This theorem may be given in another form. Every finite distributive structure L can be considered
as a Brauer algebra, if for each pair a, b € L, one assumes the definitions: @ & b = the upper bound of
a and b, a \/b = the lowet bound of @ and b, a Db = the least ¢ € L for which a &c 2b (sucha ¢
exists because of the finiteness and distibutivity of L), T|a=aDe, where ¢ is the largest elementis
of L. We denote by Ln the free distributive structure with n generators Xy *+ =+ %, and the addition'.
symbol for the least element 0. It is easy to see that L,, considered as a Brauer algebra, is i
isomorphic to @7, The following variant of Theorem 1 is thus valid.

Theorem 2. The class of finitely valid formulas coincides with the class of formulas that vanish '-

o
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identically on Ln for some natural number n.
Itis interesdang to compare this result with the well-known fact that for a formula to be intu-
itionistically deducible it is necessary and sufficient that the formula be identically zero on some finice
H :_. distributive structure. We note further that the struceure Ln is isomorphic to the structure of monotone
functions of n variables (two-valued) of the algebra of logic.

The most convenient way of establishing the refutability of a formula comes from Lemma 2. In this
lemma there are indicated four (corresponding to the logical connectives) very simple operations over
bases of characteristics of systems of order n. Since every o Cd" is a basis of a characteristic
(namely o*) for some system of order n, these operations are defined for all such g. We thus have
some algebra B". We denote the element of B® corresponding to the empty family by 0. It follows
from Lemma 2 that the formula U vanishes identically ea " if and only if it vanishes identically on
B",

2. According to A. N. Kolmogorov [6], the theory of a constructive solution of problems contains
the propositional logic. It is patural that the language of this theory must also be more expressive.

The necessity for the extension of the logical language arises, for example, in the following situation.
Let A and B be problems in the sense of A N. Kolmogorov. One can assume that we have succeeded
in finding some object a having some relation to the solution of the problem A, and an object & having
some relation to the solution of the problem B, and that, moreover, we have established that the state-
' ment "o is not a solution of A and b is not a solution of B’ is false. To express this sitation it
2 ‘convenient to assume that the pair (@, b) serve as a solution of the weak disjunction A L] B of the
roblems A and B.
Qvis possible to be more precise in the case of finite problems. Let %, aad U, be finite problems,
e ‘t)ﬁml) =F,, ¢@,)=F,, x{U ) =X,, xU;)= X, Wedefine the problem %, which will be
the weak disjunction of the problems 2[1 and ¥, and denote it by ﬂIL %,, by the following
tions: F = ¢(W)=F, x F,y y(W) =X, where x = (fys f) € F belongs to X if and only if it

ras ' E_thnl: fl €X, and f, € X,. The concept of finite validity extends in an obvious way to the

s formulas containing the new connective L. Here, in particular, the following formula turns out
the - ely valid: ((x ~ ) & {y ~v)) D{(xLJy) ~ LI v))(here a ~b denotes the conjunction adbl &
€ his shows the *'correctness” of the operation of weak disjunction. Some other examples of

formulas are: x 3 (x'_y), ¥ D (xy), (& Vy)2) 5 ((xLiz) Viytz)), Ol ).

eration of weak disjunction can also be defined correctly for mass problems in the sense of

extend the concept of finite validity to the class of formulas of the restricted predicate
he usual interpretation of such formulas in the case of a finite object domain D contain-
ﬁfinals, the universal quantifier is considered a k-membered conjunction and the

tifier a k-membered disjunction. Here it ums out that each closed formula ¥ is in-
valent to some formula U of the propositional calculus (the variables of the formula

m the predicate symbols of W, provided with indices from the elements of D). Assum-
set of pamuml oumbers 1, 2, ..+, k, we will denote the operation of passing from W
1‘:'!::!,, so that U =T, (). A formal description of the operation T’ can be found,




Theorem 3. If a closed formula W of the restricted predicate calculus is deducible in the intu-
itionistic predicate calculus, then W is finitely valid,

A nontrivial example of a finitely valid formula that is not deducible intuitionistically is the dis-
wibutivity law for the universal quantifier: (x} (4(x) V/B) 5 ((x) A(x) VB), where A(x) and B are
closed formulas.

Theorem 4. There does not exist an algori'km for recognizing finitely valid closed formulas of
the restricted predicate calculus.

This result is obtained from the following theorem, which is of independent interest.

Theorem 5. n order for a formula of the propositional calculus of the formT|U to be finitely valid,
it is necessary and sufficient that it be classically true (i.e. deducible in the classical propositional
calculus).

Theorem 4 is now obtained in the following manaer. By Theorem 5, the finite validity of a closed
formula 1 | of the restricted predicate calculus is equivalent wo having, for each & > 1, the formula
I U1 ) =1 T (I be classically true, i.e. to having the formula 1" (F) be classically true for
every k. The latter is equivalent to having ¥ belong to the class ) of closed formulas that are
classically identically true in any finite domain. If there existed an algorithm deciding finite validicy,
then it would also decide membership of a formula in the class . B. A. Trahtenbrot has proved, how-
ever, that such an algorithm is impossible [10].

We note in conclusion that the concept of finite validity extends in an obvious manner to the clas:
of formulas containing in addition to the usual connectives &, V. 7}, O, the universal quantifier (x)
and the existential quantifier (E, x), and also the connective {_| and the '"‘weak existential quantifier
corresponding to it [x].
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