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Extending the topological interpretation
to intuitionistic analysis

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Dana Scott

The well-known Stone-Tarski interpretation of the intuitionistic
propositional logic was extended by Mostowski to the quantifier
logic in a natural way. For details and references the reader may
consult the work Rasiowa-Sikorski [5], where intuitionistic
theories are discussed in general, but where no particular theory
is analysed from this point of view. The purpose of this paper
is to present some classically interesting models for the intuition-
istic theory of the continuum. These models will be applied to
some simple independence questions. The idea of the model can
also be used for models of second-order intuitionistic arithmetic

(cf. the system of [6]), but lack of time and space force us to
postpone this discussion to another paper. Also, the author has
encountered some difficulty in verifying certain of the continuity
assumptions (Axiom F4 of [6] for Voc3fJ to be précise) and hopes
to try to understand the motivation behind these principles better
before presenting the details of the model. It is not impossible
that there are several distinct intuitionistic notions of free-choice

sequence (real number) with various continuity properties.
The paper has four sections In Section 1 the properties of order

are discussed in a way that motivates the construction of the
model in Section 2. In Section 3 the model is used to contrast
classical and intuitionistic properties of order. In Section 4 the
model is extended to include other relations, operations and
higher-order notions, and the continuity question is touched on
briefly.
The author hopes that the reader will be convinced that the

model merits further study. The question is often raised whether
the topological interpretation has any relevance at all to intuition-
istic thought (e.g. [4], p. 189). Of course, the intended intuition-
istic interpretation has to do with some abstract notion of "proof",
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but it seems fair to say that a formalization of this idea has not
been carried far enough to treat analysis (again cf. [4] pp. 125 ff. ).
However, the topological interpretation is not unrelated to this
program, even though it is not the desired theory. One may view
a neighborhood of a topological space as a kind of "proof" :
a proof that a point belongs to a more complicated set because
the neighborhood of the point is included in the set. With this
in mind, the usual topological facts follow the generally accepted
intuitionistic prescriptions rather well, as follows:
Let X and Y be open subsets of a topological space T ; let

t E T be a point; and let t E U Ç T be given so that U is an open
neighborhood of t. Then U is a "proof" that t E (X n Y) if and
only if U C X n Y; which means that U is a "proof" that t e X
and that t E Y. Similarly U is a "proof " that t E (X u Y) if and
only if U contains a neighborhood U’ of t which is either a "proof"
that t E X or a "proof" that t E Y. Finally U is a "proof" that
t E (X ~ Y ) = In ((T ~ X) ~ Y ) if and only if U is a "method"
whereby, given a "proof " U’ that t E X ( i. e., t E U’ Ç X), a "proof"
that t E Y is produced (viz. U n U’ ).
Even if these remarks are not a philosophical justification of

the topological interpretation (which indeed they are not), we at
least see why it is that the "logic" of open sets proved to be
formally an intuitionistic system. What may actually turn out
to be the main interest of this study is the application of the
reasonings of intuitionistic analysis to a very simple and well-
known classical structure.

1. The properties of order in the continuum

The author must first admit to never having read a paper of
Brouwer: he has taken nearly all of his information about the
continuum from Heyting [2] and Kleene-Vesley [3]. Since the
properties needed for this paper are quite elementary, these two
references seem sufficient. In particular the relation , the
"measurable natural ordering" (written  o in [3]), is very basic.
It enjoys these two fundamental properties:

These are justified in [2, p. 25] and in [3, p. 143]. Note that
transitivity follows at once from the above:
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Next the "apartness relation", for which we shall write =1=,
can be defined in terms of  :

Both in [2] and [3] the relation ~ is written as #. We have

changed the notation for the sake of the model that will be
presented below. In general, relations denoted by single symbols
in the intuitionistic theory will have a very close connection
with the corresponding classical relations. In order to keep these
connections clearly in mind, it was found to be easier not to
abbreviate an intuitionistically negated relation by drawing a
stroke through the symbol for the relation to be negated. However,
the negated relations are also of basic importance, and we use
special symbols for them:

We may also employ &#x3E; and &#x3E; with the obvious meanings.
In both [2] and [3] the above use of ~ is avoided because it is

not intuitionistically valid that:

We shall see, nevertheless, that the model makes our usage natural
even in the face of the above failure. Note, on the other hand, the
validity of these two principles:

The deductions of (1.7) and (1.8) from (1.1-(1.6) are quite
straight forward, as are the proofs of the following:

From these it easily follows that = is indeed an equality relation:

where A is any first-order formula involving only , ~, =, and
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. Note that the proofs of (1.10)-(1.12) make essential use of
(1.3), which is the intuitionistic replacement for the invalid

principle :

The intuitionistic and classical theories are very close. One may
show in general that an open sentence of the form

where the A i and Bj are atomic formulae of the form x  y or
x ~ y (maybe with other variables), is either provable from
(1.1)-(1.4) (in intuitionistic logic!) or has a counterexample in
the integers. The proof is effective. In case x  y and x = y are
allowed (especially in the conclusion), one must take m = 1.
Surely it must be possible to give a simple decision method for
all open consequences of (1.1)-(1.6). Maybe our model below
will aid in seeing how the argument could be constructed. The
quantified formulae should also be investigated, but the situation
looks to be more involved.
We now extend our language by adding variables q, r, s (with or

without various super- or subscripts) ranging over the rational
numbers. We shall also use the usual rational constants, if necessary.
In view of the constructive character of the rationals we can
assume:

The (open) theories of rationals in intuitionistic and classical logic
coincide. (Instead of special variables we could, of course, have
introduced a special predicate x E Q, but the formulas become
too cumbersome.) Passing now for the first time to formulae

involving existential quantifiers, we assume that the rationals are
dense in the continuum in the following sense:

These principles are justified in [3, p. 149, *R9.19].
Even though in the intuitionistic theory the order relations of

an arbitrary real to the rationals are not necessarily decided,
a real does in some sense determine a cut in the rationals. Indeed,
we can prove at once from (1.17):
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(1.18) The following are equivalent:

A similar result (1.18’) holds with  and  replaced by &#x3E; and

&#x3E;, respectively. In these formulae, the bounded quantifiers
should, of course, be interpreted as:

We also have:

(1.19) The following are equivalent:

By the way of proof, it is obvious that (i) - (ii) - (iii). Assume
(iii) and recall that (i) means -1 r  x. So assume r  x. By (1.18’)
we know there is an s with r  s and s  x. By (iii), x  s
follows, which gives a contradiction. We call (1.19’) the result of
replacing all the relations by their converses.

2. The topological interpretation

The idea of this interpretation (which is carried out in classical
mathematics ) is to use the lattice of open subsets of a given topo-
logical space T as "truth values" for formulae. Thus to each
formula A we associate an open subset [[A]] of the space T satis-
fying some simple rules:

where In denotes the interior operator on subsets of T. In addition,
the individual variables are interpreted as ranging over the ele-
ments e in some given domain R (we use "e" here because we are
thinking of models for the real numbers.) Thus for quantified
formulae we have :
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(Note that we really should write A(03BE) where r$1 is the name
of the object 03BE in the formal language. )
As is proved in [5], all formulas A provable in Heyting’s predi-

cate logic are valid in this interpretation in the sense that [[A]] = T.
Let us assume further that all of (1.1)-(1.6) are valid in fhis
particular interpretation as well as (1.16)-(1.17) where R is
assumed to include the set Q of rational numbers. We wish to
investigate more closely the behavior of the elements e e .9.
To start out note that for each t e T an element e e .9 deter-

mines a cut in Q where the upper part of the eut is the set

This suggests associating with e c- 9 a function ; : T ~ R (where
R is the set of classical reals, and where we are using "03BE" again
to denote the function) defined as:

In case e = q e Q, note that e(t) is the constants function with
value q. In general we have:

(2.7) e : T - R is continuous for all e E .9.

PROOF: We note first that

Because if 03BE(t)  q, then by definition t e [e  rl where r  q.
But then obviously, t e [[03BE  q]]. Conversely, assume t e [[03BE  q].
By (1.18) and (2.5), t e [[03BE  r]] for some r  q. Thus 03BE(t)  r  q.
Next we show that

Assume first that q  e(t). Then, by definition, there exists an
r &#x3E; q such that t 0 [[03BE  sl for all s  r. Take any s with

q  s  r. By (1.3) we see

hence, t e [[q  el. Assume for the converse that t e [[q  el. In
view of (1.18’) we have t e [[r  el for some r &#x3E; q. Thus, for all
s  r we have t 0 [[03BE  s]]; this means r  e(t) and so q  e(t).
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From these two equations we see that the inverse image under e
of any open interval (q, q’ ) is the open set [[q  el n [[03BE  q’]],
which proves that the funetion e : T ~ R is indeed continuous.
Now that we know that the functions are continuous, the open

"truth" values of some other formulas are clear:

In fact (2.8) follows from (1.17) and the formulas used for the
proof of (2.7) above; and the others follow by (1.4)-(1.6). Note
that by (2.11) we have 03BE = ~ valid (that is, [[03BE = q] = T) if
and only if 03BE(t) = q(t) for all t e T. Hence it is safe simply to
identily e with the continuous function it determines.

These simple facts suggest that the obvious classical model for
the intuitionistic continuum is to take R to be the collection of
all continuous funetions e: T ~ R and to use the rules (2.1 )- (2.6),
(2.8)-(2.11) for evaluating formulae. The reason for using all the
continuous functions is that R should be complete. No doubt this
statement could be justified more formally with reference to some
suitable model of a higher-order intuitionistic theory of species.
Since the author does not want to say at this moment what
this theory is like, he must leave this matter somewhat vague.

3. Some independence results

Consider, for the sake of illustration, an open formula in two
variables x and y. In view of (1.4)-(1.6), we need employ as
atomic formulae only x  y and y  x. Thus, corresponding to
the given formula, there is a formula A ( P, Q) of propositional
calculus such that the given formula is equivalent to

We shall show that the universal statement

is provable (intuitionistically) from (1.1)-(1.2) if and only if the
propositional formula
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is provable in Heyting’s calculus. This gives a decision method
for open formulae in two variables. No doubt the method can be
extended to more variables, but the proper formulation of the
result seems to be combinatorially rather complicated. We will
discuss the case of three variables below.
Note first that the provability of the propositional formula is

sufficient: because one can substitute x  y for P and y  x for

Q and invoke (1.1). Suppose then that the formula is not provable.
By the results stated in [5, pp. 385-396], there is a metric

topological space T and there are assignments of open subsets
[P] and [[Q]] to P and Q such that:

Since we could relativize to a subspace, we can assume without
loss of generality that

which means that [[P]] and [[Q]] are disjoint open sets.
We are now going to use our model for the intuitionistic con-

tinuum based on the metric space T. Let np : T - R be defined
by the formula

where à is the metric in T ; similarly for nQ. These two non-
negative functions are continuous and

similarly for 03C0Q. Define continuous functions 03BE, ~ : T - R by:

Since [[P]] and [[Q]] are disjoint, we have

and

which implies that

Thus the universal formula is not valid in the model.
There are several remarks to be made here. In the first place

the choice of the model was made to dépend on the formula. If
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we set T = NN (the Baire space, which is homeomorphic to the
space irrationals, a zero-dimensional complete space), then by
virtue of Theorem 4.1 in [5, pp. 130-131] this space can be
used for all the counterexamples thus fixing the mode].

Secondly, now that the space is fixed, we note that e = 0. If
e’ is any other continuous function, we replace e by e’ and iî by
7y’ = 03BE’+~. Obviously

and so

But note that if f : T ~ T is an autohomeomorphism of T onto
itself, then

Inasmuch as the autohomeomorphism group is transitive on
T = NN, we conclude that

This means that

and in view of the remarks above

Among the more interesting of the formulae that fall within the
scope of this discussion we may mention:

and, of course, many more, all of which are valid in the model.



203

The above formulae are closely related to those discussed in
Chapter IV of [3]. Kleene shows that certain of them are provable
in his system, which is a stronger theory than any we have con-
sidered so far in this paper. Now under suitable definitions our
models ought to satisfy Kleene’s axioms and more. Thus it would
seem that we have somewhat stronger consistency results than
those obtained by Kleene’s method. However, judgement should
be suspended until a better understanding of the model is ob-
tained. We shall discuss the matter further in Section 4.

Passing now to three variables, the situation is more compli-
cated. Suppose xo, xl, and x2 are the variables. Let the proposi-
tional letter P ii correspond to the atomic formula xi  xj. Let
A be the given open formula, and let A(P) be the propositional
formula that results from replacing xi  xj by Pu- Let B(P) be
the conjunction of all formulae of the forms:

and

for i, j, k  3. We wish to show that

is provable if and only if the propositional formula

is provable. In case of unprovability, we will find that

is valid in the model.
As in the previous argument, sufficiency is obvious. Suppose

then the propositional formula is unprovable. We evaluate the
Po with open sets [[Pij]] so that

while

We define non-negative continuous functions 03C3ijkl : T - R so
that

We then introduce (by a formula which cost the author several
hours to discover) functions nu : T - R where



204

This equation for the continuous function 03C0ij is, of course, under-
stood as a functional equation. In view of the inclusion

we see that

The main reason for making the formula for 03C0ij so complicated
was to assure:

for all i, j, k  3. This means that we can solve the (over-
determined) system of equations

for functions 03BE0. 03BE1, 03BE2 : T ~ R. Indeed let eo = 0 and el = noi
and e2 = n02. We then have

so that

where A(03BE) is the result of substituting the e’s for the x’s. Just
as before we can show

for all 03BE’0, and the desired conclusion follows. The author was
unable to come up with the proper 03C0-formula for cases with more

variables, though it would seem that the method should gener-
alize.

4. Enlarging the model

Up to this point we have discussed the properties of only
, ~, , and =. Suppose $ is any relation between (classical)
real numbers. We may extend $ to the model R in the spirit of
(2.8)-(2.11) by the formula:

In case $ represents an open relation (open subset of R X R),
we can drop the In on the right-hand side. This we did in the
cases of  and ~. In case $ is a closed relation and $’ is the

complementary (open) relation, then



205

This is what we did in the cases of ~ and =. The uniformity of
these connections was the main motivation for the author’s choice
of notation. He feels that it makes comparison with the classical
theory much easier and hopes others will agree with him. The
author notes with satisfaction that Bishop in [1] (which is the
deepest and most thorough mathematical development of in-
tuitionistic analysis available) adopts the same notation for in-
equalities, of course based on an intuitive motivation.
By the way of example, let us consider the notions of closed

and open intervals as defined in [3, *R8.1, p. 147 and *RI3.1,
p. 161]. After suitable logical simplifications, these two concepts
can be defined as follows:

In the above we have abbreviated a conjunction of successive
relationships in the usual way. The exact reason why the doubly
negated relationship is considered more basic than that without
the  escapes the author.

In view of the topological equation

we see that if A o , A1, ···, An-1, Bo are atomic formula of the
kind just considered with the new relational symbols, then if

is valid classically, it is also valid in our model. In case

Bo , B1, ···, Bn-1 all have symbols for open relations, then the
same holds for

By the way, it may turn out that the only interesting relations $
that ought to be considered in the model are those that are either
open or closed. But this remains to be seen.

Quantified formulae are as usual more difficult to understand.
Suppose

is valid classically because there is a continuous function f : R - R
such that
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is true. Then obviously

will be valid in our model. The same remark can be made about
formulae with implications of the kind considered above. Actually
it is enough to have a f amily {fi : i ~ I} of continuous functions
such that

is classically valid for

to be valid in the model in case $ happens to be open.
Besides relations, there are also some interesting functions on

the elements of the model. For example, suppose f : R X R - R
is continuous. We interpret the equation

for 03BE, ~ E e, to mean that

for all t E T. Then 03B6 also belongs to R. We can apply this method
to the arithmetic operations +, ., - and to such functions as

sin, cos, ex, etc. Note that any (universal) (conditional) equation
satisfied by functions on R is also valid on R. Thus

is valid in the model; while

is not. In fact,

is valid.
This last remark points up the fact that if a sentence A has only

constants (say, rational constants) and operations and relations
like +, =, etc., then its value is invariant under all autohomeo-

morphisms of T. Now if T = NN (our favorite choice for T),
then the only open sets so invariant are 0 and T ; thus if the
sentence A is not valid, then -i A is valid. In particular, the law
of excluded middle holds for such sentences in the model. Many
people may regard this feature as undesirable; it is a consequence
of our classical construction of the model. It does not seem too
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serious, however, when we realize that the most interesting
sentences have parameters and then this conclusion does not hold.
We can weaken the unnegated (4.5) to make it valid; thus:

One should not conclude, however, that a disjunctive conclusion
with closed relations is always invalid. For example, we have:

This can easily be checked in the model, or we can prove it from
other principles. Suppose X = x2. By the obvious equations of
algebra this can be written as

Now by (1.2) we have [0  x ~ x  I]. In the first case we derive
by (4.6) the equation 1-x = 0, and so x = 1. In the second case
1-x ~ 0 follows, so x = 0. We see that (1.2) in intuitionistic
analysis replaces the invalid principle

by the valid and almost as useful principle

where e can be any (very small) positive rational number.
The use of certain continuous functions and of some of their

obvious properties sometimes gives us results about the pure
theory of order which no doubt cannot be derived simply from
(1.1)-(1.8). For example, the average (x+y)12 clearly satisfies

From this and some other obvious arithmetic principles we
derive easily:

We can adjoin double negations and write the result as:

which seems to be slightly stronger (and more easily proved) than
*R13.8 in [3, p. 161].
Other properties of order seem to require rather complicated

proofs. In particular, the author could not see a more elementary
proof of *R14.11 in [3, p. 168]. He can only remark that after
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the définitions are unwound the principle boils down to:

That seems interesting, but the author finds the hypothesis very
hard to work with. All in all, the quantified theory of order in
the intuitionistic continuum may prove to be fairly difficult.

Partial functions are very annoying. In [2, p. 21] Heyting
states that x-1 is defined only for x ~ 0. It seems rather difficult
to make this procedure rigorous in a formal intuitionistic theory
that allows the free formation of terms x-1 and not just the relation
y = x-1 (which is equivalent to x · y = 1.) We can, however,
show that

is valid in our model. For let e E f!4 and suppose t e [[03BE ~ 0]]. Then
there is an integer n E N, n &#x3E; 0, such that |03BE(t)| &#x3E; 1/n. Let f be
any continuous function such that f(u) = u-1 for lul ~ 1/n. We
see that

Hence,

which shows that (4.10) is valid. There ought to be a general
principle to cover this situation, but the author is not quite sure
what its proper formulation should be.

Instead of restricted variables such as the rational variables q,
r, s, we could introduce predicates such as 03BE E Q into our formal
language. By definition:

where on the right-hand side we have used q for the rational and
for the constant function with value q. The reader should note that

if and only if the sets [[03BE = q]] are both open and closed in T. This
means that T is partitional into such sets on each of which the
funetion e has a constant value. Even though such functions are
not strictly constant, we can show:
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and

This means that the use of the predicates has the same effect as
the use of restricted variables.
Another interesting predicate is defined by

where again a is used to denote a constant function. We can think
of e E D as meaning e is definite. It is just the point of the intui-
tionistic theory that it allows for "indefinite" numbers. That is
why a statement

is so strong because the y must exist not only for the definite but
also for the indefinite numbers x.

It is seen that our model allows only for continuous functions on
R to be automatically extended to f!4. This limitation may indeed
be essential. In view of Brouwer’s Theorem on Continuity (cf.
[2, p. 46] and [3, pp. 151ff.]) it may be reasonable to conjecture
that if ~x!yA(x, y) is valid in the model, then there exists a
continuous function f : R ~ R such that ~xA (x, f(x)) is also valid
(at least if A (x, y ) has no additional parameters). It is clear that
we cannot weaken 3 ! to 3 for this model, because

is valid, but there is no continuous function that can be used to
obtain y even for all x where x E D is valid. The above conjecture
about 3 ! may be too optimistic: it will probably turn out that there
are more functions F : 9 - éP that are appropriate for the model
than there are ordinary continuous functions f : R ~ R, even
though the F may satisfy the formal statement of continuity in
the model.
The predicates introduced in (4.13 ) and (4.16) are what might

be called "non-standard"-predicates to distinguish them from the
kind of predicates $ discussed at the beginning of this section.
The non-standard notions are somehow peculiar to the model and
have no counterpart in the classical theory. (This remark is
somewhat misleading in connection with Q; but note that the
equation
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is not in general correct for all e E R.) This suggests that we should
have a theory of predicates (sets, species). A general predicate is
represented by a function .5’ defined on Q taking arbitrary open
subsets of T as values. We write:

We may use variables X, Y, Z, etc., to range over these predicates.
We note that the general comprehension principle is valid:

where A (r) is an arbitrary formula. We are being careful not to
assume that these species are extensional in the sense of the validity
of:

because remarks in [4] and elsewhere seem to indicate that non-
extensional predicates may be of interest and even of importance.

In [3], free (i.e., universally quantified) species variables are
used at several places; in particular, the obviously fundamental
*R14.14 [3, p. 171] expressing a kind of Dedekind completeness
(called being "freely connected") uses them, and they enter at
many other points. Note that there is no reason to stop at second-
order species: we can easily continue upward to higher-order
species and even to a kind of transfinite intuitionistic set theory.
That last sounds almost like a contradiction in terms, but the
model certainly can be defined in classical set theory.
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