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contain the s-invariant element c;). Then x = x,ux,; belongs to p[8 — C]
and is invaciant under o”.

4. Let A be YoB. ‘only if": Let x e p[VoB], 6°x = x. Let 5,Rs, de ¥(s).
As before, we have nfm and s = s, form = (1). By (8) thereis ce I'_ such
that ¢~ = d, By (10) ¢™c = c. Therefore a™(xc) = xc. Also xc € p[5?] and
Bie F(I,). Induction hypothesis gives $((8;)", s) = . (B) is (7).
Hence ®(¥ol,5,)=T.

i Let @(YuB~, 5,)=T. Let cel. If H is the group generated by
o*, then H{e) is generated by o® for some m with a|m. By (10) ¢ g I, By
(7)™ & ¥(3,). By (4) 5, Rs,.. Therefore ${(#)™, 5,) = T. Also 8l e F([',).
By induction hypothesis H(c) has fixed elements in p[87]. As before we
get an inveriant function. There is no trouble with the range, since for all
heH, h(plB]]) = p[B]} = p[BL]in virtue of {12) and (11). Therefore o* has
fixed elements in p[VeB].

5. Let A be 3oB. The proof is straightforward, using (7), (8) and (10).

This concludes the proof of the lemma.

Proof of part (2) of the theorem:

Let A be a closed formula containing no individual constants other than
¢g. Then A € F{I';) and A~ € F(¥(s, )} = F(*¥?(A)). Assume not 4. Lemma
1 gives & model @ such that #(4™, A) = F. Let p be the proof assignment
associated to . Then by lemma 2, & has no fixed element in p[4). Therefore
plA] contains no invariant functional.
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EXTENDING THE TOPOLOGICAL INTERPRETATION TOQ
INTUITIONISTIC ANALYSIS, II

DANA SCOTT*

This paper is a sequel to the paper [12] written for Professor Heyting
under the same title. Nearly all of the questions left open in [12] have been
answered. In particular the results of section 3 in [12] having to do with
universal formutae of the theory of < in three variables have been extended
10 arbitrary universal formulae in section 5. (Our numbering of sections con-
tinues that of [I2).) We then discuss in section 6 the general metama-
thematical implications of the method of section 5 for the theory of the
topologicat model of intuitionistic analysis. In section 7 the important step
13 taken of enlarging the model to encompass acbitrary (extensional) real
functions. Fhe main result is the verification in the model of Brouwer's
theorem on continuity: aff functions are uniformiy continuous on closed in-
ferpals. The proof is given in detail along with several related results. (The
reader will have to refer to [12] for notation and the definition of the model.)

The author was thus able to conclude this paper leeling that he had a
rather good grasp of the basic properties of the real nambers of the model.
Several further projects remain to be carried out, however. The next im-
portant step is to discuss the corresponding topological interpretation of
second-order arithmetic and the theory of free-choice sequences of integers,
This will make possible an exact comparison ol the theory of the model and
the usual axiomatic theories of intuitionistic analysis (which will no doubt
be one of the main topics of part 111 of this series 'of papers,) Following such
work it is obvious that attention must be given to obtaining a constructive
version of the model. Kreisel has suggested that the theory of constructive
and Jawless sequences (the system of [8]) may provide the proper framework
* Research on this paper has been supported by » grant from the National Science
Foundation. Special thanks sre duc 1o Professor . Kreisel for the many hours of dis-

cussion on intuitionistn in general and the helpful criticisms of earlier drafts of this paper in
particular.
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for this discussion in view of the connection between the topological inter-
pretation and lawless sequences [5] (part IV?) In this connection it is appro-
priate to take this opportunity to retract a remark of [12}, p. 194. Contrary
to what was said, Kreisel has all along felt that the topological interpre-
tation has relevance. Indeed in [6] he mentions it along with realizability and
his own elimination of free choice sequences. Moreover in [5], p. 370, para-
graph 2, he had already presented the clearest possible statement of his view
of the interpretation.

In another direction the theory of species and higher-order functions will
require consideration. That study will of course bring in connections with
the Boolean models for set theory ([11] and [t3).) To date no particular
technical results about the Boolean models have played a role in the dis-
cussion of these topological models. In fact, the main effort was given to
the consideration of those properties of the models and topological spaces
most appropriate to foundations of intuitionism. However, it was the success
of the Boolean models in making clear certain aspects of Cohen'’s remarkable
independence results (such as the type of construction of generic and ran-
dom reals) that encouraged the author to take up again the study of the topo-
logical interpretation which he had put down some ten years before. And he
is most happy to see now just how well things fit together. It does not seem
altogether impossible that work in the intuitionistic theories may throw
additional light on the properties of the Boolean models (c¢f. [2] and other
references given there).

S, Further independence results. In section 3 we discussed universally
quantified threc-variable consequences of the axioms of order (1.1}-(1.2)
and noted that such questions could be thrown back to propositional
calculus as well as being determined by the model. At the time of
writing the earlier section the results were rather special, and the author
suggested that they should generalize. They do, Kreisel has pointed out
the relevance of the following well-known fact about HPC (Heyting's
predicate calculus):

A universal sentence it a consequence in HPC of a given universal axiom
if and only if its matrix is a propositionol consequence of a finite number of
substitution instances of the axiom using the variables mentioned in the con-
clusion.

Note that our fanguage has only relation symbols, in fact only <, which
makes the result so simple; in particular, we have a decision method for
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universal consequences of a universal axiom. The proof of this general
result requires no special knowledge of models.

Let us consider the theory of <. We can schematically indicate the gea-
cral universal sentence as

WXgyoswXeuy Alx; € X520, ) < 1),

where we mean (o suggest that the expression involves the various atomtc
formulae x; < x;. Let P; be propositional letters and let

A(Py: 1 j < n)

indicate the result of replacing x; < x; by P, in the matrix of our universal
sentence. Further let

B(Pyi, ) < n)
be the conjunction of all formulae of the two forms

- [Py A Pyl
and
[Py— Pu v Pyl

for i, f, k < n. In our case the general result mentioned above shows that
the given universal sentence is a consequence of (1.1)-(1.2) if and only if

[B(Py: 1, j < n) = A(Py: 1, ] < m)]

15 a propositional theorem in HPC; hence the decision method. This approach
13 definitely only suited to universal prenex formulae, however. The author
is rather inclined to believe that the full first-order intuitionistic theory based
on (1.1)-(1.2) is undecidable.

Having noted the above purely formal result, we may now ask: dre rthe
axioms (1.1)-(1.2) complete for the universal sentences valid in our model?
We shall prove that, under suitable conditions on the topological space T,
if the universal sentence is not provable in the theocy of <, then it fails in
the model. Indeed we shall find that the contradictory sentence

¥xa 1 VXy 0o Xpm Al € xp24, < 1)

is actually volid in the model. For this purpose in view of [10], pp. 130-131
we find it convenient to assume that T is a non-empty, dense-in-itself, to-
tally disconnected, metric space; the two best known examples being the
Cantor space 2" and the Baire space N%. We prefer the latter because of

i A e R e R A
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its naturalness in interpreting second-order number theory, Thus for the re-
mainder of the paper we may as well fix T = N In the future there may
be reason for greater generality, but this choice of T gives a complicated
enough model with sufficiently many interesting properties.

Suppaose, then, that the universal sentence is nof provable from (1,1)—(1.2).
Thus the corresponding propositional formula is not provable either. By
what we know about T'= N, we can assign open sets [P, to the P, in such
n way that

(B(Py:hj<n)f=T;
while

[A{Py:tj<n)]# T
We wish to find continuous funclions £, € & such that

5 <&l=[r

and this will give us the counterexample in the model,

It seems convenient to construct certain auxiliary funclions before ob-
taining the ;. In the first place, given open scts [P,;] and given a subses
1=1{0,1,..., n}, we can definc continuous functions o, € & that arc non-
negative and such that

—q_Vc_ID Dmmz._.

Neaxt, for given /, < n, we define 1, € & such that

=Y oa—Yo,
i =
it i

where the summations run over all the subsets satisfying the indicated re-
strictions, Finally we set for / < »

§i = Moy

but it takes several steps to see that these functions so defined have the desired
properties. (These formulae, by the way, do indeed gencralize those of
section 3.)

We note first that, for {, j < n,

A= 0
and
"y = -y
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bhold by definition. The x; are by no means non-negative, but we shall see
that

[y > 0] = [P,}.
Assume that (¢} > 0, then by the definition of the n,, and the non-nega-
tive character of the o, we find &,(r) > 0 for at least one subset [ such that
ied,f¢ I But then by the construction of oy, we have re[P,]. Now
for the converse, assume that refP,;]. We must obtain a particular
Is {0, 1,...,n—1} such that {e/, j¢ 1 and

.mD N {Pu).

igt

where of course &, / range over all indices less than » satisfying the resteie-
tions. To construct £ we proceed by induction. Let Jy = {i} and Jj = {j).
Since

PdnlPl=9

we know that { # J, because £ € [P,)] but #¢ [P,]. Henee Jo A I = 0 and

rel) NP

dalp lafo’

Supposc now g < n,and I, n Iy = 6, and

te NIPG)
taly lafy
Let m be the least integer where m < n, mé I, n J,. We will show how to
adjein m to I, or to I, prescrving the above properties. Because, from the
assumptions about the P,;, we have

[fu] = [Pd v [£.]
0 APdS(OPduN

lafy laty daly taty
Now il 1€ (N, [Pra)s set Ipyy =1, and Iyy = I, u {m). While if
1€ hiary [Pui], 588 Jyoy = I, {m) end [, = I,. The. required proper-
ties arc obvious in either case. Proceeding in this way to ¢ = n (orisit n—2
stince we started with /, / as given?) we obtain 7 and its compiement as desired.
Having found this J we see o,(t) > 0. Now if J is any subset with fe J and
f¢J, then since ¢ ¢[P)], we have a;(r) = 0. We have thus proved that
ny,{r} > 0.

so that
12wl
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To complete the proof we must prove in addition
Ayt Ry = 0.

Note that in view of our above remarks about the ry), it is sufficient to assume
the 1,4, k < n are all distinct. We must, unfortunately, write out ihe sum on
the left-hand side of the above equation, namely:
~Ya,+Yo-Yo+ Lo— .M,_Q.T

s Jui ket hal

Y I Y] el ¥y
These are two kind of terms: positive and negative, and there are equal
numbers of cach, Thus if we can show that cach positive term can be can-
celled by a unigue negative term that is formally equal to it, then the whole
expression cancels to zero. In view of the symmetry of the situation, consider
a typical term o, with f € Fand J ¢ J. By inspection, of the six kinds of restric-
tions on the capital letter subscripts in the expression only fwo could con-
tain an occurrence of the same subscript £. And actually only ore can amise:
the cases k & / and k ¢ I are disjoint. Thus indeed a positive occurrence of
o, cancels with a unique negative occurrence with the same subscript. Qur
argument is complete,

From the equation just proved we sce that

§=di=my
& <& =170

[A <& hj<n)) £ T

Since the only interesting sitvation is where # 2 2, we can derive exactly as
in section 3 the validity in the model of

which implies that

1t follows that

¥xg = VX oo Xpoy Al < x5 1,0 < n), (5.1)

which gives us a large number of independence results. What we would like
to discuss next is whether there arc reasonable axioms for intuitionistic
analysis from which these formulae (5.1) become provable.

6. Maximality of propositional caleulus. In classical logic we bave a very
easy time of it: an unprovable propositional schema leads at once to contra-
diction after a suitable substitution of quite trivial formulae for the pro-
positional letters, Thus we know in a most direct way that in our formaliza-
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tion no valid principles have been averlooked. The predicate calculus is
nat that simple, otherwise it would be decidable. Nevertheless, if we con-
sider a theory such as that of all (classically) true seniences of first-order
arithmetic, we conclude from Godel's theorem that each unprovable pre-
dicate calculus schema has an instance in the language of arithmetic that is
indeed false. Let us formulate this idea 85 a general metamathematical no-
tion.

On the one hand we have a logical calcufus (classical or intuitionistic
propositional or predicate calculus, to be definite) which consists of various
schemata and some rules {maybe, only medus ponens and generalization.)
On the other band we have a theory which consists of a set (species) of valid
formulze in a certain (applied) language. We assume that we know what it
means to form an instance of a logical schema in the applied language. Ob-
viously we want to assume that the logic is seund for the theory; that is, all
instances of schemata are valid and all instances of rules lead from valid for-
mulae to valid formulac. What is more interesting is the question of whether
the Jogic is maximal for the theory. This means that if we take a schema not
provable in the logical calculus, then the adjunction of all instances of this
new schema render the given theory inconsistent in the sense of the original
logical calculus, {We can teke theinconsistency to be the resultant provability
of arbitrary formulac.) We use the word *maximal’ here as being more des-
criptive than the overworked ‘complete’. As pointed out, clessical proposi-
tional calculus is maximal for any (classical) theory. Classical predicate
calculus is maximal for certain theories, though not for any recursively cnu-
merable theory. What about the intuitionistic logical caleuli?

An analysis of the argument of section 5 shows that atomic formulac of
the form y > O have instances which, in the model, take on any value (any
open set). Thus with our choice of T = N¥ we can casily argue that if
C(P;: i < m) iz a propositional formula not provable in HPC, then

o Ygu s e s Ymea Ol > 021 < m} (6.1)

is valid in the model. Note that the negation falls outside the scope of the uni-
versal quantifiers. Thus no instance of the unprovable C(P;: | < m)is likely
to lead to a propositional contradiction (unless it is classically invalid.)
However, an cbvious instance combined with universal generalization docs
lead to a contradiction. Therefore we can say that the propositional part of
HPC is maximal for the theory of valid sentetices of the model in the context
of all the tules of HPC. Whether the fuil HPC is maximal for this theory the
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author cannot see at the moment; though this may in fact follow from the
known topological completeness proofs for HPC,

A question that should be answered concerns those axiomatic theories
of analysis for which we have the same HPC maximality. Kreisel has veri-
fied in [5], p. 378, propositional maximality for a theory of lawless sequences.
The theorics of Kleene-Vesley [4] and Kreisel-Troelstra [14] need investi-
gation on this point, The many fragmentary results of [4] point in this di-
rection; and one should consider in this connection whether the full Va3g-
continuily is really needed or just ¥a3!f. Another question: could therc
be any intuitionistically acceptable extension of Heyting’s arithmetic (HA)
far which we would have propositional maximality? It seems unlikely.

From the axiomatic point of view, propositional maximality has certain
useful consequences. We shall now show that (6.1) together with some very
clementary algebra allow us to formally derive the results of section 5. Hence,
il in [4] it would have been possible to obtain (6.1), many of the results of
[4], ch. IV would have followed directly.

Let us recall the notation from the previous section: B(P,:i,j < n)
stood for a certain conjunction related to the exioms of order; A(Py,: i,j < #}
was an arbitrary formula such that

[B(Py: 1} < n)— A(Py:1.j < n)]

was unprovable in HPC. Let p,; be distinct real variables for i, f < n, Qur
construction of the £, in section 5 could be turned inte & formal proof of

_w:u:Vau_L.niImao.....a-..“/ [xe < x5+ py > 0], (6.2)
, J<a

where A\ is the sign of conjunction of several formulae, The proof would
be rather long: Assuming the lelt-hand side, we would have to first introduce
pi; = max(p,;, 0},

to get non-negative variables, and then invoke the elementary theorems to
have

Py > 0 py >0,
But that is easy. Next we would have to introduce for F < {0, 1,....,n—-1}

=[] [] i

where [] is the sign of arithmetic product. Elementary algebra tefls us that a
product of non-negative terms is strictly positive if and only if a/f the terms
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are sirictly positive. Thus the formal ; correspond to our use of o, in the
informal proof of section 5. Then we could introduce jy, corresponding to
the a;; and then the x, corresponding to the §,. Agatn by elementary al-
gebra we could transcribe our proof to finally establish {6.2).

Mow we invoke (6.1) and the unprovability of the implication combined
with (6.2) to prove

P VXgy e Xy Alxe < xp1 1,0 < 1), (6.3)

which is not quite as strong as what we validated in section 5. But note that
[®, < x; <~ x+y < x;+y] by clementary algebta. This translation in-
variance makes il easy to prove, as in section 3, the following

Vige e Al < X b f<n) e ¥x o X Al < xpt ] < .A;. ;
6.4

where on the right-hand side we have left x, free. Obviously the implication
goes from Jeft to right; for the converse one just translates the fixed x, to
an arbitrary xg. The reader can surely do this for himsel. That is how we
get the forma) proof of (5.1).

The deduction just outlined illustrates a familiar phenomenon: a result
purely in the theory of one predicate (in this case it was <) was obtained
only with the aid of several auxiliary notions {viz. +, -, —, max, min) to-
gether with their elementary propertics. In classical theories we have exam-
ples in various fragments of integer arithmetic but not in the theory of order
in the continunm. This is another indication that the intuitionistic theory of
< is more complicated than the classical theory.

To fusther illustrate the usefulness of the auxiliary notions for under-
standing the basic theory of < we may mention the definitions of z € [x, y]
and z € (x, y) given in (4.2)(4.3). These are equivelent to the definitions in
13] (3.3.2.1, p. 40), and we find in {3], p. 41 a proof that

zefx, pl _.s..s?.. ¥) & z < max (x, ). (6.5)

That obviously makes very good sense and clears up the doubts the author
had when he wrote section 4. However, in the case of the open interval the
best we can do is

ze(x, ¥) » —— [min (x, ) < 7 < max (x, ¥)}. (6.6)

The author is only very slowly beginning to understand the role of —— in
intuitionistic mathematics, and hopes to discuss it again at another time.
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A different kind of consequence of the method used to verify (6.1) shows
us that for arbitrary formulae 4

Iy > 0 A) (6.7)

is valid io the model, This is a strong version of Kripke's schema first men-
tioned in print by Myhill {7], p. 174, Myhill’s weaker statement of the prin-
ciple would read in our notation:

iy £ 0= — Alay > 0 - A}].

Clearly this statement follows from (6.7) but one would guess not conver-
sely. Assuming that the system of analysis supplied by our mode! is at all
reasonable intuitionistically, we thus obtain a consistency proof for this
form of Kripke's schema. As Myhill has already peinted out, (6.7) is incom-
patible with Ya3g-continuity ([7), pp. 173-174). Thus to justify the reason-
ablepess of our model, we must now turn to a discussion of what continuity
properties actually are valid since such principles are desirable intuitionisti-
cally,

7. Functions and continulty, We are now going to enrich our language of
analysis by the adjunction of function variables. We reserve f, g, k (with or
without subscripts) for such variables and employ the usual function-value
notation f{x) in the formal language. We are assuming out functions to be
everywhere defined, real-valued functions of one asgument. The extension of
the language and the results to functions of several arguments scems to
present no difficulties and s left to the reader.

The interpretation of these functions in the model will be given in a very
straightforward way and will lead 1o several obviously basic principles
being valid. In the first place our functions will be extensional:

W¥x, ylx = y - f(x) = f{¥)]. (7.1)
and apariness and equality of functions will be given by the following defi-
nitions:

¥f, gLf # g+ 3x f{x) # g(x)]. (1)

Yiglf =g =f#4) {73)
Next we will have the principle of funcrion existence:

¥xAly A(x, y) = Y Vx A(x, f(x)) (7.4)
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where A(x, y) is an arbitrary formula which is assumed to be extensional (as
are all of our formulae for the time being) in the sense that

Vu, x5y [Ax )ax = x'ay =y ~ Ax', y)]
must be valid,

There are no surprises here, since {7.1)-{7.4) are clearly rather fundamen-
tal for any teasonable theory of functions, What is surprising is that, without
seeming to have built the fact into our interpretation, we do validete the
principle of continuity:

YfVz, w¥e > 03d > 0¥x, ye[z, wl[lx—y| < d = |f{x)=F ()| < €).(7.5)

where we have used e and o as rational variables in place of the conventional
¢ and 5. Note that (7.5) is not just point-wise continuity of every function
but wniform continuity on every closed interval.

A simple consequence of uniform continuity is; every rational-valued
Junction is constant. A moment’s reflection shows it is enough to prove that
every integer-valued function is constant; and, even simpler, it is sufficient
ta prove that every two-ealued function is constant. This last principle has o
simple schematic statement:

ValA(x}v = A(x]] + ¥xA(x)v¥x — A(x)}, (1.6)

a principle which states, in Brouwer's ternunology, that the continuem is
‘unzerlegbar’ {cf. [4), *R10.4, p. 155). The proof of {7.6) begins with the
introduction of a function f such that

Vx[[A(x)Af(x) = O] v [ A{x) af(x) = 1]],

which is justified by (7.4). Then one applies (7.5) with £ = 1 for an ar-
bitrary pair of numbers z, w. The interval [z, w] can easily be covered by
intervals of length d, where d is supplied by (7.5), and the inequalities
together with an inductive argument imply that £ is constant on [z, w).
It is templing on rather formal grounds to assume a version of the axiom
of choice:
Vx3pd(x, y) - YV¥xA(x, f(x)), (AC-RR)

where we have followed Kreisel [8), pp. 2331, in style of terminology with RR
meaning that the choices are from reals 10 reals. Without thought, {AC-RR)
would seem to be a reasonable strengthening of (7.4); however, in view of
the remarks in connection with (7.6) we see that it is actually invafld for the
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extensional notion of function intended here. Indeed the formula [x < pa
y € 0] gives the obvious counter-cxample.

It 15 quite pleasant that to be able to achieve all the above resulis the in-
terpretation in the model can be as simple as possible: we take as functions
those mappings ¢ : # — R such that for §, 7€ R we have

[¢ = 1] s [0(Z) = e()]-

This is the extensionality principle: we make (7.1) valid by definition. We
let @* denote the class of all these extensional functions ¢ : & — i,
Further we define for @, € 9*

(o] = ._,.L__._iz # ¥

This convention makes (7.2) valid also by definition; similarly for (7.3). But
this is all that is trivial by definition; the remaining facts require proofl.

To prove the validity of (7.4) it is clearly enough 10 prove existence of f,
because the unigueness will follow in view of the hypothesis znd (7.2-7.3).
Thus we must show that

[vx3tpaix. ¥} = [IVxA(x, A=)
We will take advantage here of the fact that T = N¥ is torally disconnecred
(though no doubt all we seally need to know is that T is metric.) In such a

space every open set is the union of its elopen subsets, Hence it is sufficient
to prove for every clopen set X = T that if

K g [velydix, y)).
then
K < [3rvxA(x, fix))])
Indeed, to prove this last inclusion, we need only find a function @g & &
corresponding to K such that

K= [YxA(x, o))

The advantage of working with clopen K is that for te X and {e R we
will have a special way of defining @z (£)(r), but for ¢ ¢ X we can simply set
@{EXr) = 0, The clopenness of K will assure that ¢ (&) e & so defined is
contlinuous.

Thus let £ g A be fixed. Qur assumption implies that

K< [3y4E )]

(31
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To define gg({) we use the same method as in section 2 and set

@(E}1) = inl {re Q: te LA, y)ay < 1]}

for 1€ K| otherwise the valuc is 0, a3 mentioned above. As tn the proof
of (2.7} it is elementary to check that

Knext) (q.4) = Kn [ B4l ag <y < g1,

which shows that ¢y(£} is continuous on K. Therefore @ () is continuous
everywhere in T. This does not yet prove that gy € &. We must still verify

K[ =n] s [edf) = euln)]:

but ihis casily follows from the extensionality of A. Since @g{£) is 0 outside
of K, we sec that indeed gy & #*. Finally it is clear by construction that

K = [A(g, ecl2)]),

and the desired conclusion follows.
The proof that (7.5} is valid is by no means as straightforward. Note
first that (7.5) implies

WVx, 2 (x} # f(y) — x # y], an

which 13 a stronger version of (7.1}. As it turned out, it is very useful to
validate (7.7) first as a lemma, and then establish (7.5). (This point was a
stumbling block for the author, who formulated the problem in a lecture at
the University of Texas at Austin. Shortly thereafter the idea of the following
proof was communicated to the author by Professor Jack Hardy, whose
assistance it is a pleasure to acknowledge.)

Tao prove (7,6) we note first that what we have to establish is this inclusion
for &, e & and g e R*:

[#(2) # @(n)] s [ # n].

Now after translation back to subsets of 7, we can complement both sides
of the inclusion to obtain:

{re T:4() = u{t}} = {1e T: o(3}1) = (n})}. O]

That is what we must prove; what we are assuming (because @ € #%) is
equivalent to:

In{teT:5(t) = n(} s {1eT: @) = o}1)). = (o9}
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We can state the problem in words: {*) means that ¢ is 2n operator on con-
tinuous functions (to continuous functions) such that if two arguments
£, n arc equal at a point, then their images @(Z}, p(n) are equal at the same
point. Thus (¢}¢) only depends on ¢ and £(t), not on the whole of {. It
would scem that {(*#) is much weaker: @(£)(r) depends on knowing ¢ and
knowing & in some neighborfiood of t, that is, on the local behaviorof £ around
¢, (The author imagined at first that one could have a function ¢ satisfying
(*s) without its satisfying (*). It scems odd that a problem like this has not
besn considered before, but inquiry failed 10 uncover any relevant infor-
mation. It would fair to say that most of the operators considered in mathe-
matics usually depend on the whole of { (like integration} or do nor give
continuous functions (&) as values {like right-hand derivatives).)

The first main step in deducing (=) (for alf &, n € &) from (s+) (for all
£ n e R) is to remark that the set on the right-hand side of (##) is closed
because @(£) and () are each continuous. This means that we can strengh-
ten (*#*) to read:

Clin{re T:§{1) = n{)} = {re T: @(EXD) = o)1} {*29)

which we are assuming for all £, n € 9. Now we must prove (*) for & parti-
cular pair &, ny € . Supposc 1, € T is & point such that £4(ty) = fa{to}
We will show below that we can find open subsets U, ¥ of T such that

U)o (V) = {10},
and such that &, is bounded on I and 1, is bounded on V. Now the function
(o= Eo| CI{U) v na [ CHV)

is obviously contimuous on CI{U) s C1{P) because £5{ty) = nolfo), and it
is bounded. Thus by the well-known Tietze exicnsion theorem (7 is a metnc
space) we can extend the function to the whole of T. We call the extension
{, also. (This construction of {,, which is due to Prof. Hardy, is the main idea
of the proof.) Now we make use of (s*#) for &, {y and for {5, 7. In
the first instance we sce by the construction of {, that:

toeClIn {te T: &1} = [olt)),

and so by (»*%), 9(&)e) = @{{e)(fo). In the sccond instance we have

1ge Clin {1re T: {{t) = meled]
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and so again by (**3}, o({,){(f} = p{no}{t). Now it follows at once that
w(EsMfa) = @{1a)(te), which is what we needed to establish (=).

Filling in the part of the argument about &/ and ¥ that we had postponed,
we note first that if 1, is isofated we can take U/ = V = {¢,]. Assume then
that {; is not isolated and let £y, 13, 3, - - ., £, . . . be an infinite sequence of
distinct points converging to fp. Inasmuch as §; and , arc continuous, they
both must be bounded on {2, #;,..., 4,,...}. Around each of thesc points
we can put small open spheres with «, € S, such that the closures of the spheres
are pairwise disjoint (T is a metric space!) and on which £, and n, are uni-
farmly bounded. It follows that

Q“CMn-

V= _...Tmu-l

are the required open se1s.

We shall now investigate the nature of the functions @ € #* more closely.
The reader wiil appreciate that it is necessary 10 keep his wits about him in
thinking about the model. We already use functions £ : T — R to play the
role of reaf numbers in the model, 5o that when we come 1o fisnctions in the
mode] we have 10 use operators ¢ : R — R, Thus p(¢) is a function for
each £ e A, as we had to consider in the above proof of {7.7). Looking
from the outside, the type of the objects used in the model is always higher
than the formal type of the variable which ranges over them. This process
of going up in type for the definition of the model is very convenient for
making the construction stmple, but we shall now show that & reduction in
type is possible helping in the analysis of the model.

Since ¢ € % satisfies (+) we define ¢ ;: Tx R —» R by the condition:

&(1,a) = b iff for some e R, &) = a and @(E}1) = b.
We thus have ¢ well-dertermined and such that for e #, re T
e(END) = &1, i)

The point of bringtng in ¢ is that, as we shall now show, the function ¢ is
continuous on the product spare Tx R. We argue by contradiction: suppose
that @ is not continuons at some point (2, a), Then there must existane > 0
and a sequence of neighborhoods U, of t and a sequence of reals 8,, such that
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the U, monotonically decrease 1o {r} and the &, to 0. Further we can find
a sequence of points {1,, a,} where ¢, € U, and |a,—a] < 4, and

_GA-... a)-®(nall > ¢

for all n. Since for fixed a,, a the two expressions (r, a,) and $(1, a) repre-
sel contimuons functions of #, we can clearly assume that all 7, # t. (Other-
wise we could ‘adjust’ ¢, € U, and still preserve the above strict inequality).
Furthermore, because the diameters of the U, are converging to 0, we can
assume that the 1, are alt distinct, (If not, we can choose a suitable subse-
quence.} After that fuss, we can now remark that we arc able to construct
a comtinuous function & & such that &(r,) = a, and &(7) = a, because
the a, do converge to a. But then since () 1s continuous, ¢(£)(1,) would
have to converge te @(£){s), which contradicts the above inequality.

Now that we see why & i1s continuous, we can quickly establish the
vitlidity of (7.5) flor ¢. Note first that it is sulficient to consider = = ¢ and
w=r,whercg,re Qand g < r. Lete > 0, c€ 0. We must show:

T I.Ca_:qDL_s fre T: [E(t) () e[a, rlalE(ty—nit) < 6 —
: 1(r, £ — &{n ()] < el}.

Introduce an ausitiary function 2:Tx (0, co) — R by:
(t, 8) = sup {|P(r, 2}~ &(t, b}|: a0, be[q. r], la—b] < d}.

The funclion inside the sup is a continuous function of three variables 1, 4, &,
and the sup 15 being taken over a compact subset of R x R, It follows for a
fixed & that (¢, §) is o continuous (and well-defined?) function of 7. Since
for fixed r the real function $(t, a) 18 wniformily continuous for a € [q, r],
we conclude that e(t, 8) decreases 10 0 as & decreascs to 0. Let, then, 4, & Tand
choose & so that g(t, 6) < £. Let U = T be a neighborhood of 15 such that
efr, 8) < eforall t € . We must venfy that I is included in the right-hand
side of the above 1opological equation. It is immediate.

The method of proof just employed for (7.5) is also very helpful in other
problems: for example we shall now validate in the model a principle which
states that every positive function on a closed intervel is bounded away from
zero!

¥f vz, wlVxe[z, wiLf(x) > 0] - 3y > O¥xe[z, wl[f(x) = ¥]]. (7.8)

In view of continuity, and the denseness ol the rationals, 1t is sufficient 10

_— T
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weat only the casc where z = g, w=r, g <r. For simplicity we shall in
addition assume for our ¢ @ 2% that
T = [¥x & [q. Flle(x) > 0]].
The more general case can be treated as in the proof of (7.4). In terms of ¢
we are thus assuming that
P(r,a) >0

for all 1= T and 2l a € [g, r). Definc y € & by (1) = inf{@{r, a) :ae [, rl}
for 1€ T. Again by virtue of the compactness of [g, r], we can check that
i is continuous. But for fixed ¢ we have ®(t, a}as a positive continuous func-
von of ae |g, #], therefore p{t) > Q for all re T. We can thus casily verify
that

T = [¥xe[q, rY{p(x) = ]},

and (7.8) is established. We may remark that this construction of » shows
also that every function has a greatest lower bound on every closed interval
_ a fact that can foirly easily be deduced from continuity (cf [1], p. 35 for

example.) . :
Our reduction of the @ : & — # tq the ®: T« R ~ R is very uscful in

discussing other questions about the model. For example, every ordinary
continuous function F: R — R can be extended 1o &, a3 we have ofien re-

marked, by the formula
@(Z)e) = FEE).

The question is whether every @ € @* is ardinary in this sense. Well, obvious-
ly not: let a € & be fixed and define

@(§)() = () +alt).
Could there bg an £ : R = R such that
F(E@)} = §()+a(n)
holds in gencral? If so, we could take § to be constant, say O, and deduce
F(0) = a(t),

thus making a constant, Since u need not be canstant, the desired counter-

example is produced. .
“The forcgoing simple argument feads naturally to n modification of our
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question: given @ € #* could we find a continuous function G: Rx R — R
and a particular xe ® such that

P(E)1) = Glafa), 4(r))

for all £ e & and 1 € T7 The answer is again no, but the argument is more
difficult. (The author is indebted to Kenneth Kunen for the suggestion of the
counter-cxample.} In terms of the correspondng & the problem is to find G
and & such that

®(n, {(1)) = Ga(t), £(r))
for all { € ® and e T. This simplifies 1o
&1, a) = G(ait), a)

for all ¢ € Rand ¢ € T. We have only to choose a very bad ¢ to get into trou-
ble. In view of the universal properties of #¥, we can choose & so that the
functions ¢, : R - R where

ﬁ.?—w - ..2-. n—u

give us all continuous functions from reals into reals. That is, @ would be
a universal function for all real continuous functions with the parameter in
T = N”.That is possible; but, by the equation for G above, it would also
be universal with parameter in R. That is not possible,

We have just shown that in the model not every function need be ordinary
or even quasi-ordinary (i.¢. ordinary in a parameter a.} There is a common
special case where we can, however, conclude that the fonction is indeed
ordinary. Suppose @ has been intreduced 1o validate

¥ A(x, @(x})

where ¥x3!y A(x, p) is valid and A(x, y) has ne additional parameters. (The
formula can involve <, +, -, other ordinary functions and. predicates, the
predicates @ and D, and so on.) We note first that ¢ must be somehow jo-
variantly determined.

Now we ask: in what sense is p invariani? Well, let 7 ; T — Tbe any auloe-
homeomorphism of T. This extends to the model. For £ e # we define
v(£) so that

1(5)((2)) = 3(r}

for all & T. (Thus t{£) = £0 t~") This makes it possible to regard 1: B —
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— 9. However, it is not the case in general that T e #; for we have

[+&) = =] = <[ = 4.
(Recall that t is naturatly defined on open subsets of 7 also!) We can re-
gard t as acting on #”, ncvertheless, For any ¢ ¢ @7 we define 1(i) so that

(W)(e(E)) = (£
for all £ & . It is casy to check that t{y) € &. Having done this, we remark
that by the usual kind or argument, if #is any formula involving ordinary
funclions and predicates bound real and function variables, and parameters
from @& and @, then
o[B8 - - o e D = BB o), - )

Applying this automorphism principle to A we have

[ A(E m}l} = EAGE), «(nh]
because there are no other parameters. But
[AE. m) = [o(§) = n].

hence

[r{e)x(&)} = t(n)] = Ep(+(D) = s(w)].

It follows at once that 1(p) = ¢.

We have thus proved that if ¢ € #* is defined by a paramecterless formula,
then it is invariant under all automorphisms of the model determined by
autohomeomorphisms of T. Let us see what this means about the corres-
ponding continuous function @ : 7'x R — R. Now

e(E)(r) = & 2N
50 by substitution
(1 (O)x(N) = (), {=(r)))
= &{x{1), &(1)).
But z{p) = @, 50 we derive
p(={ENx(r)) = (e)(=(E))(x())

= 7(@{EN(t(r))
= p{)(r).
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Putting two and two together we find:
P 3 = 2(x(1), 5(1D).
Since £ is arbitrary we can say
®(r,a} = ¢(1{t), a)

for all 1€ T and all a & R. But hold, the autohomcomorphism 1 is acbitrary,
and T = N* has a transitive autohomeomarphism group: thus

{1, a) = &(t', a)

for all #, +"& T. This means that  does not depend on ¢ at all and we can

write
{1, a} = F(a)

where F: R — R 50 oblained 15 continuous, Thus
2(L)(1) = FE),

and we have finalty proved that g is just an ordinary function.

In words we could say that the above argument suggests that in intvitionis-
tic analysis it is impossible to give an outright exrensional definition of any
function not already known from classical analysis. (OF course, the simple-
mrinded identification of intuitionistic analysis with the theory of this model
is not justified because the model is defined classically.)

We close this section with a problem about continuity. In (7.6) the hypo-
thesis means that the property 4(x) decomposes the continuum into two
disjoint parts. Let us weaken this by having rwe propertics A(x} and B(x)
where Yx[A(x) v 8(x)], but where we do not make any disjointness assump-
tion. (For example ¥x[x < | vx > 0] is valid.) We can obviously not hope
1o have any such strong conclusion as {VxA(x)v Vx B(x)] (by the examplel},
but what about this principle:

Yx[A(x)v B(x)] - 34, r[q < ra[¥xe(g, r] A(x)v¥xe[q, r] B(x)]]?

The author has not yet been able 10 see an answer to the question of the
validity of this formula, The situation may become clearer after a study of
second-order arithmetic in the model.
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