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1 Connectionally Closed Categories

Definition 1.1. A category C consists of a collection Cy of objects and a collection Cq1 of
arrows (or morphisms) such that the following holds.

e Each arrow has a domain and a codomain which are objects; one writes f: A — B or

AL Bif A is the domain of the arrow f and B is its codomain.

e Given two arrows A i> B % C, there is a composition A ﬁ) C and composition is
associative.

e For every object A there is an identity arrow 14: A — A, satisfying 1409 = g for every
g:B—Aand foly = f for every f: A — B.

Equationally,
fola=f for any f: A — B; (1)
lpog=gyg for any g: A — B; (2)
(hog)of=ho(gof) forany f: A— B,g: B— C and h: C — D. (3)

Definition 1.2. A morphism f: A — B in C is an isomorphism if there is a morphism
g: B— Asuchthat fog=1g and go f = 14.

Example 1.3. We have a category Set whose objects are sets and the arrows are functions
between sets. Composition is ordinary function composition.

Example 1.4. Let (P, <) be a poset. We view P as a category whose objects are the elements
of P and we have an arrow p — ¢ iff p < g. Observe that arrows are unique in this category
and that all isomorphisms are identities.

1.1 Categorical Constructions

From now on we will work in some fixed category C and (P, <) will always denote some fixed
poset.

Definition 1.5. A terminal object T in C is an object such that there is exactly one arrow
A — T for any object A in C.

Example 1.6. Singleton sets are terminal objects in the category Set.

Example 1.7. Note that p € P is terminal iff p is the greatest element of P.



Note that in general, a terminal object is unique up to isomorphism. (This is why category
theorists usually speak of the terminal object in a category.) We will make an explicit choice
and write t for the chosen terminal object and !4: A — ¢ for the unique arrow from A to ¢.
We have the following equation

f=1a forany f: A —t. (4)

Definition 1.8. A product of two objects A and B is an object A x B with morphisms
TaB: AxB — Aand 7y p: Ax B — B (called projections) such that for any f: C' — A and
g: C — B there is a unique arrow (f, g): C' — A x B making the following diagram commute
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Definition 1.9. We say that C has (binary) products if a product of A and B exists for each

/
pair of objects A and B in C.

C

Example 1.10. The cartesian product of two sets (with obvious projection maps) is a product
in Set.

Example 1.11. The product of p,q € P in P is the greatest lower bound (with respect to
<) of p and g. So we see that P has products iff (binary) meets exist in P.

Again, for two given fixed objects A and B a product of A and B is unique up to isomorphism.
For each pair of objects A and B we will specify a product A x B together with projections
Taxp and 74, g. The defining equations (with ommited subscripts) read

o (f,9)=f for any f: C — A and g: C — B; (5)
o (f,9) =g for any f: C — A and g: C — B; (6)
(moh,m oh)=nh for any h: C — A X B. (7)

Similarly (or really, dually), we have the notion of a coproduct. (This is a product in C°P.)

Definition 1.12. A coproduct of two objects A and B is an object A + B with morphisms
kap:A— A+ B and HZA’BZ B — A+ B such that for any f: A — C and g: B — C there
is a unique arrow [f, g]: A+ B — C making the following diagram commute

A+ B
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Definition 1.13. The category C is said to have (binary) coproducts if a coproduct of A and
B exists in C for any pair of objects A and B in C.
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Example 1.14. In Set, a coproduct of two sets is their disjoint union with the obvious
inclusions.

Example 1.15. The coproduct of p,q € P in P is the least upper bound (with respect to <)
of p and ¢q. So P has coproducts iff P has joins. Furthermore, we see that P is a lattice iff P
has products and coproducts.

Again, we specify for each pair of objects A and B a coproduct A+ B together with morphisms
kA B and /ﬁ;‘, - The defining equations are

[fyglok=f forany f: A— C and g: B — C; (8)
[f,glok' =g forany f: A— C and g: B — C; 9)
[hok,hok']=h forany h: A+ B — C. (10)

Definition 1.16. Assume that our fixed category C has products. An exponential of two
objects A and B is an object B4 with an arrow €4 p: A X B4 — B such that for any
f: A x C — B there is a unique arrow f: C — B4 making the following diagram commute

B

AxC f
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Example 1.17. In Set, given two sets X and Y, the set Y of all functions from X to Y is an
exponential of X and Y. The evaluation arrow exy : X x YX — Y is given by (z,9) ~ g(z).
Further, given f: X x Z — Y, one may construct f: Z — YX by z — (z — f(x, 2)).

Example 1.18. For p,q,r € P, we see that the exponential ¢P of p and ¢ should satisfy
pAr < qiff r <gP. Hence, if P is a Heyting algebra, then p — ¢ is the exponential of p and
q.

Assuming we have specified products in C, we specify for each pair of objects A and B an
exponential B4 together with an evaluation morphism e A,B satisfying the equations

go(mhon')y=h for any h: A x C — B; (11)
(eo(mkon'))” =k forany k: C — B”. (12)

1.2 Connectionally Closed Categories

Definition 1.19. A category is called cartesian closed if it has a terminal object, binary
products and exponentials. We call a category connectionally closed (c.c.) if it is cartesian
closed and has binary coproducts.

Example 1.20. The category Set is c.c. as is any Heyting algebra H (seen as a category).
In the homework, you will see another example of a c.c. category. This category will play an
important role next week.



Definition 1.21. A functor F between categories C and D consists of operations Fy: Co —
Dy and Fy: C; — Dj such that for each arrow f: A — B in C we have Fi(f): Fy(A) — Fy(B).
Furthermore F' should respect composition and identities, i.e.

efor AL B C, we have Fi(go f) = Fi(g) o F1(f);
e for every object A in C we have Fi(14) = 15, (4)-
We usually just write I’ instead of Fy and Fj.

Definition 1.22. A functor between two c.c. categories is called a c.c. functor if it preserves
terminal objects, binary (co)products and exponentials (e.g. the functor takes a product
diagram to a product diagram). Such a functor is called a c.c. morphism if we have specified
operations in both categories and F' preserves our specified terminal object, specified binary
(co)products and specified exponentials (e.g. the functor takes our specific terminal object to
the chosen terminal object in the target category).

2 Category of Proofs

In the following:
e [ is a set of propositional atoms.
e Formulae are built from £ using T, A, V and — (but not L).
e An entailment is an expression of the form A = B, where A and B are formulae.
e A theory T is a set of entailments.

Given a theory T, we can build deductions using the following rules. As indicated on the
right, every deduction is assigned a unique term.

Rule Term
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For each of the twelve equations for a c.c. category, we identify the deductions denoted by
both sides of the equations. For example, fols = f for f: A — B identifies

A=A 2T 4 LB

A= B

cuT

with A & B itself.

Definition 2.1. (i) Two deductions are considered equivalent if the one can be constructed
out of the other using a sequence of the above mentioned identifications.

(ii) The category of proofs Fr(T') has
— as objects the L-formulae;

— as arrows A — B the T-deductions with A = B as conclusion, modulo equivalence.

Proposition 2.2. F(T) is a c.c. category with specified operations.

2.1 Free Constructions
Proposition 2.3. Suppose D is a c.c. category with specified operations and that for all

p € L, an object f(p) of D is given. Then there exists a unique c.c. morphism F: Fp(0) — D
such that F(p) = f(p) for allp € L.

We write I for the obvious inclusion functor Fz(0) — F,(T'). We write 7 € T as a(1) = ¢(7).

Proposition 2.4. Suppose G: F.(0) — D is c.c. morphism, and that for all T € T, an arrow
7: G(a(1)) = G(c(1)) of D is given. Then there exists a unique c.c. morphism H: Fp(T) —
D such that H(t) =7 forallT €T, and Ho I =G.

Fr(0) < D




2.2 Projectivity

Definition 2.5. (i) A c.c. morphism G: D — €& is called surjective if Gy is surjective, and
for all objects X and Y of D, the function G;: D(X,Y) = E(G(X),G(Y)) is surjective.

(ii) A c.c. category C with specified operations is called projective if for every surjective c.c.
morphism G: D — & and every c.c. morphism F': C — &, there exists a (not necessarily
unique) c.c. morphism J: C — D such that Go J = F.
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Proposition 2.6. F(T) is projective.



