
Handout Week 2, Models of Intuitionism — Bobby Vos & Jan Rooduijn

1 Beth Models

Note: the numbering for definitions, theorems, etc. directly corresponds to the numbering
used in Constructivism in Mathematics: An Introduction, Volume II, 1988, ch. 13.

1.1 Introduction

Definition 1.1. A Beth model for a relational language L is a quadruple B = (K,�, D,
)
such that

(i) (K,�) is a spread,

(ii) D is a domain function assigning to each node k ∈ K a non-empty set D(k) such that
k � k′ implies D(k) ⊆ D(k′),

(iii) the forcing relation 
 is a binary relation between nodes of K and atomic sentences P
such that

B1. k 
 P ⇐⇒ ∀α ∈ k∃m : ᾱ(m) 
 P and D(k) contains the constants in P,
k 6
 ⊥ for all k ∈ K,

B2. k 
 A ∧ B ⇐⇒ k 
 A and k 
 B,

B3. k 
 A ∨ B ⇐⇒ ∀α ∈ k∃n : ᾱ(n) 
 A or ᾱ(n) 
 B,

B4. k 
 A→ B ⇐⇒ ∀k′ � k : k′ 
 A implies k′ 
 B,

B5. k 
 ∃xA(x) ⇐⇒ ∀α ∈ k∃n∃d ∈ D(ᾱ(n)) : ᾱ(n) 
 A(d),

B6. k 
 ∀xA(x) ⇐⇒ ∀k′ � k∀d ∈ D(k′) : k′ 
 A(d).

In this definition α ranges over the infinite branches of (K,�).

If (K,�) is a fan, we can, instead of B1, B3, B5, use the following, stronger conditions:

B1’ k 
 P ⇐⇒ ∃z∀k′ �z k∃k′′ � k′ : k′′ 
 P

B2’ k 
 A ∨ B ⇐⇒ ∃z∀k′ �z k : k′ 
 A or k′ 
 B

B3’ k 
 ∃xA(x) ⇐⇒ ∃z∀k′ �z k∃d ∈ D(k′) : k′ 
 A(d)

We can also liberalize the definition of Beth models by allowing (K,�) to be an arbitrary
tree instead of a spread, i.e. we no longer require each k ∈ K to have a �-successor. This
permits Beth models to be finite, with quantification over infinite branches α replaced by
quantification over the �-maximal nodes in the tree. Let us refer to these as liberalized
Beth models.
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1.2 Relation to Kripke Models

Definition 1.5. Let K = (K,�, D,
) be a Kripke model. We associate to this Kripke model
a Beth model K ′ = (K′,�′, D′,
′) in the following manner:

(i) K’ consists of all finite non-decreasing sequences of (K,�),

(ii) �’ is the usual initial segment relation,

(iii) D′((k1, . . . , kn)) := D(kn),

(iv) (k1, . . . , kn) 
′ P ⇐⇒ kn 
 P.

Theorem 1.5. Let K be a Kripke model and K ′ its corresponding Beth model. For all nodes
k1, . . . , kn ∈ K and L (D(kn))-sentences A, we have

(k1, . . . , kn) 
′ A ⇐⇒ kn 
 A.

By a more elaborate construction, we can show something stronger: we can transform every
Kripke model to a Beth model with constant domain.

1.3 Completeness

Lemma 2.3. For all k ∈ K, L (Γk)-sentences A and x ∈N:

Γk ` A ⇐⇒ ∀k′ �x k : Γk′ ` A.

Lemma 2.5. For the Beth model B∗, we have for every k ∈ K and L (Γk)-sentence A:

k 
 A ⇐⇒ Γk ` A.

Theorem 2.8. For IQC there exists a fallible Beth model B∗ such that, for all sentences A,

B∗ 
 A ⇐⇒ Γ ` A.

2 Heyting algebras

Definition. A lattice is a poset (A,≤) such that for each a, b ∈ A there is a least upper bound
a ∨ b (the join of a and b) and a greatest lower bound a ∧ b (the meet of a and b).

Definition. A lattice (A,≤) is bounded if it contains an element ⊥, called bottom, satisfying
∀a ∈ A(⊥ ≤ a) and an element >, called top, satisfying ∀a ∈ A(a ≤ >). If existing, top and
bottom are unique.

Definition. A lattice (A,≤) is distributive if for all a, b, c ∈ A

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
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Definition. We say that a lattice is complete if every subset X ⊆ A has a join
∨

X := sup(X)

and a meet
∧

X := inf(X).

Definition. A (complete) Heyting algebra, (c)Ha for short, is a (complete) bounded lattice
(A,≤) such that for each a, b ∈ A the set {x | x ∧ a ≤ b} has a greatest element, which
we then denote by a→ b.

Properties. The following properties hold for a Ha (A,≤) and elements a, b, c ∈ A.

1. A is distributive.

2. (a ∧ b) ≤ c⇔ (a ≤ b→ c),

3. a→ b = > ⇔ a ≤ b,

3 Global Ω-models

We work in a fixed one-sorted IQC-language L without equality. Let Ω be a fixed cHa.

Definition. A global Ω-model for L consists of a set M together with:

• an element [[c]] ∈ M for each constant symbol c ∈ L,

• a function [[R]] : Mn → Ω for each n-ary relation symbol R in L,

• a function [[ f ]] : Mn → M for each n-ary function symbol f in L.

Semantics. We extend [[ ]] to terms in LM by taking

[[cm]] := m,

[[ f (t1, . . . , tn)]] := [[ f ([[t1]], . . . , [[tn]])]] := [[ f ]]([[t1]], . . . , [[tn]]).

Now [[ ]] is defined for sentences of LM by

[[R(t1, . . . , tn)]] := [[R([[t1]], . . . , [[tn]])]] := [[R]]([[t1]], . . . , [[tn]]),

[[⊥]] := ⊥,

[[A ◦ B]] := [[A]] ◦ [[B]] for ◦ ∈ {∧,∨,→},

[[∀xA(x)]] :=
∧
{[[A(m)]] | m ∈ M]},

[[∃xA(x)]] :=
∨
{[[A(m)]] | m ∈ M}.
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4 Intuitionistic logic with existence

We transform IQC (without equality) to a logic with existence as follows. First we add the
rule

SUB A ,
A[x/t]

where x is any variable not occurring freely in assumptions of the derivation of A. Further-
more, we add a special relation E and adapt the quantifiers deduction rules as follows

[Ex]
...
A ∀IE

∀yA[x/y]

∀xA Et ∀EE,A[x/t]

A[x/t] Et
∃IE

∃xA ∃yA[x/y]

[A][Ex]
...
C
∃EE.C

To turn it into a logic with equality we add a special relation = and the rules

EQEX t = t
Et EXEQ Et

t = t REPL A[x/t] Et ∨ Es→ t = s .
A[x/s]

Finally, for a given language L, we add rules for all relation and function symbols represent-
ing the assumption of strictness:

STRR R(t1, . . . , tn)

Eti
STRF E f (t1, . . . , tn) .

Eti

The resulting system is called IQCE.

Properties. The following are derivable in IQCE.

1. Et↔ t = t↔ ∃x(t = x),

2. t = s↔ ∃x(t = x ∧ s = x),

3. f (~t) = x ↔ ∃~y(~y =~t ∧ f (~y) = x).

5 Nonglobal Ω-structures

We work in a fixed one-sorted IQCE-language L. let Ω be a fixed cHa. Write .

Definition. A nonglobal Ω-structure for L is consists of a pair (M, [[· = ·]]) containing a set
M and a function [[· = ·]] : M×M→ Ω such that for all x, y, z ∈ M,

[[x = y]] = [[y = x]], [[x = y]] ∧ [[y = z]] ≤ [[x = z]],

E(x) := [[x = x]], [[~x = ~y]] :=
∧
[[xi = yi]],
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together with Ω-interpretations for all symbols in L such that for all relations R and func-
tions f

[[~a =~b]] ∧ R(~a) ≤ R(~b) E( f~a) ∧ [[~a =~b]] ≤ [[ f~a = f~b]]

[[R(~a)]] ≤ [[E(~a)]] E( f~a) ≤ E~a.

Semantics. We extend [[ ]] as before, where [[· = ·]] is the interpretation of = and E of E. The
interpretations of the quantifiers are adapted to

[[∀xA(x)]] :=
∧
{[[E(m)→ A(m)]] | m ∈ M]},

[[∃xA(x)]] :=
∨
{[[E(m) ∧ A(m)]] | m ∈ M}.

6 Soundness and completeness

Theorem 1 (Soundness, Troelstra & van Dalen, 6.7). If IQCE + Γ ` A for a set of sentences
Γ and a sentence A, then [[A]] = > in each Ω-model for which [[B]] = > for all B ∈ Γ, we write
Γ 
cHa A.

Definition. Let Θ be a Ha. A Θ-structure is defined exactly as a Ω-structure. Of a Θ-structure
(M, [[· = ·]]) for some language L we say that it is definitionally complete w.r.t. L if for all L-
formulae B(~x) such that [[B(~m)]] ∈ Θ for all ~m ∈ M, we have∨

{E~m ∧ [[B~m]]} ∈ Θ,
∧
{E~m→ [[B~m]]} ∈ Θ.

Theorem 2 (Troelstra & van Dalen, 6.12). Let Γ be and L-theory. Then there is a definitionally
complete Θ-structure in which

Γ ` A⇔ [[A]] = >.

Theorem 3 (Troelstra & van Dalen, 6.13). Any Ha can be embedded in a cHa preserving ∧,∨,→
,⊥ and all existing meets and joins.

Theorem 4 (Completeness, Troelstra & van Dalen, 6.15). Γ ` A⇔ Γ 
cHa A.
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