
1 Category theory

Definition 1.1. A category C is a collection C0 of objects and a collection C1 of arrows or morphisms
such that the following holds.

• Each arrow has an object X in C0 as domain and an object Y as codomain, this is referred to as
an arrow from X to Y .

• Given two arrows X
f−→ Y

g−→ Z, there is a composition X
g◦f−−→ Z. This composition must be

associative.

• Every object X has an identity arrow IdX : X → X such that f ◦ IdX = f and IdX ◦ g = g for all
f : X → Y and all g : Y → X.

Example 1.1. There is a category Set with all possible sets as objects and the usual functions as arrows.

Example 1.2. Given a poset P , we can see this as a category with as objects the elements of P and an
arrow p→ q iff p ≤ q.

Definition 1.2. A functor F between categories C and D consists of operations F0 : C0 → C1 and
F1 : C1 → D1 such that for each arrow f : X → Y in C we have F1(f) : F0(X) → F1(Y ). Furthermore,
F should respect identities and composition:

• for X
f−→ Y

g−→ Z we have F1(g ◦ f) = F1(g) ◦ F1(f),

• for every X in C we have F1(IdX) = IdF0(X).

Example 1.3. Let Top be the category of topological spaces with continuous functions as arrows. Then
there exists a functor, the forgetful functor, that assigns to each topological space its underlying set.

Definition 1.3. For any category C we can define Cop which consists of the same objects and the same
arrows, only we reverse the direction of all arrows.

Example 1.4. Given a topological space X we can define a category O(X) with as objects all opens in
X and an arrow U → V iff U ⊂ V . This also gives rise to the category O(X)op, consisting of the opens
of X and an arrow V → U iff V ⊃ U .

Another category we can construct is C(X), with for every open U of X an object C(U), the set
of continuous functions on U . For each V ⊃ U we make an arrow C(V ) → C(U), which is just the
restriction of the functions in C(V ) to U .

Now we can define a functor F : O(X)op → C(X) by sending each open U to the set C(U) of
continuous functions on U , and each inclusion V ⊃ U to the restriction of C(V ) to C(U).

2 Sheaves

Definition 2.1. A presheaf on a category C is a functor F : Cop → Set.

Example 2.1. The functor we have seen in example 1.4 is a presheaf on O(X). Even though it may not
be a functor to Set, we can compose it with the forgetful functor (see example 1.3) to obtain a functor
to Set.

Remember from example 1.2 that every poset can also be seen as a category. Hence we can see every
Heyting algebra as a category.

Definition 2.2. For a complete Heyting algebra C, we say that F is a sheaf on Ω if it is a presheaf on
C that satisfies the sheaf condition. This means that for each A ⊂ C (with p =

∨
A) we have that given

a family {xa ∈ F0(a)}a∈A such that for all a, a′ ∈ A we have

F1(a ∧ a′ ≤ a)(xa) = F1(a ∧ a′ ≤ a′)(xa′),

there is a unique x ∈ F0(p) such that for all a ∈ A we have F1(a ≤ p)(x) = xa.
Such a family {xa}a∈A is called a compatible family, and the corresponding x is called the amalga-

mation. So in other words: a sheaf should have a unique amalgamation for each compatible family.
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Example 2.2. The presheaf from example 2.1 is a sheaf.

Definition 2.3. A subsheaf H ⊂ F is a functor H such that:

• H(X) ⊂ F (X) for each object X,

• H(f) = F (f)|H(Y ) for each arrow f : X → Y and

• H itself is a sheaf.

3 Equivalence of Ω-sets and the sheaves on Ω

Definition 3.1. Let Ω be a complete Heyting algebra. We define the category of Ω-sets as follows. An
object is a pair (X, δ) with δ : X ×X → Ω such that for all x, y, z ∈ X:

• δ(x, y) ∧ δ(y, z) ≤ δ(x, z) and

• δ(x, y) = δ(y, x).

An arrow (X, δ) → (Y, ε) is then given by a function f : X × Y → Ω, such that for all x, x′ ∈ X and
y, y′ ∈ Y :

(1) f(x, y) ≤ δ(x, x) ∧ ε(y, y),

(2) δ(x, x′) ∧ f(x, y) ∧ ε(y, y′) ≤ f(x′, y′),

(3) δ(x, x) ≤
∨

y∈Y f(x, y) and

(4) f(x, y) ∧ f(x, y′) ≤ ε(y, y′).

Composition of (X, δ)
f−→ (Y, ε)

g−→ (Z, η) is then given by (g ◦ f)(x, z) =
∨

y∈Y f(x, y) ∧ g(y, z).

Definition 3.2. For each p ∈ Ω we define the Ω-set 1p = ({∗p}, δp) with δp(∗p, ∗p) = p.

Lemma 3.1. For any q ≤ p in Ω we have a unique arrow eqp : 1q → 1p given by eqp(∗q, ∗p) = q.

Theorem 3.1. The category of Ω-sets is equivalent to the category Sh(Ω) of sheaves on Ω.

4 Lattice of Subsheaves

The subsheaf relation ⊂ defines a poset structure on the subsheaves of a fixed sheaf F . We show that
this structure is in fact a complete Heyting algebra, and relate this to the Heyting algebra we are taking
sheaves over.

For the rest of this section, fix a complete Heyting algebra Ω. This work is based on chapters nine
and ten of Jaap van Oosten’s Basic Category Theory and Topos Theory lecture notes (BCTTT).

Lemma 4.1. For any sheaf F over Ω, F⊥ = {∗}.
Fix now a sheaf F over Ω. Let Sub(F ) be the poset of subsheaves of F ordered by inclusion.

Lemma 4.2. Sub(F ) has a greatest element, namely F itself.

Lemma 4.3. Sub(F ) has a least element, which is ∅ everywhere except at ⊥ ∈ Ω.

Lemma 4.4 (c.f. BCTTT Lemma 10.13). For every U ⊂ Sub(F ), the meet
∧
U is given by the pointwise

intersection
(
∧
U)p := {x ∈ Fp | ∀u ∈ U. x ∈ up}.

Lemma 4.5 (c.f. BCTTT Theorem 9.8). For all A,B ⊂ F , the implication A→ B is given by

(A→ B)p := {x ∈ Fp | ∀q ≤ p. x|q ∈ Aq ⇒ x|q ∈ Bq}.

Lemma 4.6 (c.f. BCTTT p. 112). For every U ⊂ Sub(F ), the join
∨
U is given by

(
∨
U)p := {x ∈ Fp | p =

∨
{q ≤ p | ∃u ∈ U. x|q ∈ uq}}.

Theorem 4.1. Sub(F ) is a complete Heyting algebra.

Theorem 4.2. Sub(1) ∼= Ω.
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