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Introduction to Partial Recursive Functions

Definition. A function F: N*t! — N is defined from functions G: N¥ — N and
H: NFt2 5 N by primitive recursion if

F(Z,0) = G(1),
F(Z,y+1)=H(F(Z,y),7,y).

Definition. The class of primitive recursive functions is the smallest class of
functions

1. containing the initial functions

0
Z = Xz.0
S=Xx.x+1

Hf:)\xl...xk.xi for ke Nand 1< <k;

2. closed under composition, i.e. the scheme F (%) = H(G1(Z),...,Gn(Z)) where
H,Gy,...,G, are primitive recursive;
3. closed under primitive recursion.

Nk+1

Proposition. If F': — N is primitive recursive, then so are

£z <. F(7,y)
)\fZ.Hy<zF(fa y)
Az (py < z[F(Z,y) =0]),

where the latter is defined from F' by bounded minimalisation: it outputs the least
y < z with F(Z,y) = 0; or z if such y does not exist.

Definition. The class of partial recursive functions is the smallest class of func-
tions



1. containing the initial functions;
2. closed under composition;
3. closed under primitive recursion;

4. closed under minimalisation, i.e. the scheme
F(Z) ~ pyVz < y(G(Z, 2) is defined) and G(Z,y) = 0]

where G: N¥*! 5 N is partial recursive (the right-hand side outputs the least
y meeting the requirements, or is undefined if such y does not exist).

Notation.

1. If F,G are partial recursive functions, then we write F(Z) ~ G(Z) to mean
that F () is defined precisely when G(Z) is defined and if this is the case, then
F(Z) = G(Z).

2. We write (x1,...,x) for the code of the sequence (z1,...,x) € NF.

Enumeration Theorem (Kleene). There exists a primitive recursive function
U: N — N and a primitive recursive predicate T: N* — N such that for every
n-ary partial recursive function F' there exists a number e (called an index of F)
with

F(z1,...,2n) 2 U(py.T(n,e,(z1,...,Tn),y)).

The partial recursive function ®(n,e,x) = U(uy.T(n, e, z,y)) enumerates the par-
tial recursive functions.

Notation. We denote the e-th partial recursive function on n arguments by ¢ (or
just @e), i.e. we set o (z1,...,2,) = P(n, e, (x1,...,2,)) for any x1,...,z, € N.
We also write e-(z1,...,xy,) for pe(x1,...,2,).

Si'-Theorem (Kleene). For every m,n > 0 there is an (m + 1)-ary primitieve
recursive function S]* such that for all e, z1, ..., %, Y1, ..., Yn,

SI ey @1y ey T) (Y1y ooy Yn) =2 € (X1, ey Tony Y1y ooy Yn)-

Recursion Theorem (Kleene). For every k > 0 and every (k + 1)-ary partial
recursive function F there exists an index e such that for all 1, ..., x; the following
holds:

e(x1,...,xp) ~ F(x1, ..., Tk, €).



Fixpoint Theorem (Kleene). For every recursive function! F' and every n
there is a number e such that e and F'(e) are indices for the same n-ary partial
recursive function. In notation this means:

Example. Consider the primitive recursive function F(y,x) = y. In particular,
it is partial recursive, so by the Enumeration Theorem it has an index c¢. Define
G(z) = Si(c,z). Note that G is recursive (since Si is primitive recursive), so
we can apply the Fixpoint Theorem to obtain e such that ¢e(r) >~ pge)(z) =~
P51 (c,e)(®) = pe(e, ) ~ F(e,x) ~ e. Hence, the recursive function ¢, outputs its
own index (on any input)!

Observe that we could have also applied the Recursion Theorem directly to
the function F'(x,y) = y to get this result.

Undecidability of the Halting Problem (Turing). Consider the Halting set

H ={(f,y) | ¢5(y) is defined}.

Its characteristic function xr is not recursive.
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LA recursive function is a total partial recursive function.



