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Exercise 1 (To be handed in February 17) Recall that a topological space
is normal if every one-point subset is closed and for every pair A, B of disjoint
closed subsets, there exist disjoint open subsets U,V with A C U, B C V. We
denote by N the full subcategory of Top on the normal topological spaces.

a) Characterise the epimorphisms in N. Hint: you may find it useful to
invoke Urysohn’s Lemma.

b) Show that for two morphisms f,g: A — B in N we have: f = g if and
only if for every morphism h : B — R, hf = hg holds (this property of R
in NV is sometimes called a coseparator)

Exercise 2 (To be handed in March 10) Let C be a regular category.
a) Suppose that

B

A
l s
C——>D
is a pullback diagram in C with e regular epi. Prove: if g is mono, then so
is f.
b) Prove that the composition of two regular epis in C is again regular epi in
C.
Exercise 3 (To be handed in March 24) We are given an adjunction & % S
with R 4 I, unit n and counit €.

a) Prove: [ is faithful if and only if every component of € is epi; and [ is full
if and only if every component of ¢ is split mono. Hint: you may use the
fact that for an arrow A % B in &, the composite arrow RIA =5 A 1B
transposes under the adjunction to the arrow I(f): I(A) — I(B).
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b)

Now suppose [ is full and faithful. Prove: if F': A — £ is a diagram and
IF has a limit in S, then F has a limit in £.

Exercise 4 (To be handed in April 7) Let Q be a frame, as in Definition
4.13 of the Category Theory lecture notes. We consider the category Cq defined
there, and also the presheaf category Set*™”.

We have the Yoneda embedding y : 2 — Set?” and we have a functor

H : Q — Cgq, which sends p € Q to the object (X, Ex) where X = {*} and
Ex(*) =Pp.

a)

c)
d)

Show that there is an essentially unique functor F' : Cq — Set which
preserves all small coproducts and moreover makes the diagram

Q

| N

Co — Set™”

commute. Give a concrete description of F(X, Ex) as a presheaf on (.

Suppose Q has a (nonempty!-correction added later) subset B with the
property that \/ B ¢ B. Show that the functor F' does not preserve regular
epis.

Show that the functor F' has a left adjoint L.

Show that the functor L from part ¢) does not preserve equalizers.

Exercise 5 (To be handed in April 28) We consider the category C whose
objects are subsets of N, and arrows A — B are finite-to-one functions, i.e. func-
tions f satisfying the requirement that for every b € B, the set {a € A| f(a) = b}
is finite.

)
b)

Show that C has pullbacks.

Define for every object A of C a set Cov(A) of sieves on A as follows: R €
Cov(A) if and only if R contains a finite family {f1,..., f,} of functions
into A, which is jointly almost surjective, that is: the set

n

A— U Im(f;)

i=1
is finite.
Show that Cov is a Grothendieck topology.

Show that if R € Cov(A), then R contains a family {f1,..., f,} which is
jointly almost surjective and moreover, every f; is injective.



d) Given a (nonempty!—correction added later) set X and an object A of C,
we define Fx (A) as the set of equivalence classes of functions £ : A — X,
where & ~ n if £(n) = n(n) for all but finitely many n € A.

Show that this definition can be extended to the definition of a presheaf
Fx on C.

e) Show that Flx is a sheaf for Cov.

Exercise 6 (To be handed in May 12) This exercise is about interpreting
Logic in the category of sheaves on a site. There is a ‘forcing’ definition similar
to the one for presheaves; it is explained on p. 32 of the lecture notes, with one
regrettable inaccuracy. The definition of C' I-; —p(a1,. .., a,) should be:

e Clky—p(ay,...,a,) if and only if for every arrow g : D — C, if
DIkj ¢(arg,...,ang) then O € Cov(D)

Now the exercise. We assume that we have a site (C, Cov) and an object I of C
which satisfy the following conditions:

i) 0¢Cov(l)
ii) If there is no arrow I — A then §) € Cov(A)
iii) If there is an arrow I — A then every arrow A — I is split epi

We call a sheaf F' in Sh(C, Cov) ——-separated if for every object A of C and all
z,y € F(A),

Prove that the following two assertions are equivalent, for a sheaf F:
a) F is -—-separated

b) For every object A of C and all x,y € F(A) the following holds: if for
every arrow ¢ : I — A we have z¢ = y¢ in F(I), then x =y

Solution to Exercise 1.

a) Anarrow f: X — Y in N is epi if and only if the image of f is dense in Y.
The ‘if’ part is easy since normal spaces are Hausdorff and a continuous
map between Hausdorff spaces is completely determined by its restriction
to a dense subset of its domain. For the ‘only if’ part, suppose f does
not have dense image. Pick yo ¢ f(X). By Urysohn’s Lemma there is a
continuous function g : Y — R satisfying: g(y) = 0 for every y € f(X),
and ¢g(yo) = 1. Let h : Y — R be the function constant 0. Then g and h
agree on f(X) yet g # h, so f is not epi.

b) Clearly, ‘only if’ is trivial. For the ‘if’ part, suppose f # ¢g. Pick a € A
with f(a) # g(a). Again by Urysohn, there is a continuous h : B — R

with h(f(a)) =0, h(g(a)) = 1. So hf # hg.



Solution to Exercise 2.

P
a) Suppose E :0§ B is a parallel pair for which fpy = fp1. Let
p1

X
— F

F
g'J fpo
c

—
e
be a pullback. Then by the pullback property of the original diagram
there are arrows qg,q1 : F© — A such that ggo = ¢’,hqo = poh’ and
90 =g’ hqr = p1h:

CT>D

From gqo = ¢’ = gq1 and the assumption that g is mono, we get qo = q1.
Therefore poh’ = hqy = hqi = pih’. Since h’, being a pullback of the
regular epi e, is regular epi (hence epi), we find py = p;. We conclude that
f is mono.

b) Suppose in A % B 2 C the arrows ey, ep are both regular epi. In order
to show that the composite ezeq is regular epi, we factor this composite
as me with m mono and e regular epi:

A—sp—"=5¢C

N

Po
If E—= A is the kernel pair of e; then mepg = eze1py = ese1p1 =
p1

mep1 so since m in mono, epg = ep1. Therefore, since e is the coequalizer
of pg,p1 we have a unique map n : B — D satisfying ne; = e. Then we
also have: mne; = me = eseq, so since e is epi, mn = e and the following
diagram commutes:



Repeating the argument for the kernel pair qg, g1 of e2, we get that ngy =
ngqi; so since e is the coequalizer of its kernel pair, we get a unique arrow
k : C — D such that kes = n.

Then mkes = mn = e so since e is epi, mk = id¢; and kme = kege; =
ney = e, so since e is epi, km = idp. We find that k is a two-sided inverse
for m, which is therefore an isomorphism. We conclude that ese; is regular
epi.

Solution to Exercise 3.

)

By the hint we have for every parallel pair f,g: A — B, that I(f) = I(g)
if and only if fe4 = ge4. From this it follows easily that I is faithful if
and only if € is epi.

Suppose I is full. Take & : A — RIA such that I(a) =nra : [A — IRIA.
Then both idrr4 and ae 4 are transposes of 174, so aeq4 = idgra and € is
split monic.

Conversely, suppose €4 is split monic, with retraction «. Any map h :
IA — IB transposes to

RIA™ rIpes B

which is equal to the composite

RIAA A RIA™ RIBE B

which is the transpose of I(egR(h)a). Therefore h = I(egR(h)a), and I
is full.

Let Z be an index category and M : Z — &£ be a diagram. Suppose v :
Ap = IM is a limiting cone for IM in S, with vertex L. Then we have a

cone Agp, & prin &, and therefore a cone I(co(R(v))) : Arrr = IM
in S. Since v is limiting we have a unique map of cones d : IRL — L.

Moreover, for each object i of Z we have, by naturality of n7 and the triangle
identities, a commutative diagram

TRL 2R iy 2 i)

A

which means that 7 is a map of cones from v to I(e o (R(v))). Since v is
limiting, we have dn = idg.

Now consider nd : IRL — IRL. Since [ is full, this composition is of the
form I(e) for some e : RL — RL. Let é : L — IRL be the transpose of



e. Then é = I(e)n = ndn = n, which is the transpose of idgy. Therefore
e = idgr and 7 is an isomorphism with inverse d.

We also see that the cone v is isomorphic to the cone I(eoR(v)) : Arrr =
IM , which is therefore limiting. It now follows readily from the full and
faithfulness of I that the cone € o R(v) : RL — M is limiting in &.

Another proof of part b) is: prove that I is monadic and invoke the the-
orem (exercise 114) in the lecture notes that a monadic functor creates
limits. So, let h : IRX — X be an IR-algebra. Then hnx = idx and
just as in the last part of the proof given above, one proves that h is an
isomorphism with inverse 7.

Moreover, any object of the form I X has the structure of an I R-algebra:

IRIX "9 1x.

We see that the category I R-Alg is equivalent to the full subcategory of S
on objects in the image of I. Since I is full and faithful, this subcategory
is equivalent to £ via I. So I is indeed monadic.

Solution to Exercise 4.

a)

The first thing to recognize is that in Cg, every object (X, Ex) is the
coproduct of the family {H(Ex(x))|x € X}. Therefore, if the functor F'
is to preserve coproducts and make the given diagram commute, there is
no choice but to put

P(xX, Bx) = | [{w(Ex (@) | = € X}

As a presheaf, F(X, Ex) can be described like this: it is the P-indexed
collection of sets (Ap)pep Where

Ay = {(z,p)|p < Ex(x)}

and for ¢ < p the transition map Ag, : A, — Ag sends (z,p) to (x,q).
For a morphism f : (X, Ex) — (Y, Ey) we have Ex(z) < Ey(f(z)) so if
the presheaf F(Y, Ey) is (Bp)peq, then (z,p) € A, implies (f(z),p) € By,
so we have an arrow F(f) : F(X,Ex) — F(Y, Ey) and this makes F a
functor.

Here, we must know what regular epis look like in Cn. We have: f :
(X, Ex) — (Y, Ey) is regular epi if and only if f is a surjective function
and moreover, for each y € Y, Ey (y) = V{Ex(z) | f(z) = y}.

Now suppose B C Q and \/ B ¢ B, so for allb € B, b < \/ B. We consider
the objects (B,id) and H(\/ B) of Cq. The unique map 7 : B — {x} is a
morphism from (B,id) to H(\/ B) and it is regular epi (for this, it has
to be assumed that B is nonempty! This was a slight inaccuracy
in the formulation of the exercise).

However, the morphism F(r) is not epi in Set®”, since FH(\/ B) =
y(\V B) has an element at level \/ B, whereas F(B,id) has no such ele-
ment. Hence the component of F'(7) at \/ B is not surjective.



c) Let (Ap)peq be a presheaf on 2, with maps Ay : A, — Ay for ¢ < p. Let
L denote the bottom element of Q. Consider a morphism f : (4,)peco —
F(X,Ex). Suppose £ € A, and n € A,. By naturality of f, if A,,(¢) =
A y(n) and £,(€) = (2,p)s f(n) = (4), then = = y. We see therefore,

that f determines a function f : A} — X with the property that for every
element £ € A,

fp(&) = (F(ALp(E)),p)

Moreover, we must have for £ € A, that p < Ex(f(A1,(£))). This gives
us the idea to define L: define L((A,)pep) as (A1, E) where

E(¢) = \/{p € P |for some x € A,, Ay ,(z) =¢}

We now see that the map f : A; — X is a morphism L((4p)pep) —
(X,Ex) in Cq. Coversely, given a map g : L((Ap)per) — (X, Ex) we
have a map §: (A,)pep — F (X, Ex) by putting

gp(&) = (9(AL,(6)),p)

You can check yourself that g is well-defined and that the operations (+)

and (-) are each other’s inverse. So, L is left adjoint to F'.

d) For a concrete example we have to fix . Solet = {0 < 1}. Consider the
presheaves A and B on 2, where A; = Ag = {*}, By = {*}, B1 = {a,b}
with @ # b. We have two arrows, f, and fp, from A to B and their
equalizer is the inclusion £ C A where Ey = {x}, E1 = (). Applying the
functor L, we see that L(A) = L(B) = H(1), and that L(f,) = L(fp) is
the identity map. So the equalizer of L(f,) and L(fp) is an isomorphism.
However, L(E) = H(0) and L(E) — L(A) is not an isomorphism. So L
does not preserve equalizers.

Solution to Exercise 5.
a) Given B 4, A, C2 AinC, let

’
g
X —

c g

a pullback diagram in Set. Then X is countable, so we may as well assume
that X C N. Because f, g are finite-to-one, so are f’, ¢’ and the diagram
lives in C; and it is a pullback in C because whenever we have arrows
Y LAY 2, B in C with fa = gb, then the unique factorization ¥ — X
must be finite-to-one, and therefore in C.



b)

Certainly the maximal sieve is in Cov(A) since it contains the one-element
family consisting of the identity on A.

For stability, suppose R € Cov(A) and g : B — A is an arrow in C. We
have to prove that g*(R) € Cov(B). Let {f1,..., fn} a finite subfamily of
R which is jointly almost surjective. It is enough to show that the sieve
on B generated by {fi,..., f,} is in Cov(B), where each f/ is such that

_—

f{l lfi
B

—— A

is a pullback. This is because this sieve is a subsieve of f*(R). Now the
set

A= ()

is a finite set, call it E. Since g is an arrow in C, hence a finite-to-one
function, its preimage under g, g~!(E), is finite. Hence we have that

B—Jim(f)
=1

is also finite, which shows that the sieve generated by {fi,..., f} is in
Cov(B), as desired.

For local character, suppose R, S are sieves on A, R € Cov(A) and for
every f : D — A in R we have f*(S) € Cov(D). We have to prove
that S € Cov(A). Now if R contains the jointly almost surjective family
{f1,..., fn} and for every i the sieve f7(S) contains the jointly almost
surjective family {gi,..., g,ici}, then the family

{figh|1<i<n,1<j<k}

is a jointly almost surjective family of arrows into A, and this family is
contained in S. So S € Cov(A), as desired.

Suppose {f1,...,fn} C R is jointly almost surjective. For each i let
e; : Im(f;) — dom(f;) be a section of f;. Then R contains the family
{fi€1,..., fnen} since R is a sieve. Moreover, every composition f;e; is
injective; and the joint image of the maps f;e; is the same as the joint
image of the maps f;.

Again, we need the set X to be nonempty. For, if A C N is finite and
nonempty, then § € Cov(A) because the empty family is jointly almost
surjective. However, if X = () then there are no equivalence classes of
functions A — X.



Provided X is nonempty we define F'x (A) as given. For an arrow f : B —
A and [€] € Fx(A) we put: [£]f = [€of]. This is well-defined, for if £ ~ n
in Fx (A) then £of ~nof in Fx(B). Clearly, we have a prasheaf structure
on Fx.

e) Suppose £, : A — X are two functions such that for all f : B — A
in some R € Cov(A) we have []f = [n]f in Fx(B). Then in particular
this holds for a finite, jointly almost surjective subfamily {f1,..., fn} of
R. So for each 4, the compositions £of; and nof; agree on all but finitely
elements of their domain. Since the family is finite, £ and n agree on all
but finitely elements of A. So Flx is separated.

Now suppose we have a compatible family

{[¢s] € Fx(dom(f)) | f € R}

indexed by some R € Cov(A). We must produce an amalgamation. Now R
contains a finite, jointly almost surjective subfamily { f1, ..., f,} consisting
of injective functions. Let A; be the image of f;. Clearly we have a unique
function 7; : A; — X such that n;of; = &y,. For different indices ¢ and
Jj, there can be at most finitely many elements x € A; N A; for which
ni(x) # nj(x), by the compatibility of the family. So in the whole of A
there are at most finitely many x such that either x ¢ | J;_, Im(f;), or for
some i # j, ¢ € A; N A; and 7;(x) # nj(x). Let the finite set of such z’s
be E. Then define n: A — X by: n(z) = n;(z), if x ¢ E and « € A; (it
doesn’t matter which ¢ we choose), and let n(x) be an arbitrary element of
X if z € E. Then [n] is an amalgamation for the family {[]|1 <@ < n}
and hence, by compatibility, for the original family we started with.

Solution to Exercise 6.

a)=-b): suppose A an object of C, x,y € F(A) such that for all ¢ : I — A we
have x¢ = y¢. We have to prove that x = y, but by assumption a) it is sufficient
to prove that A IF; —=—(x = y), which, after some elementary logical operations,
is equivalent to:

(*) For every arrow B EN A, if ¢ Cov(B) then there is an arrow C 2 B
such that § ¢ Cov(C) and xzfg =y fg.

But given such f : B — A with § € Cov(B), we have some g : I — B by
our assumptions on the site (C,Cov). By hypothesis on A and z,y, we have
xfg=1yfg. So we have proved (¥*).

b)=-a): Suppose A IF; == (z = y) (which is equivalent to (*) above, as we saw),
and let f : I — A be an arrow. By (*) there is an arrow C' <5 T such that
xfg = yfg and § € Cov(C). This last fact gives us some map I — C, so we
know that g : C' — I is split epi; let h : I — C be a retraction. Then zfg = yfg,
hence

xf =xfgh=yfgh=yf



The map f : I — A was arbitrary, so we conclude that the hypothesis of part
b) is satisfied. Hence z = y. Because also A wa sarbitrary, we conclude that F'
is m—-separated, as was to be shown.
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