
Category Theory and Topos Theory,

Spring 2016

Hand-In Exercises

Jaap van Oosten

February–June 2016

1 Exercises

Exercise 1 (To be handed in February 22) The category Rel of relations
has as objects sets, and an arrow X → Y is a relation from X to Y , i.e. a subset
of X × Y . Composition of arrows is composition of relations: given R : X → Y
and S : Y → Z, the composite SR : X → Z is the set

SR = {(x, z) | for some y ∈ Y , (x, y) ∈ R and (y, z) ∈ S}

a) Prove that Rel has both a terminal and an initial object, and give these
explicitly.

b) Characterize the monomorphisms in Rel. Show in particular that every
mono R : X → Y in Rel is a total relation: for all x ∈ X there is a y ∈ Y
with (x, y) ∈ R.

c) Characterize the epimorphisms in Rel (Hint: you may find it useful to do
part d) first).

d) Give a concrete description (up to equivalence of categories) of Relop.

Exercise 2 (To be handed in March 7) The category Setp has as objects
sets and as arrows partial functions: an arrow X → Y is a function f from a

subset Df of X to Y . Composition in Setp is given as follows: for X
f→ Y

g→ Z
we have

Dgf = {x ∈ X |x ∈ Df and f(x) ∈ Dg}

and gf(x) = g(f(x)) for x ∈ Dgf .

a) Prove that Setp has finite products.

b) Prove that Setp has equalizers.

c) Prove that Setp has coequalizers of kernel pairs.

1



d) Prove that Setp is regular.

Exercise 3 (To be handed in March 21) a) A meet-semilattice is a poset
A which has finite limits. Concretely, it has a top element > and for
x, y ∈ A, the meet (or glb) x ∧ y exists. A morphism of meet-semilattices
A→ B is a function which preserves > and commutes with ∧. We have a
category MSL of meet-semilattices and their morphisms. Show that the
forgetful functor MSL→ Set has a left adjoint.

b) A sup-lattice is a poset which has least upper bounds of arbitrary subsets;
a suplattice homomorphism preserves least upper bounds. We have a
category SL of sup-lattices; prove that the forgetful functor SL→ Set has
a left adjoint.

c) The category Frm of frames (see section 4.5 of the lecture notes) has as
objects frames and as morphisms functions which preserve arbitrary joins,
top element and binary meets. Show that the forgetful functor Frm→ Set
has a left adjoint.

Exercise 4 (To be handed in April 4) Let C be a category, S : C → C a
functor and (T, µ, η) a monad on C. A distributive law for T over S is a natural
transformation c : TS ⇒ ST such that the following diagrams commute for
each object x of C:

TSx

cx

��

Sx
S(ηx)

//

ηSx

<<yyyyyyyy
STx

T 2Sx

µSx

��

T (cx)
// TSTx

cTx // ST 2x

S(µx)

��

TSx
cx

// STx

a) Prove that a distributive law for T over S gives rise to a functor T−S :
T−Alg→ T−Alg for which the following diagram commutes:

T−Alg

UT

��

T−S
// T−Alg

UT

��

C
S

// C

b) Prove that for the functor T−S constructed in a), the law c induces a
natural transformation

FTS ⇒ (T−S)FT

c) Conclude that in the case that c is a natural isomorphism, the functor
T−S restricts to an endofunctor on the Kleisli category of T .

Exercise 5 (To be handed in April 18) We compare the categories SetC
op

and SetC0 : the latter is just the category with as objects C0-indexed families
of sets (XC)C∈C0 and as arrows C0-indexed families of functions. There is an

obvious forgetful functor U : SetC
op

→ SetC0 .

2



a) Prove that the functor U is monadic (that is, U has a left adjoint L such

that SetC
op

is equivalent to the category of UL-algebras).

b) Conclude from a) that “limits are calculated point-wise” in SetC
op

c) Prove that U also has a right adjoint R. For 1 extra bonus-point, you may
try your hand at the question: is U also comonadic?

Exercise 6 (To be handed in/sent in May 11) LetX be a topological space
with set of opens O(X). We define, for every open U of X, a set Cov(U) of
“covering families” for U as follows: a (downwards closed) family W of open
subsets of U is in Cov(U) if and only if there is a finite subset {W1, . . . ,Wn} of
W such that

⋃n
i=1Wi = U . We allow n = 0: so ∅ ∈ Cov(∅).

a) Prove that Cov is a Grothendieck topology onO(X). We write Sh(O(X),Cov)
for the category of sheaves for this topology.

b) Let Shv(X) be the category of ‘normal’ sheaves on X, i.e. with respect to
the topology where W covers U iff

⋃
W = U .

Show that Shv(X) ⊂ Sh(O(X),Cov) and that the inclusion is, in general,
strict: give an example of a space X and a presheaf F on X which is a
sheaf for Cov but not a normal sheaf on X.

c) Show that the inclusion Shv(X)→ Sh(O(X),Cov) has a left adjoint which
preserves finite limits.

2 Solutions

Solution to Exercise 1
a) (2 points) The empty set is initial in Rel since for any set X there is exactly
one relation from ∅ to X: the empty relation. By the same token, ∅ is also
terminal in Rel.
b) (3 points) Relations from X to Y correspond bijectively to union-preserving
functions P(X)→ P(Y ) (where P(X) denotes the power set of X): R ⊆ X×Y
corresponds to the function R̂ defined by

R̂(A) = {y ∈ Y | ∃x ∈ A(x, y) ∈ R}

Note that if R ⊆ X × Y corresponds to R̂ and S ⊆ Y × Z to Ŝ, then SR
corresponds to the composite ŜR̂. Therefore, R is mono if and only if for any
set W and S, T ⊆W ×X, R̂Ŝ = R̂T̂ implies S = T . If we take Z = {∗}, we see
that this means that R̂ is injective.
The following reformulation was worth 1 bonus point: R is mono if and only if
there is a function f : X → Y with the property that for all x ∈ X the following
hold:

i) (x, f(x)) ∈ R

3



ii) For no x′ 6= x is (x′, f(x)) ∈ R

From this last condition it is obvious that if R is mono, R is a total relation.
Following the hint in the exercise, we first solve part d) before we do c).
d) (3 points) For every relation R from X to Y , we have the relation R◦ =
{(y, x) | (x, y) ∈ R}, which is a relation from Y to X, so a morphism X → Y in
Relop. Moreover, for relations R : X → Y and S : Y → Z, we have (SR)◦ =
R◦S◦ and of course, for the identity relation I on X we have I◦ = I. This means
that we have a functor F : Rel → Relop. Then F op is a functor Relop → Rel,
and it is trivial to see that the two functors are each othe’s inverse. So Relop is
isomorphic, and hence equivalent, to Rel.
c) (2 points) R : X → Y is epi in Rel if and only if R◦ is mono in Rel (by d)).
In order to characterize this in terms of R, we use the condition given in the
solution of part b): R is epi if and only if there is a function f : Y → X such
that for every y ∈ Y the following hold:

i) (f(y), y) ∈ R

ii) For no y′ 6= y is (f(y), y′) ∈ R.

Solution to Exercise 2 There is a straightforward solution and a slick one;
let us do the straightforward solution first.
a) (3 points) The empty set is terminal in Setp since for any set X the unique
function f with Df = ∅, is the unique partial function X → ∅.

For sets X and Y , consider the disjoint sum X∗Y = (X×Y )+X+Y together
with projections pX : X ∗Y → X and pY : X ∗Y → Y with DpX = (X×Y )+X,

DpY = (X × Y ) + Y . Given two partial functions Z
f→ X, Z

g→ Y we have a
partial function 〈f, g〉 : Z → X ∗ Y defined by

〈f, g〉(z) =

 (f(z), g(z)) ∈ X × Y if z ∈ Df ∩Dg

f(z) ∈ X if z ∈ Df −Dg

g(z) ∈ Y if z ∈ Dg −Df

So D〈f,g〉 = Df ∪Dg. One can check that 〈f, g〉 is the unique partial function
satisfying pX〈f, g〉 = f and pY 〈f, g〉 = g. So X ∗ Y , together with the maps pX
and pY is a product cone.

b) (2 points) Given a parallel pair of partial functions X
f
//

g
// Y , a partial

function h : Z → X satisfies fh = gh if and only if for each z ∈ Dh the following
holds: either h(z) ∈ Df ∩Dg and f(h(z)) = g(h(z)), or h(z) 6∈ Df ∪Dg. Hence,
such h factors through the inclusion E ⊂ X where

E = {x ∈ Df ∩Dg | f(x) = g(x)} ∪ (X − (Df ∪Dg))

and therefore this inclusion is the equalizer of f and g.

4



c) (3 points) First we do general pullbacks, constructed out of products and
equalizers. For a diagram

W

h
��

Z
g
// Y

the vertex of the limiting cone is

P = {(w, z) ∈ Dh×Dg |h(w) = g(z)}∪(W−Dh)×(Z−Dg)+(W−Dh)+(Z−Dg)

Hence, given X
f→ Y , the kernel pair of f has as vertex

Kf = {(x, y) ∈ Df×Df | f(x) = f(y)}∪(X−Df )×(X−Df )+(X−Df )+(X−Df )

Now, if g : X → Z coequalizes the two projections p1, p2 : Kf → X then for
(x, y) ∈ Df ×Df , if f(x) = f(y) then g(x) = g(y). Moreover, if x 6∈ Df then
g(x) is undefined (because there is x̄ ∈ Kf such that x = p1(x̄) and p2(x̄) is
undefined, or vice versa). We conclude that g factors through the image of f ;
uniquely since f : Df → Im(f) is surjective.
d) (2 points) We see that a partial map f : X → Y is a regular epi in Setp if
and only if the function f : Df → Y is surjective.

If

P
pW //

pZ

��

W

h
��

Z
g
// Y

is a pullback diagram as in the solution of c), then it is easy to see that if
h is surjective, so is pZ : if z ∈ Dg, pick w such that (h(w) = g(z); then
z = pZ((w, z)). If z 6∈ Dg, then z ∈ (Z−Dg), hence z is also in the image of pZ .
We conclude that regular epis are stable under pullback. Hence Setp is regular.

Slick solution: prove that Setp is equivalent to the category Set∗ of pointed
sets: an object of Set∗ is a pair (X,x) withX a set and x ∈ X; an arrow
(X,x)→ (Y, y) is a function f : X → Y satisfying f(x) = y.

Let F : Setp → Set∗ the functor which sends X to (X ∪{X}, X) (mind you,
set theory teaches us that X 6∈ X always!), and a partial function f : X → Y
to the function

F (f)(x) =

 f(x) if x ∈ Df

Y if x ∈ X −Df

Y if x = X

In the converse direction we have G : Set∗ → Setp which sends (X,x) to X−{x};
for f : (X,x) → (Y, y) we have G(f) : (X − {x}) → (Y − {y}) with DG(f) =
{x′ ∈ X − {x} | f(x) 6= y}. I leave the proof that this is an equivalence to you,
as well as the (pretty easy) proof that Set∗ is regular.

5



Solution to exercise 3.

a) (3 points) A meet-semilattice (A,>,∧) can be seen as a monoid with the
properties:

i) the monoid operation ∧ is commutative

ii) the operation is idempotent: a ∧ a = a

This means that given a set X and a function f : X → A where (A,>,∧) is a

meet-semilattice, its mate (under the adjunction Mon
U
// Set

(·)∗
oo ) f̃ : X∗ → A

will send two sequences of elements of X to the same element of A if these
sequences enumerate the same finite subset of X. We see that the left adjoint
to U : MSL → Set sends a set X to the set Pfin(X) of finite subsets of X,
ordered by reverse inclusion. The meet operation is union, the top element
is the empty set. For a function f : X → A, f̃ : Pfin(X) → A sends U to
f(x1) ∧ · · · ∧ f(xn) if U = {x1, . . . , xn}; f̃(∅) = >.

b) (3 points) The free sup-lattice on a set X is the powerset P(X) of X. Given
a function f : X → U where U is the underlying set of a sup-lattice, its mate is
the sup-lattice homomorphism f̃ : P(X)→ U defined by

f̃(A) =
∨
{f(a) | a ∈ A}

c) (4 points) Every frame is a meet-semilattice (and every frame homomorphism
is a meet-semilattice morphism), so there is an inclusion functor Frm→MSL
and the forgetful functor Frm → Set factors through this inclusion. Since
adjunctions compose, it is sufficient to calculate the left adjoint to the inclusion
Frm→MSL.

For any meet-semilattice A we have a frame DA consisting of all downwards
closed subsets of A:

DA = {U ⊆ A | ∀x, y ∈ A(x ∈ U, y ≤ x⇒ y ∈ U)}

There is a meet-semilattice morphism A
η→ DA sending a ∈ A to ↓a = {x ∈

A |x ≤ a}. By definition of meets, we have ↓(a ∧ b) = ↓a ∩ ↓b (and meets in
DA are given by intersection). And ↓> = A, which is the top element of DA.
Moreover, for any MSL-morphism f : A → X where X is a frame, there is a
unique factorization

A
η
//

f
!!CCCCCCCC DA

f̃
��

X

by the frame homomorphism f̃ : DA → X which sends a downwards closed
subset U of A to

∨
{f(a) | a ∈ U}. So we have a functor D : MSL → Frm

which is left adjoint to the inclusion functor.

6



Calculating the composition of the two left adjoints Set → MSL → Frm,
we find the functor F : Set → Frm which sends a set X to the collection of
upwards closed sets of finite subsets of X, that is: U ∈ F (X) if and only if
U ⊆ Pfin(X) and for A,B ∈ Pfin(X), if A ∈ U and A ⊆ B, then B ∈ U . And
F (U) is ordered by inclusion.
(1 bonuspoint) The functor F can also be described as follows. Given a set X,
the Scott topology on P(X) has as opens those subsets U of P(X) which satisfy:

i) whenever A ⊆ B ⊆ X and A ∈ U , also B ∈ U

ii) whenever A ∈ U , there is a finite subset A′ of A which also belongs to U .

Then F (X) is isomorphic to the frame of open subsets of P(X) for the Scott
topology.

Solution to Exercise 4.

a) (5 points) Define (T−S) on objects by: (T−S)(Tx
h→ x is the composition

of

TSx
cx // STx

S(h)
// Sx

and on maps f : (Tx
h→ x)→ (Ty

k→ y) by

TSx
TSf

//

cx

��

TSy

cy

��

STx

Sh

��

STf
// STy

Sk

��

Sx
Sf

// Sy

It is clear that the diagram defining (T−S)(f) commutes, that the definition
is functorial, and that the diagram given in the exercise commutes; so it only

remains to check that (T−S)(Tx
h→ x) is a T -algebra when h is.

Now the unit diagram

TSx

cx

��

STx

Sh
��

Sx
id
//

ηSx

EE���������������
Sx

commutes since
S(h)cxηSx = S(h)S(ηx)

= S(hηx)
= S(id) = id

7



The first equality by naturality of c, and the second by the assumption that h
is an algebra.

The associativity diagram

T 2Sx

µSx

��

Tcx // TSTx

cTx

��

TS(h)
// TSx

cx

��

ST 2x

S(µ)

��

ST (h)
// STx

S(h)

��

TSx
cx
// STx

S(h)
// Sx

commutes: the left-hand square because of the second diagram defining a dis-
tributive law in a); the right-hand upper square by naturality of c, and the lower
right-hand square because h is an algebra.

b) (3 points) We have that (T−S)(FT (x)) is the composition

TSTx
cTx // ST 2x

S(µ)
// STx

and the second diagram defining a distributive law just says that there is an
algebra map

T 2Sx

µSx

��

T (cx)
// TSTx

cTx

��

ST 2x

S(µ)

��

TSx
cx
// STx

from FT (Sx) to (T−S)(FTx), which is obviously natural.

c) (2 points) The exercise was sloppily formulated. What one can conclude from
b) is that, when we apply the functor T−S to a free algebra, we get something
that is isomorphic to a free algebra. Therefore, the functor T−S restricts to
the full subcategory of T − Alg on those algebras that are isomorphic to a
free algebra. This category is equivalent to the Kleisli category for T , but not
(necessarily) isomorphic to it. If you had spotted this glitch and got stuck, you
received at least 1 point.

Solution to Exercise 5.

a) (4 points) We denote a typical object of SetC0 by X = (XC)C (C ∈ C0), and
typical presheaves on C by F,G.

So, U(F ) = (F (C))C .

8



For X = (XC)C , let L(X) be defined by

L(X)(C) = {(f, ξ) |dom(f) = C, ξ ∈ Xcod(f)}

Then L(X) is a presheaf: for g : C ′ → C and (f, ξ) ∈ L(X)(C), we let

L(X)(g)(f, ξ) = (fg, ξ)

Moreover, the assignment X 7→ L(X) is functorial: given an arrow α = (αC :
XC → YC) from X to Y in SetC0 , we have L(α) : L(X)→ L(Y ) defined by

L(α)C(f, ξ) = (f, αcod(f)(ξ))

This defines L as a functor.
There is a natural transformation ε : LU ⇒ id: given a presheaf F , the

component εFC : LUF (C) → F (C) sends (f, ξ) to F (f)(ξ). This is a natural
transformation: for α : F → G we have

εGC(LU(α)C(f, ξ)) = εGC(f, αcod(f)(ξ)) =
G(f)(αcod(f)(ξ)) = αC(F (f)(ξ)) =

αC(εFC(f, ξ))

so the diagram

LU(F )

εF

��

LU(α)
// LU(G)

εG

��

F
α

// G

commutes.
There is a natural transformation η : id⇒ UL: given X, we have ηC : XC →

UL(X)C defined by
ηC(ξ) = (idC , ξ) ∈ LU(X)C

The naturality of η is obvious. We check the triangle equalities:

U

id �#
@@@@@@@

@@@@@@@
η?U +3 ULU

U◦εx� yyyyyyyy

yyyyyyyy

U

L

id �#
???????

???????
L◦η +3 LUL

ε?Lx� zzzzzzzz

zzzzzzzz

L

For a presheaf F and ξ ∈ (UF )C = F (C), we have (η ? U)C(ξ) = (idC , ξ) and
(U◦ε)C(idC , ξ) = F (idC)(ξ) = ξ, so the left-hand triangle commutes.

For X in SetC0) and (f, ξ) ∈ L(X)(C), (L ? η)(f, ξ) = (idC , (f, ξ)) and

(ε ? L)C(idC , (f, ξ)) = L(X)(idC)(f, ξ) =
(f idC , ξ) = (f, ξ)

so also the right-hand triangle commutes. We conclude that indeed, L is left
adjoint to U .

9



Consider the monad T = UL on SetC
op

: T (X)C = {(f, ξ) |dom(f) = C, ξ ∈
Xcod(f)}, so

T 2(X)C = {(g, (f, ξ)) |dom(g) = C, cod(g) = dom(f), ξ ∈ Xcod(f)}

The multiplication µ : T 2 ⇒ T is given by (g, (f, ξ)) = (fg, ξ), and the unit η is
the unit of the adjunction L a U .

Now suppose X is a T -algebra: we have h : T (X) → X such that the
diagrams

T 2X

Th

��

µ
// TX

h

��

TX
h
// X

TX

h
��

X

η
=={{{{{{{{

id
// X

commute.

These diagrams mean that hC(f, ξ) ∈ XC for all C, and for C
g→ C ′

f→ D
and ξ ∈ XD we have the equalities

hC(g, hC′(f, ξ)) = hC(fg, ξ)hC(idC , ξ) = ξ

These equations just mean that X has a presheaf structure if, for ξ ∈ XD and
f : C → D we put X(f)(ξ) = hC(f, ξ). Conversely, every structure of a presheaf

on X defines a T -algebra structure on X. We see that SetC
op

is equivalent to
the category T -Alg, and that U is monadic.

b) (2 points) In SetC0 , limits are pointwise (a diagram in SetC0 is just a C0-
indexed family of diagrams in Set).

Since U is monadic, it creates limits: for any diagram P : I → SetC0 , i.e.
family of diagrams (PC : I → Set)C∈C0 with limits ΛC , there is a unique presheaf
structure on ΛC , and this is the vertex of a limiting cone for P . So, limits are
calculated pointwise.

c) (4 points) Given an object X of SetC0 , define R(X) as follows: R(X)(C)
consists of all families

(ξf )cod(f)=C

for which ξf ∈ Xdom(f), for all f with codomain C.
Then R(X) is a presheaf if we define, for g : C ′ → C,

R(X)(g)((ξf )cod(f)=C) = (ξgh)cod(h)=C′

For α : X → Y in SetC0 we have R(α) : R(X)→ R(Y ) given by

R(α)C((ξf )cod(f)=C) = (αdom(f)(ξf ))cod(f)=C

This defines R as a functor: SetC0 → SetC
op

.
We have a natural transformation η : id⇒ RU : for a presheaf F , define ηC

on F (C) by
ηC(ξ) = (F (f)(ξ))cod(f)=C

10



Also, we have a natural transformation ε : UR ⇒ id: for an object X of SetC0 ,
εC sends the family (ξf )cod(f)=C to ξidC

∈ XC .
Again, we check the triangle equalities

R

id �#
@@@@@@@

@@@@@@@
η?R +3 RUR

R◦εx� yyyyyyyy

yyyyyyyy

R

U

id �#
@@@@@@@

@@@@@@@
U◦η +3 URU

ε?Ux� yyyyyyyy

yyyyyyyy

U

For the left-hand triangle, if ξ = (ξf )cod(f)=C is an element of R(X)(C) then
(η ? R)C(ξ) is the family of families (Af )cod(f)=C , where, for f : C ′ → C,

Af = (ξfg)cod(g)=C′

And
(R◦ε)C((Af )cod(f)=C) = (εC′(Af ))f :C′→C =

(ξf )f :C′→C = ξ

so the left-hand triangle commutes. Virtually the same calculation shows that
the right-hand triangle commutes; we conclude that R is right adjoint to U .

For the last statement (1 bonus point), we look at the comonad ⊥⊥ = UR on
SetC0 . We have the counit ε : ⊥⊥ ⇒ id, which is the counit of the adjunction
U a R, and a comultiplication δ : ⊥⊥ ⇒ ⊥⊥2, which is U◦(η ? R).

A ⊥⊥-coalgebra in SetC0 is an object X together with a morphism h : X →
⊥⊥X, making the diagrams

X
h //

h

��

⊥⊥X

⊥⊥h
��

⊥⊥X
δ
// ⊥⊥2X

X

h
��

id

""EEEEEEEE

⊥⊥X
ε
// X

commute.
So we have a map h such that in particular, for ξ ∈ XC , hC(ξ) is a family

(ζf )f :C′→C such that (by the right-hand triangle) ζid = ξ.
For f : C ′ → C let us denote ζf = (hC(ξ))f by X(f)(ξ). By the above

paragraph, X(idC)(ξ) = ξ. So hC(ξ) = (X(f)(ξ))cod(f)=C whence

(⊥⊥h)C(hC(ξ)) = ((X(g)(X(f)(ξ)))g:C′′→C′)f :C′→C

and
δC(hC(ξ)) = (X(fg)(ξ)g:C′′→C′)f :C′→C

From this we see that the requirement that the left-hand diagram commute,
just means that

X(fg)(ξ) X(g)(X(f)(ξ))

always; that is, X is a presheaf. We conclude that U is in fact comonadic (and,

hence, creates colimits; which are, thus, calculated pointwise in SetC
op

).

11


