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Exercise 21 Let K : N = N, G : N**! - N and H : N**3 — N be functions. Define F by:

) = G )

F(0
Ly,z) = H(z F(z,9,K(7)),¥,z)

) 5’7 x
F(z+ 1,42
Suppose that G, H and K are primitive recursive.

a) Prove directly, using the pairing function j and suitably adapting the proof of proposi-
tion 2.1.9: if Vo (K (z) < x), then F is primitive recursive.

b) Define a new function F’ by:

F(0,m,g,z) = G K™ (z)) ,
Fl(n+ 17mvgv x) = H(n,F’(n,m,gj, x)’ﬁ? Km—(n-i-l)(x))

Recall that K™ (1) means: the function K applied m—(n + 1) times.
Prove: if n < m then Vk[F'(n,m + k,5,z) = F'(n,m, ¥, K*(z))]

¢) Prove by induction: F(z,9,z) = F'(z,2,%,x) and conclude that F is primitive recursive,
also without the assumption that K(z) < z.

Solution: There is more than one way to solve a), which was the most challenging part of the
exercise. Define the function F' by:

F(ngax) = <F(Z,37,0),,F(Z,]7,£E)>

Then F(z,#,x) = (F(2,%,))s, so if we can show that F is primitive recursive, then so is F, being

defined from F' by composition with primitive recursive functions.
Define an auxiliary function L by

L(Zau737a {E) = <H(Z, (U)K(O)vga 0)7 .. .,H(Z, (U)K(T)aga (E)>

Then .
L(Zau7ya0) = <H(Z, (U)K(O)a0)>
L(z,u,gj’,x—i—l) = L(Z,U,Zj,l’)*<H(Z,(U)K(T+1),g,x+l)>

so L is defined by primitive recursion from primitive recursive functions, hence primitive recursive.

Now for F we have: 5
FO,7,x) = (G(#0),...,G(7,x))

F(Z+ 17:’;’7 x) = L(Z’F(Z’g’ x)’g7 x)

(this takes a few lines of checking!) where in the first line we have a function defined by course-
of-values recursion from G (so primitive recursive); and F' is defined by primitive recursion; so it
is primitive recursive.



b) The only point here is to get the induction right. If one wishes to show Vn < m P(m) then it
suffices to show: P(0) and for all n < m, if P(n) then P(n + 1).
For n = 0 we have F'(n,m + k,¥,x) = F'(0,m + k, i, z) = G(¢, K™"*(z)) and also

F/(n,m,gj', Kk(x)) = F’(O,m,gj’, Kk(x)) = G(Zja Km(Kk(x))) = G(:lj, Km+k(x)

so the statement holds for n = 0. Suppose n < m and the statement holds for n. Since
n < m hence n +1 < m, we have m + k—(n + 1) = (m—(n + 1)) + k (this is the point
where the assumption n < m is used! This does not hold in general!), so using the induc-
tion hypothesis we have: F'(n + 1,m + k,§,2) = H(n, F'(n,m + k,,z), §, K™= (+D (1)) =
H(n, F'(n,m,§, K*(z)), 7, K™D (K*(2))) = F'(n + 1,m,7, K*(z)). This completes the in-
duction step.

c) We have F(0,%,z) = G(¢,z) and F'(0,0,7%,2) = G(7,K°(x)) = G(,z), so for z = 0 the
statement holds.

Suppose the statement holds for 2. Since z + 1-(z + 1) = 0 we have: F/(z + 1,2+ 1,7,2) =
H(z,F'(z,z + 1,4,2),4,2) = H(2, F'(2,2,9, K(x)),¥,2)) = H(z,F(z,9,K(x)),9,z) = F(z +
1,4, x), which completes the induction step.

We see that the function F' is defined by composition from F’ (and projection functions); hence
F' is primitive recursive. Since we have never used that K(z) < z in this proof, F' is primitive
recursive without this assumption.

Exercise 35.Prove Smullyan’s Simultaneous Recursion Theorem: given two binary partial recur-
sive functions F' and G, for every k there exist indices a and b satisfying for all 1, ..., zg:

a"(xlv"'vxk) = F(aab)'(xlv"'vxk)

and
b'(xlv .- 'axk) = G(a‘)b)'('xlv .- 'axk)

Solution: First, use the Recursion Theorem to find an index « such that for all y,x1, ..., xg:
a(y,xy,..., o) ~ F(SHa,y),y)(z1,... %)
Then, again applying the Recursion Theorem, find index 8 such that for all xy, ..., zk:
B-(z1,...,7x) ~ G(SH(a,B),B)-(21,...,7k)
Let b= 3 and a = S} (a, 3). Then:

a(Z) ~ S,i((oz,?))'(f)
~ F(Si(a,8),8)-@)
~ Fla,b)-(7)
and
b(Z) ~ B(7)
~ G(Si(a, B),B)(7)
~ G(a,b)(Z)

Exercise 55: Conclude from Theorem 3.3.3 that there cannot exist a total recursive function F'
which is such that for all e: ¢, is constant on its domain if and only if F(e) € K.

Solution: Suppose there were such F. Then we have that
X = {e| . is constant on its domain}

is reducible to K via F', so X would be r.e. by Exercise 43.
It is also clear from the definition that X is extensional for indices of partial recursive functions.



Therefore, by Myhill-Shepherdson (3.3.3. part 1)), the set F' = {¢.|e € X} is open in PR.

However, this would mean (by the remarks following Exercise 53) that F' is upwards closed.
Since F' contains the empty function, therefore F would be the set of all partial recursive functions;
so every partial recursive function would be constant on its domain. This is clearly false.

Exercise 72: Find for each of the following relations an n, as small as you can, such that they
are in X, IT,, or A,:

i) {e| W, is finite}
ii) {e|rge(¢.) is infinite}

iii) {e| ¢. is constant (possibly partial)} = {e | ¢. has at most one value}
{](eaf) | We Sm Wf}

v) {e| W, is m-complete in X4}

)
iv)
Then, classify the first three of these completely, by showing that they are m-complete in the class
you found.

Solution: we do i) and ii) simultaneously. Let DomFin be the set {e | W, is finite} and let RgeInf
be the set {e | rge(¢d) is infinite}. We have:

e € DomFin < JaVyVk(T(l,e,y,k) — y < x)
e € Rgelnf < VaIy3k(T(1,e,y,k) NU(k) > x)

From this we see that DomFin is in 3o and Rgelnf is in IIs.

From the Kleene Normal Form Theorem we know that the set Tot= {e|VaIyT(1,e,z,y)} is
m~complete in Il and its complement NTot = N — Tot is therefore m-complete in ¥5. Let g be
an index such that

(e,2) ~ x if A2Vi < aT(1,e,4,(2);)
ge® undefined otherwise

Let G(e) = Si(g,e). We have: rge(da(e)) is infinite if and only if W (. is infinite, if and only if
e € Tot; so G reduces Tot to Rgelnf and NTot to DomFin. Therefore, Rgelnf is m-complete in
II; and DomFin is m-complete in Y.

iii): let Const be the set from iii). We have
e € Const & Vuykl(T(1,e,u, k) ANT(1,e,y,1) — U(k) =U(l))

which establishes that Const is in II;.
Let g be an index satisfying:

(e,z) = 0 ifVy<z—T(l,ee,y)
giex) = z+4+1 if z <z is minimal with T(1, €, e, 2)

Let G(e) = S{(g,e). We see that G(e) € Const precisely when e € N — K. Since K is m-complete
in 37 hence N — I is m-complete in II;, we see that Const is m-complete in II;.

iv): W, <,, Wy if and only if there is a total recursive function ¢, such that W, = ¢, (Wy).
Therefore W, <., Wy holds, if and only if the following condition is satisfied:

Fu  VzIyT(1,u,z,y)
A
Vzow3a(T(1,e,2z,0) ANT(1,u, z,w) — T(1, f,U(w), a))
N
Vbed3g(T(1,u,b,¢) AT(1, £,U(c), d) — T(1, e,b,g)]



We have an existential quantifier before an intersection of Ils-sets. Since Ily is closed under
intersections (proposition 4.2.4), the set {j(e, f)| We <; Wy} is in .

v): We is m-complete in ¥ if and only if K <,,, W,. So the set of v) is in X3 by the result of iv).
Exercise 77. Prove that for a set X C N the following assertions are equivalent:

i) X is creative

ii) X is l-complete in Xy;

iii) X is m-complete in 3q;

)
iv) There is a total recursive bijective function h such that h[X] =K

Hint: use Exercises 75-76, proposition 4.3.5 and Theorem 4.3.3.

Solution: it is necessary to prove first that I is 1-complete in »;. In fact the usual proof of
m-completeness of K works, because Smn-functions can be assumed to be injective.

i)=ii): Suppose X is creative. Then by 4.3.5, K <; X. Since K is 1-complete, X is.

ii)=-iii): trivial.

iii)=-iv): Suppose X is m-complete in X;. Then K <,,, X. Since K is creative by Exercise 75, X is
creative by Exercise 76iii); so K <; X. Because K is 1-complete we also have X <; K. Statement
iv) now follows from Theorem 4.3.3.

iv)=1): Suppose h : N — N is a total recursive bijection with h[X] = K. Let G be primitive
recursive such that Wg () = h[We] for all e. By 4.3.4, we may assume that K is creative via a
total recursive, injective function H. Let F(e) = h™'(H(G(e))). We claim that X is creative
via F. Indeed, suppose W, N X = (. Then Wg) NK = 0. So H(G(e)) € We(e) UK. Then
Fle) = h-\(H(G(e))) ¢ W UX.

Exercise 87. Given sets A and B, prove that the following assertions are equivalent:
i) B<r A
ii) There exist total recursive functions F' and G such that the following holds:

x € B ifandonly if do(oc € W) AVi <lh(o)(o); = xa(i))
r¢ B ifand only if Jo(o € Wy AVi <lh(o)(0); = xal(i))
(Hint: use proposition 5.1.8.)

Solution: i)=-ii): suppose i) holds. By proposition 5.1.8 we know that there is a number e such
that for all z:

z € B ifandonly if Jo(o =< xa AJw(T7(1,e,z,w) AU(w)

0))
z ¢ B ifand only if Jo(oc < xa AJw(T?(1,e,z,w) NU(w) =1

)

where we use o < x4 as short for: Vi < 1h(o) (¢); = xa(i). Let f and g be indices such that

N 0 if Jw(TY(1,e,z,w) AU(w) =0)
F(z,y) _{ undefined otherwise

~ 0 if Jw(T¥(1, e, 2, w) AU(w) = 1)
g(z,y) ~ { undefined otherwise

and put F(z) = Si(g,7), G(x) = Si(g,z). Then

Wrey = {o]3w(T?(1,e,z,w) ANU(w
Waw = {o]3w(T(1,e,z,w) ANU(w

Il
)

—~



Then ii) holds: suppose « € B. Then by the choice of e we have Jo(0 < xa A Jw(T7(1, e, z,w) A

U(w) = 0)) so do(0 = xa Ao € Wg(y)). The converse is immediate; and a similar equivalence
holds for x € B.

ii)=-1): suppose ii) holds. In order to determine xp(z), find the least pair (o, w) satistying o < xa
and w testifies that o € Wp(,) or 0 € Wg(,). Note that only one of the two can happen. Output
0if 0 € Wg(,) and 1 if 0 € Wg(,). This is recursive in A, so B <r A.



