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In this short article, I’ll exhibit a direct proof of the compactness theorem with-
out making use of any deductive proof system. Moreover, I’ll derive it from topolog-
ical compactness of a certain topological space, which may justify the term “com-
pactness”. First, let me state the compactness theorem:

Theorem (Compactness Theorem). Let T be a theory in a language L. If every finite
subset T ′ ⊆ T is consistent, then T is consistent.

In “Sets, Models & Proofs”, the proof of the compactness theorem is postponed,
because after the treatment of the completeness theorem, the compactness theo-
rem will easily follow. However, the compactness theorem is a semantical result that
does not rely on any (syntactical) deductive system whatsoever. It will turn out that
there just happens to be a suitable deductive system for which a completeness and
soundness theorem can be proven.

In [1], Bruno Poizat makes an argument that this method should be avoided:

“(. . . ) This unfortunate compactness theorem was brought in by the
back door, and we might say that its original modesty still does it wrong
in logic textbooks. In my opinion it is a much more essential and pri-
mordial result (and thus also less sophisticated) than Gödel’s complete-
ness theorem , which states that we can formalize deduction in a certain
arithmetic way; it is an error of method to deduce it from the latter.”

Bruno Poizat’s book takes a different approach towards model theory than most
textbooks. It is based on a viewpoint towards model theory due to the French mathe-
matician Roland Fraïssé. He argues that since model theory is a study of semantics,
one should keep it free from syntactical notions of truth. Poizat’s book is not that
extreme, as it treats formulas and languages as in any other book, but only after in-
troducing models and notions such as elementary equivalence that are considered
more essential. His style is polemic and sometimes witty, so I can’t resist to finish
this introduction with another citation:

“Whatever may be the current state of model theory, its past leaves
unfortunately many residues in the opening pages of traditional text-
books, which profess to introduce this model theory by considerations
that have nothing to do with the daily practice of model theorists: vague
developments, fuzzy definitions, inadequate proofs, appeals to a sup-
posedly natural intuition, reeking of the stale smell of metaphysics, that
science for which the mathematician feels the most instinctive horror!”

One should keep in mind that the course “Foundations of Mathematics” is an in-
troduction into mathematical logic rather than model theory. Also, note that proving
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the compactness theorem from the completeness theorem is by no means “wrong”
in the mathematical sense.

The proof exhibited below is derived from Poizat’s book, but all notions are very
common in mathematical logic and topology. We start with a definition.

Definition. Let I be a set. A filter F on I is a subset ofP(I) such that for all D,E ⊆ I
the following statements hold:

(i) ∅ ∉F , I ∈ F

(ii) If D,E ∈ F , then D ∩E ∈ F

(iii) If D ∈ F and E ⊇D , then E ∈ F .

An ultrafilter U on I is a filter such that for all D ⊆ I , D ∈ U or I ∖D ∈ U .

Exercise 1. The set of filters on a set I is partially ordered by set-inlusion ⊆.

(i) Prove that an ultrafilter U is the same thing as a maximal filter.

(ii) Prove that any filterF on a set I can be extended to an ultrafilter U on I .

Suppose Mi is a family of sets indexed by a set I . Let U be an ultrafilter on I . We
denote by∏i∈I Mi the cartesian product of the sets Mi .

Now define a relation ∼ on∏i∈I Mi as follows:

(ai )i∈I ∼ (bi )i∈I⇐⇒{i ∈ I ∣ai = bi} ∈ U .

Exercise 2. Prove that ∼ is an equivalence relation.

We define the ultraproduct∏U Mi as the set of ∼-equivalence classes of∏i∈I Mi .
One can view the filter U as a set of all majorities in a “parliament” with members
in I . For two elements of∏i∈I Mi , a member i only looks at the projections in Mi to
decide whether they are equal or not. Then two elements in∏i∈I Mi are considered
equal in the ultraproduct if a “majority” thinks that they are equal.

An ultrafilter U on a set I is called principal if there is a finite non-empty subset
I ′ ⊆ I such that

U = {D ⊆ I ∣D ⊇ I ′}.

Non-principal ultrafilters are not very interesting; using the same analogy as above,
they may be viewed as a parliament in which only the votes of a certain finite num-
ber of members count (like in a totalitarian state).

Now suppose we have fixed a language L, and are given a set of L−structures
Mi , indexed by a set I . Again, U denotes an ultraproduct on I . Let M = ∏U Mi .
For convenience of notation, I’ll often denote elements of M by a representative in
∏i∈I Mi . Of course it is important to check any definitions are independent of the
choice of those representatives.

We define an interpretation of L in M as follows:

1. For constants c ∈ L, let cM be (the equivalence class of) (cMi )i∈I .

2. For an n−ary relation symbol R ∈ L, define RM by:

(m1, . . . ,mn) ∈RM
⇐⇒{i ∈ I ∣(m1i , . . . ,mn i ) ∈RMi } ∈ U .
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3. For an n−ary function symbol f ∈ L, define f M by:

f M(m1, . . . ,mn) = k⇐⇒{i ∈ I ∣ f Mi (m1i , . . . ,mn i ) = ki} ∈ U

Exercise 3. Check that the above is an interpretation of L in M.

The following is a famous result in model theory by the Polish mathematician
Jerzy Łoś (his last name is pronounced [’wOC], approximately “wash”). We assume
(Mi )i∈I , U , M as defined above.

Theorem (Łoś’ theorem). Letφ(x1, . . . , xn) be an arbitrary L−formula, and let (a1, . . . , an) ∈

M. Then
M⊧φ(a1, . . . , an)⇐⇒{i ∈ I ∣Mi ⊧φ(a1i , . . . , an i )} ∈ U .

In other words, a formula is true if and only if a “majority” of the models thinks
it is true!

The proof of Łoś’ theorem is by induction on the complexity of formulas. I will
not include it here, but it can be found everywhere, or you could leave it for yourself
as a (not so easy) exercise.

Now define the set T as the set of all complete theories T of L, that is; T ∈ T if
and only if T is consistent and for all L−sentences φ, φ ∈ T or ¬φ ∈ T .

We define a topology on T as follows: A basis is given by all sets Uφ, where φ is
an L−sentence, defined by:

Uφ = {T ∈ T ∣φ ∈ T}.

Since Uφ∩Uψ =Uφ∧ψ, this defines a basis.
Observe that T ∖Uφ =U¬φ, so the basis consists of sets that are both closed and

open, these are sometimes referred to as clopen. Recall that a space X is called Haus-
dorff if for any x, y ∈ X , the points x and y have disjoint open neighbourhoods. A
space X is called totally disconnected if the only connected subsets are single points
and the empty set.

Exercise 4. Prove that T is a totally disconnected Hausdorff space.

A family of sets {Y j} j∈J is said to have the finite intersection property (FIP) if for
every finite subset J ′ ⊆ J ,

⋂
j∈J ′

Y j ≠∅.

Exercise 5. Let X be a Hausdorff space. Show that X is compact if and only if every
family of closed sets {Y j} j∈J that has the FIP, has nonempty intersection:

⋂
j∈J

Y j ≠∅.

Theorem (Compactness Theorem). The topological space T is compact.

Proof. We use exercise 5. Assume that {Y j} j∈J is a family of closed subsets of T with
the FIP. We have to prove that it has non-empty intersection. Since every closed set
is an arbitrary intersection of a basic clopen set Uφ, we can assume that Y j =Uφ j for
some L−sentence φ j , for every j ∈ J .

It is easy to see that we can extend this family to a filter, and therefore to an
ultrafilter U on T .
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For every T ∈ T , pick a model MT of T . Consider the ultraproduct

M =∏
U

MT

with the interpretation described above. Let T ′ be the complete theory ofM. Clearly
T ′ ∈ T , but then for all L−sentences φ,

M⊧φ⇐⇒MT ′ ⊧φ.

Therefore, we see by Łoś’ theorem that:

Uφ ∈ U⇐⇒T ′
∈Uφ.

Since we could assume that Y j =Uφ j for every j ∈ J , it follows that T ′ ∈ ⋂ j∈J Y j

and we are done. It follows that T is compact.

Exercise 6. Using the fact that T is compact, prove the compactness theorem as
stated in the beginning.

Note A topological space that is compact, Hausdorff and totally disconnected is
called a Stone space. The space T is an example of a Stone space. It is an important
result in universal algebra that Stone spaces are dual to boolean algebras, which
establishes an intimate connection between topology and logic. What we have seen
here is an instance of this connection.
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