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1 Introduction and Notations

In the course Foundations of Mathematics we have made our acquaintance with
the notions of a language £ in predicate logic, and a structure 2 for the lan-
guage L. A language is a collection of symbols, divided into three groups: we
have constants, function symbols and relation (or predicate) symbols. Given a
language £, we have defined the class of L-terms.

%) where A is a
nonempty set, and ()% is an interpretation function, defined on the symbols in

A structure 2 for the language £ is a pair 2 = (A, ()

L, such that for every constant ¢ of £, (¢)% is an element of A; for every n-place
predicate symbol R, (R)% is a subset, of the set A” of n-tuples of elements of A;
and for every n-ary function symbol F of £, (F)® is a function from A” to A.
The set. A is called the domain, universe, or underiying set of the structure L.
In practice we shall often omit brackets, writing % instead of ()% and ditto
for R.

In these notes, structures will be denoted by Gothic symbols 2, B, ... ; their
domains will be denoted by the corresponding Latin characters A, B, .. ..

Given a structure 2 for the language £, we consider the language Lq: for
every element a of A, we add a constant a to the language (and we assume,
that the new constants a are different from constants that are already in the
language £). The structure 2 becomes a Lo-structure by putting (a)* = a, for
each a € A.

We have also defined the relation 20 = ¢, for Lg-sentences ¢: first, for closed
Lo-terms t, we define their meaning % in 2. Then we defined by recursion on
the Lg-sentence ¢:

e Al=1=sifand only if 1% = s%;

A= R(tr,... t,) if and only if ((t1)%, ..., (t.)¥) € R%;
AEd A ifand only if A = ¢ and A = o,
AE ¢V ifand only if A= ¢ or A = 4 (or both);

A = —¢ if and only if A}~ ¢;

A E Jed(2) if and only if for some a € A, A | ¢(a);
o A EVap(x) if and only if for all a € A, A | ¢(a)

Furthermore we have learnt the notions of £- (or Lg-)theory: this is a collection
of L- (or Lg-) sentences. 2 is a model of the theory T if 2 = ¢ for every ¢ € T.
The relation A |= ¢ is pronounced as: 2 satisfies ¢, ¢ is true in A, or ¢ holds
mn 2.

We also recall one of the most important theorems we proved in the course
Foundations of Mathematics:

Theorem 1.1 (Compactness Theorem) A theory T has a model if and only
if every finite subset of T has a model.



In this course, we shall give an independent proof of Theorem 1.1; that 1s,
independent of the Completeness Theorem.

Often, we shall say that a theory is consistent; in this course, this is synony-
mous with: has a model.

We shall also use the notation 7' |= ¢, where T is an L-theory, and ¢ and
L-sentence; this means that ¢ is true in every model of T'.

A theory T is complete if for every sentence ¢ in the language of T’ either

T = é or T = —¢ holds.



2 Homomorphisms, Embeddings, and Diagrams

The purpose of Model Theory is the study of theories by means of their classes
of models. A very useful tool of Model Theory is the possibility of varying the
language. Suppose we have two languages £ C £'. Tf B is an £’-structure, then
restricting its interpretation function to £ gives an L-structure 2. We say that
A is the L-reduct of B, and that B is an L-expansion of A. In our definition
of A = ¢, we have already seen the expansion of 2 to Lg.

We start by giving some structure on the class of L-structures. TLet 2 =
(A, () and B = (B, ()®) be L-structures. A function f: A — B is called a
homomorphism of L-structures, if it commutes with the interpretation functions.
That is:

e For every constant ¢ of £, f((c)*) = (¢)®;

e for every n-ary function symbol F' of £ and every n-tuple aq,..., a, of

elements of A we have f((F)*(ar,... ,a,)) = (F)B(f(a1), ..., flan));

e for every n-place predicate symbol R of £ and n-tuple ay,..., a, of el-
ements of A, we have: if (ay,...,a,) € (R)® then (f(a1),..., f(an)) €
(7)™,

Examples. If £ is the language of groups and 2 and B are groups, a homo-
morphism of L-structures is nothing but a homomorphism of groups. If £ is the
language {<} of partial orders and 2, B are partial orders, a homomorphism is
nothing but an order-preserving map. Similar for: rings, graphs, etcetera.

We note immediately that if f: 20 — B and ¢ : B — € are homomorphisms
of L-structures, then so is the composition ¢gf : 2 — €. Moreover, the identity
function A — A is always a homomorphism of L-structures. A homomorphism
A — B is an isomorphism if there 18 a homomorphism ¢ : B — 2 inverse
to f (so the compositions ¢gf and fg are the identity functions on A and B,
respectively).

Exercise 1 Prove: if f : 2l — B is an isomorphism of L-structures then for
any L-formula ¢(x,... x,) and any n-tuple ay,.. ., a, from A we have:

Q[':(f)((]q,...7(1,,,)<:>%':¢(f((11),...,f((],n))

A consequence of this exercise 1s, that isomorphic L-structures satisfy the same
L-sentences (check this!). Two L-structures that satisfy the same L-sentences
are called elementarily equivalent. Notation: 2L = B. The notation for isomor-
phic structures is =Z. Summarizing:

A=ZPB=A=B
The converse implication does not hold!

Exercise 2 Prove: an L-theory T is complete if and only if every pair of models
of T is elementarily equivalent.



One sees that the notion of completeness can be characterized by a property of
the class of models of the theory.

A homomorphism f : A — B is called injective if the function f is. f
is an embedding if f is injective and moreover for every relation symbol R of
L and every n-tuple ai,...,a, from A: if (f(ar),..., f(an)) € (R)®, then
(ar,...,a,) € (R)®. Clearly, if £ contains no relation symbols, every injec-
tive homomorphism is an embedding, but in the general case the notions are
different.

A substructure (or submodel) of an L-structure B is an L-structure 2 such
that A is a subset of B and the interpretation function of 24 is the restriction of
the one of B to A. Hence: an embedding f : A — B defines an isomorphism
between 21 and a submodel of B.

If B is an L-structure and X C B, there is a least subset A of B which
contains X and the elements ¢® (¢ a constant of £), and is closed under the
interpretations in 9B of the function symbols of £;if A £ 0, A is the domain of
a submodel 2 of B, the submodel generated by the set X, which we denote by

(X).

Exercise 3 Show that the domain of (X) is the set
{t%(m1,... c2n) | n € NJE(vy, ..., v,) an Lterm, &y, .. 2, € X}

A structure B is finitely generated if B = (X) for some finite subset X of B.
Recall that a formula is called atomic if it contains no connectives or quan-
tifiers; in other words if it is of from 41 =15 or R(t1, ... ,1,).

Exercise 4 Tet f : 2 — 9B an embedding. Then for every atomic L-formula
d(x1,...,2,) and every n-tuple ay, ..., a, from A:

A ':¢(a17"' 7”’“) =B ': ¢(f(”1)7 7.f(a'n))
Prove also that this equivalence in fact holds for every quantifier-free formula.

Exercise 5 Tet £ = {<} be the language of partial orders. Find out when
a monotone map between partial orders is an injective £L-homomorphism, and
when it is an embedding. Give an example of an injective homomorphism which
is not an embedding.

Let 2 be an L-structure with its natural expansion to Lg. We define a few
Lg-theories in connection to 2.

e The positive diagram A; of 2 is the collection of all atomic Lg-sentences
that are true in QL.

e The diagram Ag of 2 is the collection of all atomic Lg-sentences and all
negations of atomic Ly-sentences, that are true in 2.

The notion of positive diagram generalizes the 1dea of multiplication table of a
group.



Exercise 6 Show that giving an £L-homomorphism 2l — 9B is equivalent to
giving an expansion of B to Lg, which is a model of the positive diagram of
2. Show also, that giving an embedding 2 — B is equivalent to giving an
expansion of B to Lo which is a model of the diagram of 2(.

We now give an example, in order to apply our definitions to a little mathemat-
ical theorem.

Theorem 2.1 (Order Extension Principle) Let (A, <) be a partially or-
dered set. Then there is a linear order < on A which extends <; equiva-
lently, there 1s an injective, monotone function from A into a linearly ordered
set (B, <").

Proof. The equivalence stated in the theorem is clear, because if (B, <") is a

linear order and f : A — B an injective, order-preserving map, then defining <’

on A by: <" yiff f(x) <" f(y), gives a linear order on A which extends <.
We prove the theorem in two steps.

a) First, we do it for A finite. This is easy; induction on the number of elements
of A. T |A| = 1 we are done. Now if A = {ay,...,anq1}, choose a; € A such
that a; is maximal w.r.t. the order on A. By induction hypothesis A\{a;} has
a linear order which extends the one of A relativized to A\{a;}; put a; back in,
as greatest element.

b) The general case. Tet £ = {<}. We use the idea of diagrams, and the
Compactness Theorem. TLet T be the Lo-theory (where 20 is the partial order
A, seen as L-structure) consisting of the axioms:

1. The positive diagram of 2;
2. The axioms of a linear order;
3. The axioms =(a = b) for a # b € A.

In every finite subset 1D of T', there is only a finite number of constants from the
set A; say a1,...,a,. Let {ay,... a,} be the sub-partial order of A on these
elements. This has, by a), an extension to a linear order, so D has a model. By
the Compactness Theorem, T has a model (B, <"); since B is a model of 1), 2)
and 3), there is an injective, monotone map from A to B.

Exercise 7 As an example of theorem 2.1, define an injective, order-preserving
map from P(IN) to R, where P(IN) is the powerset of IN| ordered by the subset
relation.



3 Elementary Embeddings and Elementary Di-

agrams
An embedding f : A — B of L-structures is called elementary if for ev-
ery L-formula ¢(ay,...,2,) with free variables z1,... 2, and every n-tuple
ay,...,a, of elements of A, we have:

Q[':(f)((]q,...7(1,,,)<:>%':¢(f((11),...,f((],n))

This means that the elements of A have the same properties with respect to A as
to B. For example, if we consider () and R as fields (or rings), the embedding is
not elementary since the element 2 of ( is a square in R but not in Q. However,
if we consider (O and R just as ordered structures, the embedding is elementary,
as we shall see later.

The elementary diagram FE(2) of 2 is the collection of all Lg-sentences which
are true in 2.

Exercise 8 Giving an elementary embedding f : 2l — 9B is equivalent to giving
an Lg-expansion of B which is a model of F(20).

A 1s called an elementary submodel of 9B, notation: 2 < B, if A is a substructure
of 9B, and the inclusion i1s an elementary embedding. Therefore, an elementary
embedding 2 — 9B is an isomorphism between 20 and an elementary submodel
of B. We also say that B is an elementary extension of 2.

Note, that 20 < B implies 2 = B. The converse implication, however, is by
no means true, not, even if 2 is a submodel of B. Example: let, for £ = {<},
A = IN\{0} and B = IN. Then 2 = B, but the inclusion is not an isomorphism,
and not, an elementary embedding (check!).

Exercise 9 20 < B if and only if 2 is a submodel of B and for every Lqg-
sentence of the form yd(y) which is true in B, there is a b € A such that ¢(b)
is true in B.

Hint: use induction on formulas.

The notion of elementary submodel gives rise to the following important the-
orems, called the Lowenheim-Skolem-Tarski Theorems; roughly, together they
say that to infinite structures there are elementarily equivalent structures of
almost arbitrary infinite cardinality. That is: predicate logic has nothing to say
about infinite cardinalities!

Theorem 3.1 (Upward Lowenheim-Skolem-Tarski Theorem) Fuvery in-
finite L-structure has arbitrarily large elementary extensions.

Proof. Let 2 be infinite (i.e.; A is infinite). By “arbitrarily large” we mean:
for every set X there is an elementary extension B of 2 such that there is
an injective function from X into B. The proof is a simple application of the
Compactness Theorem (1.1).



Given X, we choose for every x € X a new constant ¢, not in Lg. Let
L'=LyU{ec, |2 € X}, Consider the L'-theory T:

P(R) U{~(cs = o)) |2,y € X.a £y}

Since 2 is infinite, every finite subset of T' has an interpretation in 2 (simply
interpret the constants ¢, by different, elements of A) and hence has a model. By
the Compactness Theorem, T' has a model B. Since B is a model of F(2), there
is an elementary embedding A — 9B, so we can identify 21 with an elementary
submodel of B. And the assignment z — (¢,)® is an injective function from X
nto B. [ |

The Downward Lowenheim-Skolem-Tarski Theorem 1s a little bit more in-
volved. TFirst, we recall that |£| is defined as the maximum of the cardinal
numbers w and |£] (w is the cardinality of the sett IN). Recall also, that |£] is
the cardinality of the set of all L-formulas.

Theorem 3.2 (Downward Léwenheim-Skolem-Tarski Theorem) el ‘B
be an L-structure such that |L| < |B| and suppose X C B is a sel with |L] <
|X|. Then there is an elementary submodel A of B such that X C A and
| XT = Al

Proof. Given X, let Lx = LU X (elements of X as new constants; as usual,
we take this union to be disjoint). Note, that |Lx| = |X|. For every Lx-
sentence ¢ = Jwip(2) which is true in B, we choose an element b € B such that
B | ¥(cp). Let Xy be the union of X and all the b’s so chosen. Again, since we
add at most

|£ x| many new elements, | X| = |X|. Now repeat this, with X,
in the place of X (and Lx,, etcetera), obtaining X5, and this infinitely often,
obtaining a chain

X=XqgCX1CXaC...

Let A= J,cy Xn- By induction one proves easily that |X,,| = |X] for all n, so
|A] = | X| since X is infinite.

Now if ¢ = Jap(x) is an La-formula which is true in 9B, then for some n,
¢ 1s an Lx_ -formula, so by construction there is a b € X,,41 C A such that
B | 1(b). Tn particular, this holds for formulas (2 = F(ay,... ,a,)), so A is
closed under the interpretations in B of the function symbols of £, hence A 1s
the domain of a submodel 2 of 8. But by the same token, 2 is an elementary
submodel (exercise 9). [ |

An immediate application of the Lowenheim-Skolem-Tarski theorems 1s the so-
called Los-Vaught test. A theory is called a-categorical for some cardinal number
a, if for every pair A, B of models of T with |A| = |B| = a, we have 2l = B.

Theorem 3.3 (Los-Vaught Test) Suppose T is a theory which has only infi-
nite models, and T is a-calegorical for some cardinal number o > |L| (L is the
language of T'). Then T is complete.



Proof. Suppose 2 and B are models of T. Then both A and B are infinite by
hypothesis, so if 3 is the maximum of {«, |A|,|B|} then by 3.1 both 20 and B
have elementary extensions 2, B’ respectively, with |A’| = |B'| = 3. By 3.2,
A’ and B’ have elementary submodels 21" and B” respectively, of cardinality o.
Since T' 18 a-categorical, we have:

A=A =A' =2B"' =B =B

Hence, 2 = B for any two models 2L, B of T; hence, T is complete (exercise 2).
||

Examples of categorical theories

a) TLet £ ={<} and T the theory of dense linear orders without, end-points.
By the familiar back-and-forth construction, 7' is w-categorical. T is not
2¢-categorical, because (0,1) and (0, 1)U (1, 2) are nonisomorphic models

of T.

b)  “Torsion-free divisible abelian groups”.
Tet £ be the language of groups, say £ = {0;+;—} and T the L-theory
with axioms:

Axioms of an abelian group
“torsion-free” {Va(z+---+2=0—2=0)|n> 1}
N———— -

n times

“divisible” {VaTyly+---+y=2)|n>1}
—_—

n times

T 18 not w-categorical, but T'is categorical for uncountable cardinalities «.
Sketch of proof: a divisible torsion-free abelian group is a Q-vector space.
If such a space has uncountable cardinality «, then since @ is countable,
it must have a basis of cardinality «; but any two vector spaces over the
same field with bases of the same cardinality are isomorphic as vector
spaces, hence as abelian groups.

If the cardinality of the vector space is w however, then its basis may be
finite or countably infinite.

c)  “Algebraically closed fields of a given fixed characteristic”.
Again, this 18 categorical in every uncountable cardinality but not w-
categorical; consider the fields @ and @ (X). Their algebraic closures 0
and Q(X) are both countable, but not isomorphic (WhyT).

d) Tet L consist of one 1-place function symbol F. Tet T be the theory with
axioms:
Vay(F(e) = Fy) =z =y)
Vady(F(y) = =)
(P (x) = ) [n > 1]

A model of T is nothing but a set X with a Z-action on it, which action is
free. So X mnaturally decomposes into a number of orbits, which are all in



1-1 correspondence with 7.. Therefore if | X| > w, the number of orbits is
equal to | X|. So T is categorical in every uncountable cardinality. However
if X is countable, the number of orbits may be either finite or countably
infinite.

In this list we have seen examples of theories that are w-categorical but not cate-
gorical in higher cardinalities, or the converse: categorical in every uncountable
cardinal, but not in w (of course, there are also theories which are categorical
in every cardinality: the empty theory). That this is not a coincidence, is the
content of the famous Morley Categoricity Theorem: if a theory (in a countable
language) is categorical in an uncountable cardinality, it is categorical in every
uncountable cardinality. This is a deep result of Model Theory, and the starting
point of a whole branch of Model Theory, Stability Theory.



4 Directed Systems of L-structures

Let (K, <) be a partially ordered set (or poset for short). K is called directed if
K is nonempty and every pair of elements of K has an upper bound in K, that
is K satisfies Veydz(z < z Ay < z).

A directed system of L-structures consists of a family (g ) e x of L-structures
indexed by K, together with homomorphisms fi; : A — 2 for & < 1. These
homomorphisms should satisfy:

e fii 18 the identity homomorphism on 2y

o if k <1< m,then fum = fimfr

(Given such a directed system, we define 1ts colimit as follows.
First, take the disjoint union of all the sets Ag:

| | A ={(k,a)|ke K ae A}

keK

Then define an equivalence relation ~ on this by putting (k, a) ~ (I, b) if there is
m > k,lin K such that fy,(a) = fim(b) (see for yourself how the directedness
of K is used to show that this relation is transitive!). Tet A = (| [, o Ar)/ ~
be the set of equivalence classes; we denote the equivalence class of (k,a) by
[k, al.

We define an L-structure 2 with underlying set A as follows. For an n-ary
function symbol F' of £ we put

Fm([kh(“]v s ,[]{Tn,(ln]) = [kv ka(flﬁk((“)v st 7.fknk(n’”))]

where, by directedness of K, kis chosen so that k > kv, ...k >k, all hold. Of
course we must show that this definition makes sense: that it does not depend
on the choice of representatives, or the choice of k. This is done in the following

exercise:
Exercise 10 Prove: if (ki,a1) ~ (ki,d}),..., (kn,an) ~ (kl,,al) and &' >
ki, ... k., then
(b, P2 (feyr(ar), o fron(an))) ~ (K, F2% (fropr(ah), .-, forpe(al)))
If R is an n-place relation symbol of £ and [k1,a1],. .., [kn, a,] are n elements

of A, we let ([k1,a1],...,[kn,a,]) € R¥ if and only if there is k > ki, ...  k, in
K such that

(~fk1k(n’1)7 st 7.fk¢nk¢((]’n)) E Rmk

Again, check that this does not depend on representatives.

Lemma 4.1 The function fy : Ay — A defined by fi(a) = [k, a], is a homo-
morphism of L-structures. If k <1, the diagram

fr




of L-structures and homomorphisms, is commutative. Moreover, if (gr : Wx —
Blrek is another K-indexed system of homomorphisms satisfying g1 fu = gi
whenever k <1, there is a unique homomorphism f : A — B such that ffir = gx
forallk € K.

Exercise 11 Prove lemma 4.1.

Exercise 12 Tn the notation of lemma 4.1 and above: if all the maps fi; :
A, — A; are injective then all the maps fi : 2 — A are injective. The same
holds with “injective” replaced by “an embedding”.

Lemma 4.2 (Elementary System Lemma) If all fi; : A — 2, are ele-
mentary embeddings, so are all the maps f.

Proof. So we suppose all fi; : A, — 2A; are elementary embeddings. Now by
induction we prove for an L-formula ¢(xy, ..., x,):

Forall ke K and all ay,... a, € Ag,

e Eolar, ... an) S UAE o(fular), ..., fulan))

Note, that the universal quantifier “for all & € K occurs inside the induction
hypothesis!

T give only the quantifier step (in fact, the step for atomic ¢ is included in
exercise 12, and the steps for the propositional connectives are easy). So let
¢ = Axh.

If e E Je(x,aq,...,a,) so for some a € A, A E v(a,a1,...,a,),
then by induction hypothesis A &= ¥(fx(a), fu(ar), ..., fx(a,)) whence 2 E
xp(x, fr(ar), .., fulan)).

Conversely, suppose 2 = Jep(x, fi(ar), ..., fe(as,)). Then for some [k, a] €
A we have A = ¥([k,a], fu(ar),. .., fu(an)). Take, by directedness of K, a
k“ € K with k“ 2 k,]{?/. Since fk”,fk’k” = fk’7 fk”,fkk” = fk and []{7/7(],] =
[k", ferin (a)], we have

A= G(forr (frorwr (@), for (Furr(ar)), .o fon (farr (an)))

By induction hypothesis, we have:

Wer = O(ferwr (@), frerr(ar), ..oy ferr (an))

whence » = Jep(z, ferr(ar), ..., feer(a,)). Now we use the fact that fyg»
is an elementary embedding, to deduce that 2, | Je(z,ay,... a,), and we
are done. [ |



5 Theorems of Robinson, Craig and Beth

We shall see an application of the Elementary System Lemma 4.2 below, in the
proof of Theorem 5.2. First a lemma whose proof is another application of the
Compactness Theorem:

Lemma 5.1 Tet £L C L', A an L-structure and B an L'-structure. Suppose
moreover that 2 is elementarily equivalent to the L-reduct of B. Then there is
an L'-structure € and a diagram of embeddings:

where g is an elementary embedding of L'-structures, and f is an elementary
embedding of L-structures.

Proof. We consider the langnage £4 o = LoU Ly, where we take the constants
from 2 and B disjoint. Tn L4 consider the theory 7' = FE(U) U F(B) (FE()
is an Lo-theory, and F(B) is an Liz-theory, so both are Lfg-theories). Then
any model € of T' gives us the required diagram, by exercise 8.

So for contradiction, suppose T has no model. By Compactness, some fi-
nite subset of T has no model, so taking conjunctions we may assume that

for some ¢(ay,...,a,) € E) and ¥(bi,... by) € E(B), ¢ A ¢ has no

model. But then, no Lig-structure which satisfies ¥(by, ... by,) can be ex-
panded with interpretations for aq, ..., a, such that the expansion satisfies ¢;
this means that every Lg-structure which satisfies ¥(b1,..., by) will satisfy
Vo - -Ya,—d(z1, ..., 2,). Thisis a contradiction, since this is an L-sentence,
A E ey - wnd(ar, ... 2,), and A is elementarily equivalent to the L-reduct
of B. i
Exercise 13 Prove that for two L-structures 2 and 9B, the following are equiv-
alent:
i) A=B

il) 2 and B have a common elementary extension.

Theorem 5.2 (Robinson’s Consistency Theorem) Let £y and Lo be two
languages, L = L1 N Lo. Suppose that T 1s a complete L-theory and let T be
an Lq-theory, Ty an Lo-theory which both extend T'. If both Ty and Ty have a
model, so has Ty U'Ts.

Proof. Tet 2y be a model of T7, By a model of T5. Then 2, and By are also
models of T" and hence, since T is complete, their L-reducts are elementarily



equivalent. By lemma 5.1, there is a diagram
2o

Y\

Bo —— B
with hg an elementary extension of Lo-structures, and fy elementary as a map
between L-structures. The L-reducts of 2y and B are still elementarily equiv-
alent, so applying the same lemma in the other direction gives a diagram

Ay —2 9,

N

By T‘B1

with go an elementary map of L-structures and kg elementary of £q-structures.
We can proceed in this way, obtaining a directed system

ko kq

Ap Ay —— Ay

9o g1
AN

Bo——B1 —— B

in which the k’s are elementary maps of Li-structures, the f’s and ¢’s of L-
structures, and the h’s of Lo-structures. Since the colimit € of this system 1s
equally the colimit of the s and the colimit of the B’s, it has an £ U Lo-
structure into which both 20y and By embed elementarily, by lemma 4.2. So €
is the required model of 75 U T5. [ |

The following theorem states a property that is commonly known as “the
amalgamation property for elementary embeddings”.

Theorem 5.3 Fvery diagram



consisting of elementary embeddings between L-structures, can be completed to

m/%\s
N

of elementary embeddings between L-structures.

a commutative diagram

Proof. Formulate the elementary diagram F(B) in the language
Ly = Lo U{b]b e fIA]}

(simply replacing the constants f(a) by a); and similarly, write F(€) in
Lo=LaU{c|ed g[A]}

Then £ N Lo = Lg. Tn Lo we have the complete theory F(2), and E(B) and
E(€) are extensions of it in Ly, Lo, respectively. By 5.2, F(B) U F(¢) has a
model ©. Check that this gives a diagram of the required form.

Exercise 14 Give also a direct proof of theorem 5.3, not using theorem 5.2 but
along the lines of the proof of lemma 5.1.

A more serious application of Robinson’s Consistency Theorem is Craig’s Inter-
polation Theorem.

Theorem 5.4 (Craig Interpolation Theorem) Suppose ¢ and i are
L-sentences such that ¢ |= 1, that is: every L-structure in which ¢ 1s true,
satisfies also . Then there is an L-sentence 6 with the properties:

i) ¢EGandd E¢;

i1} Fvery non-logical symbol (function symbol, constant or relation symbol)
which occurs in 0, also occurs both in ¢ and

Proof. Such a # as in the theorem 1s called a Craig interpolant for ¢ and .
We assume for a contradiction, that no such Craig interpolant exists.

Then ¢ has a model, for otherwise z—(x = x) is a Craig interpolant. Simi-
larly, =% has a model, for otherwise V(22 = 2) were a Craig interpolant.

Tet L4 the set of non-logical symbols in ¢, and £y of those in ¢; let £/ =
LsNLy. Let T be the set of £'-sentences ¢ such that either ¢ = o or ¢ E 0.

Suppose T'U {¢} has no model. Then by compactness, there are sentences
o1 and o9 such that ¢ = o1 and =Y = o9, and {01, 02, ¢} has no model. Then

since ¢ = o1, {¢, 72} has no model, whence

¢ | —oy and —os |
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contradicting our assumption that no Craig interpolant exists. In a similar way,
T"U {—¢} is consistent.

Now apply Zorn’s Lemma to find a set T of £’-sentences which is maximal
with respect to the properties that T' C T' and hoth T'U {¢} and TV U {—4¢} are
consistent. T claim that T is a complete £'-theory.

For, suppose T” is not, complete, then there is a sentence o such that o ¢ T”
and TV U {o} is consistent. Then by maximality of T’ either TV U {0, ¢}, or
IV U {o, =} is inconsistent. Tn the first case, there is a sentence 7 € T’ such
that ¢ =7 — —o. Then 7 — =0 is, by definition of T', in T”; since also 7 € T/
we see that T'U {&} is inconsistent, contradicting the choice of ¢. Tn the other
case one obtains a similar contradiction. So 7 is complete.

We are now in the position to apply Robinson’s Consistency Theorem 5.2
to the complete £’-theory T’ and its consistent extensions TV U {¢} and TV U
{=1}. The conclusion is that TV U{¢, =)} is consistent, but this contradicts the
assumption ¢ = 1. [ |

Our last theorem in this section is due to Beth. We consider a language £, and
a new n-place relation symbol P not in £. Tet 7" be an £ U {P}-theory. T is
said to define P implicitly if for any L-structure 2L, there 18 at most one way to
expand 2 to an £ U{P}-structure which is a model of 7. This can be said in a
different way: let. P’ be another, new n-place relation symbol and consider the
theory T(P’) where all P’s are replaced by P"’s. Then T defines P implicitly if
and only if

TUT(PY =Yz 2n(Per, ... en) & Pller, . . 10))

On the other hand we say that T defines P explicitly if there is an L-formula
o(x1, ..., 2,) such that

TEVe -z, (P, ... 20) & e(er,. .. 2,))

Clearly, if T' defines P explicitly, then T defines P implicitly; the converse 1s
known as Beth’s Definability Theorem.

Theorem 5.5 (Beth Definability Theorem) If T defines P implicitly, then
T defines P explicitly.

Proof. Add new constants ¢y, ..., ¢, to the language. By the remark above,
we have

TUT(PY = Pler,...,en) = Pller, ..oy en)
By Compactness we can find finite A C T and A’ C T(P’) such that
AUA " E Pler,...,en) = Pller, ..o en)

Taking conjunctions we can in fact find an LU { P }-formula ), such that T |= ¢
and

Y AG(P)YE Pler, ... en) = Pller, ... en)



Taking the P’s to one side and the P”s to another, we get

Y(PYAP(er,...,en) EWO(P) = Pller, ..., cn)

By the Craig interpolation theorem, there is an L-formula 8, such that (P) A
Pler, ... en) EO(er, ... ,en) and 8(eq, ... en) E(P) = P'(er,...,cn). Re-
placing P’ by P again in this second entailment and using that T = (P),

we find that 6(cy,...,e,) is, in T, equivalent to P(ey, ... ¢,); so since the
¢1,...,¢cy are arbitrary new constants,

TEVe - x,(0(x1,...,2,) & Plar, ..., 2,))
and we are done. [ |

Exercise 15 Tn this section we have proved the Craig Interpolation Theorem
from Robinson’s Consistency Theorem. Now assume the Craig Interpolation
Theorem and use it to give another proof of the Robinson Consistency Theorem.



6 Preservation Theorems

Let T be an L-theory. We consider the class of models of T, as subclass of the
class of L-structures; if the class of models of T is closed under certain operations
of L-structures, we also say that T'is preserved under those operations. In this
section we shall see that preservation under certain operations can be related to
the syntactical structure of axioms for 7. For example, the Los-Tarski Theorem
below (Theorem 6.2) says that a theory is preserved under submodels if and
only if it 18 equivalent to a theory consisting solely of sentences of the form
Vay - Ve, with ¢ quantifier-free.

We shall now define some notions precisely. A set of arioms for T is a theory
T which has exactly the same models as T' (hence, is logically equivalent to T').

An L-formulaof the form YV - - -V, ¢, with ¢ quantifier-free, is called a T1;-
formula; a formula 3z - - -, e, with ¢ quantifier-free, is called a ¥;-formula.
Generally, a formulais Tl,, 1 if it 18 of form Va, - - -Va,, ¢ with ¢ a ¥, -formula,
and dually it is X, ¢ if it 1s of form Jzy - - - Jz,, 0 with ¢ a T1,-formula. One
also says ¢ € ¥, meaning ¢ is a %, -formula, etc.

Lemma 6.1 et T be an L-theory and A a set of L-sentences which is closed
under disjunction. Suppose that the following holds: whenever 2 is a model of
T, and B an L-structure which satisfies all sentences i A which are true in 2,
then B is a model of T. Then T has a set of arioms which is a subset of A.

Proof. Let T be the set {§ € A|T = §}. We show that every model of T is a
model of T', so that T is a set of axioms for T.

Suppose B is a model of T'. T.et X = {=d§]d € A,;B = —=d}. T claim that

T UX is consistent. For suppose not, then for some =7, ... =4, € ¥ we would
have T &= (=0 A---A=d,), 1.e. T E & V---Vd,. Since A is closed under
disjunctions, (d§; V ---V d,) € T. We obtain a contradiction, since on the one

hand 9B is a model of T', on the other hand B = —(d; V -+ -V §,).

Let 2 be a model of TUX. Then for § € A we have: if 2l |= § then (=§) ¢ X,
hence B [~ =4, so B | 4. By the assumption in the lemma, and the fact that
2 18 a model of T, we get that B is a model of 7. Since we started with an
arbitrary model B of ', we see that T" is a set of axioms for T [ |

A theory T is said to be preserved under substructures if any substructure of a
model of T 18 again a model of T. For example, any substructure of a group 1s
a group; but not every subring of a field is a field; hence the theory of groups 1s
preserved under substructures but the theory of fields isn’t.

Theorem 6.2 (Los-Tarski) A theory is preserved under substructures if and
only if it has a set of artoms consisting of Tl -sentences.

Proof. Every Ili-sentence which is true in 2L, is true in every substructure of
2A (check!), so one direction is obvious.

For the other, we shall apply Lemma 6.1, observing that the set of £-
sentences which are equivalent to Tli-sentences, is closed under disjunction.



So let A be a model of T, and suppose every IT;-sentence which is true in
2 also 1s true in B. Now consider the theory TU Ag in L. If this theory 1s
inconsistent, then there is a quantifier-free sentence ¢(by,...,b,) in Ag such
that TU{é} has no model. This means, that 2, which is a model of T, cannot be
expanded to an LU{by, ..., b, }-structure which models ¢; from which it follows
that A = Vay - -Va,—é(x1, ... ,2,). But this is a TTy-sentence, so by assump-
tion we must have B = Vaq ---Va,—¢(x, ..., 2,); which is a contradiction,
since ¢(b1, ..., b,) is an element of Ag.

We conclude that T'U Ay has a model €, and B embeds into €. Because T’
is preserved under submodels, B is a model of T

Lemma 6.1 now tells us that 7 has a set of axioms consisting of TTy-formulas.

Exercise 16 Strengthen the argument in the proof of Theorem 6.2 to prove:
if A and B are L-structures such that every TT;-sentence which is true in 2, 1s
true in B, then B is a substructure of an elementary extension of 2.

Exercise 17 Use the previous exercise to prove the following result. Tet Ty be
the set of Tli-sentences which are consequences of T. Then every model of Ty
is a substructure of a model of T. Conversely, every substructure of a model of
T 1s a model of Ty.

Exercise 18 Relativise Theorem 6.2 to: suppose T is a subtheory of 7" and
for every pair 2, B of models of T" with B a submodel of 2, we have that if 2
is a model of T’, then so is B. Then there is a set. of TT;-sentences T" such that
T UT is a set of axioms for 7”.

Hint: consider the set /A of sentences ¢ for which there 1s a Ty -sentence 1 such

that T |= ¢ < ¢

Our next theorem characterizes theories which have a set of Tly-axioms. We say
that a theory T is preserved under directed unions if for any directed system
(U )rker of L-structures as in section 4 such that all homomorphisms fi; (for
k <) are embeddings: if all 2 are models of T, then so is the colimit of the
system.

Theorem 6.3 (Chang-Los-Suszko) A theory T is preserved under directed
unions if and only if T has a set of artoms consisting of Tly-sentences.

Proof. First, we do the easy direction: let 2 be the colimit. Then every TT5-
sentence which is true in every 2y, is also true in A, for let Vaq - - -V, Jyy - - -y
be such a sentence, with ¢ quantifier-free; and take aq,...,a, € A. Then
by construction of the colimit, since K is directed there 1s k& € K such that
ay = fe(a}), ..., an, = fr(al) for suitable a}, ... ,al, € Ax. Then in A; we can
find by,..., by, such that g = ¥(a), ... al,bi,... by). Because fi : 2y — A

is an embedding, we have

AEd(ar, ... an, fu(b), o, fu(bm))
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Hence, A = Vzy - -Va,Jy - - ymb.

For the other direction, we use again Lemma 6.1, observing that the disjunction
of two TTy-sentences is equivalent to a TTs-sentence. So, let 2 be a model of T,
T be preserved under directed unions, and ‘B satisfies every ITs-sentence which
is true in A. We construct a directed system of embeddings, in fact a chain:

B=By—=2A =B =2A, =By —---
with the properties:
i) A, =2
il) the composed embedding B,, — B, 11 is elementary;

i) every TTy-sentence in the language L, which is true in B, is also true
in 2,41 (regarding 2,11, via the embedding, as an L -structure in the
obvious way)

The construction will proceed inductively, and we shall assume each of the
conditions i) iii) as induction hypothesis, as we go along. We start by putting
By = B; this was easy.

If 9B,, has been constructed, in order to make 2,11 we consider the theory

Th(A)UTTg, , where Th(2l) is the set of all £-sentences which are true in 2, and

MMy, is the set of TTi-sentences in the language L, which are true in B, (note,

that every quantifier-free sentence is trivially a TTi-sentence, so Ag, C Ty, ).
Suppose this theory is inconsistent; then for some sentence

1/):VU1 "'V.UnSD(bh---7bm7y17---7.Un)

with ¢ € TTg, , we have that Th(20) U {¢'} has no model. As before, we see then
that

AEVer Ve, - Jyn—e

Since this is a ITs-sentence, 1t must, by assumption on 2 and B, be true in B,
which by induction hypothesis is an elementary submodel of 9B,,; but this is in
contradiction with the fact that ¢ is true in B, (check!).

Therefore, Th(2() U Tl is consistent, and we let 2l,11 be a model of it.
Clearly, 2,41 = 2, and condition iii) also holds, for B,, and 2,41.

Tf 2,41 has been constructed, we consider the theory F(%,) U Agi, ., in the
language Lo, ,, (since B, is a submodel of A, 11 we can take F(B,) to be a
theory in this language).

Suppose this theory is inconsistent. Then for some formulas ¢ € F(%B,,) and
Y € Ag,,, we have ¢ = =, Now o is of form o(by, ... by, a1,...,a) with
ar,...,a; € Apy1\Bn and by, ... by € B,. We see, that

%” ':Vfl?]7...7fl,‘[_|’l/)(})]7...7})k,,fl?],...,.’l?l)
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which is a TTy-sentence in the language Lo, . By induction hypothesis iii) then,

Q[“r+1 ':V.T],...7.77[_"[/)(})]7...7})k,,fl?],...,.’l?[)

which 1s, in a now familiar way, a contradiction.

We let B, 11 be a model of F(B,) U Ay, ,,. Then the embedding B, —
B, 11 1s elementary, which is the only induction hypothesis we have to check at
this stage. This finishes the construction of the sequence

%0—)%1—)%1—)%2—)-“

In order to finish the argument: let € be the colimit of this chain. Then € is
equally the colimit of the chain

Qh—)Q[Q—)---

which is a chain of models of T'; so since T 18 preserved by directed unions, € 1s
a model of T'. On the other hand, € is also colimit of the chain

%0—)%1—)%2—)---

which 1s a chain of elementary embeddings; by the Elementary System Lemma
(4.2), B — € is an elementary embedding. Tt follows that B is a model of T,
which was to be proved. A final application of Lemma 6.1 now yields the result.

Exercise 19 Use Theorem 6.3 to prove the following equivalence: T has a set
of axioms consisting of TTs-sentences if and only if the following property holds:
whenever 2 is an L-structure and for every finite subset A” C A there is a
substructure B of 2 such that A’ C B and B is a model of T, then 2 is a model
of T.

Exercise 20 Suppose that T satisfies the following property: whenever 2 is a
model of T', and B, € are substructures of 2 which are also models of T, and
BNC # 0, then BN & (the substructure with domain B N ) is also a model
of T.

Show that 7" has a set of axioms consisting of Tly-sentences.

T mention one more preservation theorem, without proof. Call a formula positive
if it does not contain the symbols = or —.

A theory T is said to be preserved under homomorphic images if whenever
2 is a model of T and f : A — B a surjective homomorphism, then 9B is a
model of T

Theorem 6.4 A theory 1s preserved under homomorphic images if and only if
it has a set of positive arioms.

Exercise 21 Prove the easy part of theorem 6.4, that is: every positive sentence
is preserved under homomorphic images.
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7 Filters and Ultraproducts

Tet T be aset. A filler over I is a subset U of P(7), the powerset of T, satisfying
the properties:

1) Tel,

i) ifUeldandU CV CI, then V el

i)y U, Vel impliesUNV el, forany UV C T;

iv) DegU.
Examples. For every nonempty subset J of 7, there is the principal filter

Uy ={ACT[JC A}
If 7 is infinite, there is the Fréchet filter or cofinmite filter
Urpr = {ACT|T\A is finite}

Exercise 22 Tet A be a set of nonempty subsets of T, such that for every finite
subcollection {Aq, ..., A,} of A, the intersection

ArNn--NA,
is nonempty. Show, that the collection

{UCT3A - A, EAAN---N A, CU)}

is a filter (it is said to be the filter generated by A).

Exercise 23 (Filters and Congruence Relations) A congruence relation on
P(T) is an equivalence relation ~ on P(7), such that ~ satisfies the two prop-
erties:

A~B =CnNnA~CNB
A~B => NA~T\B
Show: every filter U over T determines a congruence relation on P(T) by:

A~ B iff (INA)UB)N(AU(I\B))) €U

Conversely, show that for every congruence relation on P(7) such that § +£ T,

{A]| A~ T} is a filter over I.

Tet U be a filter over the set T, and suppose that (A;);cr is a family of sets.
We define the reduced product modulo U, written Ty A;, as follows. The set

(IT A/ ~

i€l
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where Hiei A; is the product of all the sets A; (that is the set of all T-indexed
sequences (2;);er such that x; € A; for all 4), and ~ is the equivalence relation
given by:

(xi)ier ~ ()ier i€ T|x; =y} elU

This is an equivalence relation: since T € U we have (); ~ (2);; and obviously,
the relation is symmetric. Tf (2); ~ (y); and (y); ~ (z), then if U = {i €
Ta;j=y}and V={ie I'|ly; =z} then clearly UNV C{i € T|x; = 2z}, so

(2)i ~ (2)i-

Exercise 24 Show that if U is the principal filter Uy for J C T, then Tly A; is
A

in bijective correspondence with T, ;

An wltrafilter is a maximal filter, i.e. a filter that cannot be extended to a larger
filter.

Exercise 25 Show that for an ultrafilter U over [I:
a) Uelor NU€eU, forevery U C T,
by ifUUV eld,thenUeld or VeEU.

Exercise 26 Show that in the correspondence of Exercise 23, an ultrafilter
corresponds to a congruence relation with exactly two classes.

Exercise 27 Show:
a) Tf an ultrafilter is a principal filter Uy, J is a singleton set;
b) if an ultrafilter is not principal, it contains every cofinite set.
Lemma 7.1 Fuvery filter is contained in an ultrafilter.
Exercise 28 Prove Lemma 7.1, using Zorn’s Lemma.

Exercise 29 Refine T.emma 7.1 to the following statement: suppose U is a
filter, and A a collection of subsets of T such that no element of U is a subset
of a finite union of elements of A. Then U is contained in an ultrafilter that is
disjoint, from A.

Tf U is an ultrafilter, the reduced product [],, A; is called an ultraproduct.

Exercise 30 Tet T = IN, and A; = {0,1} for all i € IN. Show that for every
ultrafilter U over IN, the ultraproduct [[,, A; has cardinality 2.

Exercise 31 Tet again I = IN, and A; = {0,...,7}. Let U be an ultrafilter
over IN. Show:

a) Tf U is principal, T[], A; is finite;

b) if [];; A; is non-principal, [],; A; is uncountable.
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We shall now extend the reduced product construction to L-structures.
First, if we are given, for each i, an n-ary function f; : (4;)" — A;, we have

a function f: (I, Ai)" = [1,e; Ai defined by

Fa)iy . (@)i) = (filag, ... al);

Now if U is a filter over T and (a}); ~ (])i, ..., (a?); ~ (b7); in the equivalence
relation defining the reduced product [],, A;, then foreach k = 1,... n we have

i€l

{ilaj = b} euU
so since U 1s closed under finite intersections,
(VK1 <k <n—db = 85)} el
This clearly implies {i | fi(a}, ... ,a?) = fi(b},... ,b")} €U, s0

F((ai)is - (af)i) ~ (b )iy, (0]):)

Hence f determines a function: (I],, A;)” — [, 4;, which we shall also denote
by f. By the above, we may put

Flai)d - L@l )l) = [(filai, .. af))i]

Secondly, if in every A; an element ¢; is chosen, this determines an obvious
element [(¢;);] of ], Ai-

Thirdly, if for every 7 we have an n-ary relation R; C (A;)”, we define an
n-ary relation R on [],, A; by

R ={([(a;):], - [(e):])

, |
{il(aj,... a}) € Ri} €U}
Exercise 32 Show that R is well-defined.

Tn this way, we see that if every A; is the domain of an L-structure 2, ], A
is the domain of an C-structure [, ;.

Exercise 33 T ¢ is an L-term with variables xz¢,... , %, and 2 = Hu 2A;, and
[(a))i],-..,[(al);] are elements of [],, A;, then

2 ([(a))], - L)) = [(1™ (g, a]))d)

From this exercise, and the definition of the interpretation of relation symbols
of £ in the reduced product, we see:

Proposition 7.2 Let A = [[,, A as above. Then every atomic L-formula ¢
has the following property: if ¢ has n free variables xq, ..., x,, then for every

n-tuple ([(a})i], ..., [(a?)i]) of elements of ], Ai,

AEe([(a))i], - - [(a7)]) &
{il Eelaj,...af)} €U
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Lemma 7.3 The collection ® of L-formulas which have the property in Propo-
sition 7.2, is closed under conjunction and existential quantification.

Proof. Tet us drop the constants from the notation. Since always U NV € U
if and only if both U € U and V € U, we have for ¢, € :

AEpANY <
{i|% Eeteld and {i|U; Eyvteld <
{ild Eendted

so ¢ A isin ®.

For existential quantification, suppose ¢(x) € ® (again, ¢ may have more
free variables, which we suppress). Tf 2 | Jzp so A = o([(a;);]) then by
assumption {i |20 = ¢(a;)} € U so certainly {i|2; = Jxp} € U since thisis a
bigger set.

Conversely if {i|2; = Jep} = U € U, pick for each i € U an a; € A;
such that 2, &= ¢(a;). For i & U, let a; € A; arbitrary. Then (a;); satisfies:
{i|2; E ¢(a;)} €U, so by assumption 2 = ¢([(a;);]); hence 2 = Txp. | |

Theorem 7.4 (Los; Fundamental Theorem for Ultraproducts)

a) IfU is an ultrafiller, every L-formula has the property of proposition 7.2;

b) hence, for L-sentences ¢,
Ao {fiel|WkE=drel

Proof. a). From Proposition 7.2 and Lemma 7.3 we know that the collection
® of formulas satisfying the mentioned property, contains all atomic formulas
and 1s closed under A and 3. Because every formula is logically equivalent to
a formula that contains only {A,3,=}, it suffices to show that when U is an
ultrafilter, the collection @ is closed under —.
But we know for an ultrafilter U, that I/ € U if and only if \UU &€ U, so
@ € ® implies:
AE —p =
Gl Epldu o
{12 F —p} e U

so —p € P.
b) This is an immediate consequence of a). [ |

Exercise 34 a) Suppose 2; = 2 for all i € T, and U is an ultrafilter over T.
The ultraproduct [, 2 is then called an wltrapower of 2. Show, that the
map A — [],, 2, given by a — [(a);], is an elementary embedding.

b)  Suppose (2;);, (B;); are two I-indexed collections of L-structures, and let
fi : 2 — B; be a homomorphism for all i. Given an ultrafilter U over T,
define a homomorphism f : T[,, 2; — [1,, Bi and show: if every f; is an
elementary embedding, so is f.



We turn now to some applications of the Fundamental Theorem for Ultra-
products, and the Compactness Theorem.

Let K be a class of L-structures. We say that the class K 1s definable if there
is an L-sentence ¢ such that K 1s the class of models of ¢. K is elementary if
there is an L-theory T such that K is the class of models of T. The following
theorem characterizes definable and elementary classes.

Theorem 7.5 a) A class K of L-structures is definable if and only if both
K and its complement are elementary;

b) K is elementary if and only if K is closed under elementary equivalence
and ultraproducts.

Proof. a) If K is the class of models of ¢, then the complement of K is the class
of models of =¢, so both classes are elementary. Conversely if K 1s the class of
models of an L-theory T, and its complement is the class of models of another
theory T”, then clearly TUT” is inconsistent; so, assuming 7" and T” to be closed
under conjunctions, by Compactness there are sentences ¢ € T', ¥ € T” such
that ¢ A ¢y has no model. Clearly then, every model of ¢ is a model of T (and
conversely, since ¢ € T'), and every model of 1 is a model of 7" and vice versa.
So K 1is definable.

b) One direction follows directly from the Fundamental Theorem: if K is the
class of models of T, (2;);er is a family of elements of K and U is an ultrafilter
over I, then the ultraproduct [],, U, is a model of T', hence in K. And obviously,
K is closed under elementary equivalence.

Conversely, suppose K is closed under ultraproducts and elementary equiv-
alence. Let T the set of L-sentences which are true in all elements of K. We
show that K is the class of models of T. So let B be a model of T. Tet
A ={d,...,8,} be afinite subset of Th(B) (the set of L-sentences true in B).
Then there is an element of K in which every element of A 1s true; for otherwise,
=(6y A--- Ady,) would be an element of T. But this cannot be, since B is a
model of T'. Choose for every such A a model A of A, from K. So, I is the set
of all finite subsets of Th(B). For every ¢ € Th(B) let Uy be {A|Aa = ¢}.
Then the collection {Us | ¢ € Th(B)} is closed under finite intersections, hence
generates a filter &4 which can be extended to an ultrafilter F; let @€ be the
ultraproduct []-2a. Just as in the ultraproduct proof of the Compactness
theorem, one sees that ¢ is a model of Th(B), hence is elementarily equivalent
to B. Moreover, € is an element of K since K is closed under ultraproducts; so
B is an element of K since K is closed under elementary equivalence. Since we
started with an arbitrary model B of T, we see that K contains every model of

T. [ |

Tn a way quite similar to the proof of Theorem 7.5b), we can use the Funda-
mental Theorem for Ultraproducts to prove the Compactness Theorem.
Suppose T' 18 a set, of L-sentences such that every finite subset A of T has a
model Ax. We let T = {A C T'| A finite}, and for each ¢ € T let Uy = {A €
T'|¢ € A}, Since {¢, ¢} € Uy Ny for all ¢, ¢ € T, the collection {Us | ¢ € T}

1s contained 1n an ulttrafilter F over [I.
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Exercise 35 Prove yourself that the ultraproduct [[-2a is a model of T.
The following exercise gives some examples of the use of Theorem 7.5.

Exercise 36 (Examples) a) Tet T =N, A, ={0,...,i} and F a nonprin-
cipal ultrafilter over 7. Use the ultraproduct ]z 4; to show:

i) The class of cyclic abelian groups is not elementary;

il) the class of well-founded linear orders is not elementary (a linear
order is well-founded if there is no infinite chain ag > a3 > as > -+ -);

i) the class of connected graphs is not elementary (a graph is connected
if for every pair of points a, b there is a finite path a = ag — a7 —
e a, = b)

b) Tet T C IN be the set of primes, A; = {0,...,7i— 1}, F a nonprincipal
ultrafilter over 7. Show that []r A; is a field of characteristic zero, and
conclude that the class of fields of characteristic # 0 is not elementary;

¢) An abelian group ( is divisible if for every n > 2,

GEY:Iyly+---+y=r1)
S ——

n times

Construct yourself an ultraproduct example to show that the class of non-
divisible abelian groups is not elementary (hence, the theory of divisible
groups not finitely axiomatizable).

A strengthening of Exercise 13 is given by the following theorem, which we state
without proof.

Theorem 7.6 (Keisler-Shelah) Let 20 and B be L-structures. Then A = B if
and only if there exist a set I and an ultrafilter F over I such that the ultrapowers

[Tz and 1B are isomorphic.

Exercise 37 Use Theorem 7.6 to obtain the following refinement of Theo-
rem 7.5: A class K of L-structures is elementary if and only if K satisfies the
properties:

a) K is closed under isomorphism and under ultraproducts;

b)  Whenever some ultrapower of 2 is in K, then 2 is in K.

T finish this chapter with a theorem whose proof is an application of the idea
of ultrafilters. Tt is an important theorem in the field of infinite combinatorics
and finds applications in advanced Model Theory, though possibly not in this
course.

Theorem 7.7 (Ramsey) Lel I be an infinite set. Write P, (1) for the collec-
tion of subsets of T with exactly n elements. If P,(I) = AU B then there is an
infinite subsel .J of T such that either P, (J) C A or P,(J) C B.
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Proof. If T is uncountable, we may take any countable subset of 7, so without
loss of generality we may assume I = IN. The theorem is trivial for n = 1
(check!), so assume n > 1. For a finite subset o of N we write @ < k for
Ym € a(m < k).

Let F be a nonprincipal ultrafilter over IN. We define, for 1 < r < n, sets
A", B™ C P.(IN) as follows: let A” = A and B” = B. If, for 1 <r < n, A"+
and B"™t! have been defined we put

A" {la e P.,(IN) [{m > a|aU{m} € A7} € F}
BT = doaeP.(IN)|[{m>alau{m} e B} e F}

Then if P11 (IN) C A" U B™*' also P.(IN) C AU B": if a € P.(IN), o ¢ A"
then {m > alaU{m} € A"} & F. Since F is a nonprincipal ultrafilter and
{m|a ¢ m} is finite (so not in F), we must have {m > o |aU{m} € B"*'} € F.

Tn particular we have {{n}|n € IN} C A'UB" and therefore either {n|{n} €
A'Y € For{n|{n} € B'} € F; assume {n|{n} € A'} € F; the other case is
dealt with in a symmetric way.

We define .J as follows. Tet jj be the least n such that {n} € A'. Tnductively,
suppose jg < j1 < --- < jr have been defined such that for all 1 <r < n and
all @ € Po({jo,--- ,jr}), @ € A™.

Then for all 1 <r < nand all @« € P.({jo,...,jr}) we have

Uro ={m>alaUu{m}e A} c F

Now there are only finitely many pairs (r, o) with 1 <7 < n and
a € Pr({jo,---,jr}), so the set

{n]{n}e A'}n N Ur o

1<r<n,
a€Pr({jo,--\jr})

is an element of F. TLet jgi1 be the least element in this set which s > ji.

Convince yourself that again, for each 1 < r < n and o € P.({jo, ..., je+1}),
o€ A"

The set J = {jo, J1, - . - } thus constructed, has the property that P,(.J) C A.

| |
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8 Quantifier Elimination and Model Complete-
ness

We say that an L-theory T admats elimination of quantifiers, or T has quantifier
elimination, if for every L-formula o(21,...,2,) there is a quantifier-free £-
formula ¢ with at most the variables x¢, ... x, free, such that

T Va2 (p(7)  0())

In particular, every L-sentence 1s, in T, equivalent to a quantifier-free sentence.
Therefore, if T has quantifier elimination and T = ¢ or T = —¢ for every
quantifier-free L-sentence ¢, then T is complete.

Exercise 38 a) Show: T has quantifier elimination if and only if every for-
mula ¢ of form 9z A, where A is quantifier-free, is equivalent to a quantifier-
free formula having at most the same free variables;

b) show that we can simplify further to: ¢ of form 3z A, where A is a con-
junction of atomic formulas and negations of atomic formulas.
[Hint: for a), use induction on the number of quantifiers; for b), by disjunc-
tive normal form, every formula of form in a) is equivalent to a disjunction of
formulas of the form in b)]

An immediate consequence of the definition is the following proposition:

Proposition 8.1 Suppose T has quantifier elimination. Then for any two mod-
els A, B of T: if A is a substructure of B then A is an elementary substructure
of B.

Proof. Tet ¢(x,...,2,) an Lformula and aq,... ;a, € A. Tet ¥(¥) be
quantifier-free such that T = Vi(p(F < ¢(F)). Then A = p(ar,...,a,) iff
AE Y(ar, ..., a,) (since Ais a model of T), iff B = ¥(ayr,...,a,) (since A is
a substructure of 9B and ¢ is quantifier-free), iff B = (a1, ..., a,) (since B is
a model of T). [ |

The property stated in Proposition 8.1 18 weaker than quantifier elimination,
and 1s called model completeness of the theory T a theory T is model complete
if for any two models 2, B of T', A C B implies A < B.

Examples. The theory of fields (or even fields of characteristic zero) is not
model complete: @ is a subfield of R but not elementary, as we have seen. The
theory of torsion-free divisible abelian groups is model complete.

Exercise 39
a) The following two statements are equivalent for an L-theory T

i) For every L-formula o(Z) there is a Xy-formula ¢ (F) such that 7' =
Y (p(7) © $(5)
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it) for every L-formula ¢(#) there is a TTi-formula ¢ (&) such that T |
Y (p(7) & 0()

b) Show that T is model complete if and only if T' satisfies the equivalent
conditions of a).
[Hint: use the refinement of the Los-Tarski Theorem in Exercise 18]

Exercise 40 (Robinson’s Test) Show that 7' is model complete if and only
if for every embedding 2 C B of models of T', every ¥q-sentence of the language
Lo which holds in 98, also holds in 2.

Exercise 41 Use the Chang-Tos-Suszko Theorem (Theorem 6.3) and the Ele-
mentary System Lemma (Lemma4.2) to show that every model complete theory
has a set of TTs-axioms.

Exercise 42 Show that 7' is model complete if and only if for every model 2
of T, T'U Ag 1s a complete Lg-theory.

We shall return to model completeness later; for the moment, we focus on
quantifier elimination for a while. We give a general lemma which characterizes
quantifier elimination in a model-theoretic way, and we shall prove for two
theories that they admit quantifier elimination: the theories of dense linear
orders without end-points, and real closed fields. Before starting, however, we
have to clear up a triviality about the logic.

Linguistic detail From now on, we assume that in the predicate logic we are
using, there is an atomic sentence —, which is never true in a model. Of course,
we have then that = — ¢ J2—(2 = 2) so — is redundant in a sense, but without
it there may be no quantifier-free sentences at all (if £ has no constants or O-ary
relation symbols).

Lemma 8.2 The following three conditions are equivalent for an L-theory T':

i) For any model B of T and any finitely generated substructure A of B,
T'U Ay is a complete Ly-theory;

it) T has quantifier elimination;

i11)  For every pair U —f> B, A N of embeddings of L-structures, where B
and € are models of T', and U is finitely generated, there is a commutative

diagram
f
A——B
’ L Lk
¢——9

where h, k are elementary embeddings.



Proof. We prove iii)=1)=i1)=1)=iii).

iii)=i): this is easy. A model B of T'U Ag is nothing but an embedding of 2
into a model of T'. By iii), every two such models have a common elementary ex-
tension such that the diagram commutes; this means that they are elementarily
equivalent Lg-structures. Hence, T'U Ag 18 complete by Exercise 2.

i)=ii). This is somewhat similar to the proof of the Los-Tarski Theorem (6.2).
Tet o(1,...,2,) be an L-formula. Pick new constants ¢1,...,¢, and let A
be the set of all quantifier-free £ U {ey,... ¢, }-sentences § such that T
oler, ... en) — 0.

Suppose B is a model of T'U A. Tet 2 be the substructure of B generated

by ¢®B,..., ¢ 50, Ais the set

» N

{2 (B By |, ..., x,) an Lterm)

r N,

Suppose B | —p(eq, ..., e,). Weregard (e, ... ¢,) as an Ly-sentence. Since
T U Ag is complete, we have TUAg E —p(er, ..., ). Tt follows that for some
sentence Y(ar, ... am,c1,...,¢n) € Ag,

T':’l/)((],]7...7(],m,7(3]7...7(37,,)—)_‘@((3]7...7(377,)

(Here the constants a; are the constants from A different, from the ¢;) Tt follows

that T =Yy - ym (P, Ymo 1, en) = —0(er, oo en)).
Now pick for each a; an L-term t; such that a; = P (¢). Then

TR (0@, (3,7 = ()

so =11 (€), ..., 1m(F), ) is an element of A and therefore true in 9B; but this is
a contradiction since a; = 2 (¢®). We conclude that B = ¢(7); since B was an
arbitrary model of TUA,| we have TU A = (@) and hence, for some §(&) € A,

T EJ@) = (@), so T E @) & ¢(0), so T EVEI(E) < o(F)), as required.

i)=i). Tet p(ar,...,a,) be an Ly-sentence, where 2 is a substructure of a
model B of T. Since T" admits quantifier elimination,

T':gp((]q,...,(],n)Hl/)((]q,...,(ln)

for some quantifier-free ¥(aq, ..., a,). T ¥(ar,. .. a,) € Ag then TUAg E
olar, ... a,), and if ¥(ay,... ,a,) & Ag then TU Ay = —@(ar,...,a,). So
T U Ag 18 complete.

i)=iii). Since both B and € are models of the complete theory T'U Ag, they
are Lyg-elementarily equivalent and have therefore a common Lyg-elementary
extension by Exercise 13. The extension is then also L-elementary, and the fact
that it is a common Lg-elementary extension entails that the diagram in iii)
commutes.

We shall now use this lemma to prove that the theory of dense linear orders
without end-points has quantifier elimination. TLet’s recall the axioms of this
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theory: the language £ is {<}, and the axioms are:

irreflexivity  —(z < )
transitivity (e <yAy<z) > x<z
linearity r<yVe=yVy<uwx
density r<y—Jwrz<wAw<y)
no end-points  Jwz(w < xz Az < z)

We shall call this theory D1.O.

Lemma 8.3 let A be a finite linear order ay < --- < ay,. Suppose 2 is em-
bedded 1 both B and €, where B and € are models of D1.0. Consider B, ¢ as
Lo-structures. Then for any Lo-formula o2y, ... 2,) we have: if two n-tuples
bi,...,bp € B, c1,...,cn, € C satisfy the conditions:

VI<i<m 1 <j<n((a; <bj&a; <cj) A(bj <ai & cj <ay))
Y1 S777S77(})7<})7<:>(‘7<(‘7)

then B ': QD(}M’, - 7})71) 7f(]7'l(] 077]1/ 7f¢ ': @(617- - 7(377,).

Proof. We use induction on ¢. The case for atomic ¢ is left to you, as are the
induction steps for = and A. Now suppose the lemmais true for o(z, 21,. .., 2,),
the tuples by, ..., b, € B, ¢1,..., ¢, € O satisfy the condition in the lemma, and
B = Jep(e, by, ..., b,). Then for some b € B, B = (b, by,...,b,). Tt suffies
now to find ¢ € (' such that the n + 1-tuples b,b¢,...,b, € B, ¢,eq,...,c, €
satisfy the conditions in the lemma; but it is easy to see that thanks to the
axioms of D1.O, this can always be achieved. [ |

Corollary 8.4 nr.o is model complete.
Proof. Tf B C € are models of DL.O, apply LLemma 8.3 with 2 empty. [ |
Theorem 8.5 D10 has quantifier elimination.

Proof. We prove property iii) of Lemma 8.2 for nr.o.

So suppose 2 is a substructure of B and of €, where B, € are models of DL.O.
We regard B and € as Lo-structures. Suppose DLOUAgUA is inconsistent, (as
Lo 9 e-theory). Then for some quantifier-free o(b1, ..., b,) and ¥(c1,... em)
such that B | o(by,... ,by) and € Y(er, ..., em), we have

-

nro b= (f) = ~u(@)

hence Do = Vﬁ(go(i_;) — —)(%)). Now in ¢ and ¢ together there are finitely
many constant from 2, say ay, ..., a;. By the axiomsof DLO, pick in B elements
by,... b, such that the m-tuples b},... b, € B, c1,...,cm € C satisfy the
conditions in Lemma 8.3, with respect to the linear order on {a1, ... ar}. Then
by that lemma we must have B = ¥(b),...,b.,). Clearly, a contradiction is

b m,
obtained.



Therefore, DT.O U Ag U Ay is consistent. as Lo 9 ¢-theory, and has a model
©. This means we have a commutative diagram

A—B

Lk

¢—2

with h,k embeddings. But we have already seen that nDr.o is model com-
plete (8.4), so the embeddings h, k are elementary. This proves property iii)
of Lemma 8.2 for Dr.o, which therefore has quantifier elimination. [ |

8.1 Quantifier Elimination: Real Closed Fields

In this section we review a famaous theorem by Tarski, that the theory of real
closed fields has quantifier elimination. The proof is not extremely difficult, but
rather long (if one doesn’t want to assume deep results from algebra); and the
techniques used in 1t have little to do with the rest of these notes. Therefore
T have decided to put it in a separate section, which may be skipped without
disturbing one’s reading of these notes.

There are a number of equivalent ways to formulate the theory of real closed
fields. We shall use the language £ = {0, 1; 4, <}, which we fix for this entire
section. The theory RCF 18 given by the following axioms:

1) The axioms for a field;

) the axioms for a linear order;
3) Ve(0 <z —Jy(y® = 1))

) Vrioowp (2l 4+ 422 =022 =0A Az, =0)
for all n;

5) Yy --ypdre(x” + i 4t yp 2+ ys = 0)
for all odd n.

A real closed field is a model of ROF. Examples are R and various subfields of
R, such as the algebraic closure of @ in R, the algebraic closure of Q(e) in R,

. Another example is the field of recursive reals, that is the real numbers r
which are the limit of a Cauchy sequence in () that is a recursive function from

N into Q.

Exercise 43 a) Show that every real closed field is an ordered field; this
means that the following sentences are true in it:

Veyz(e <y —x+z<y+z)
Veyz(z <y A0 <z =2z < yz)

b) Show that in a real closed field, the ordering is dense and has no end-
points;



¢) FEvery real closed field has characteristic zero.

Definable functions. Suppose (21, ..., 2,,y) is an L-formula for which

ROF = Vidly oz, ... 20, y)

Then ¢ defines an n-ary function on any real closed field. We may introduce a
function symbol f (or f,) and consider the theory ROF; in the language LU{ f}
which 18 RCF together with the axiom

V’T1 TWQD(T17 7.7777,7f(.77]7... 7’7’377,))

The theory RCF is conservative over RCF. This means: every L-sentence which
is a consequence of RCF is also a consequence of ReF. This follows from the easy
observation that every real closed field has a unique expansion to an £ U {f}-
structure which is a model of RCF.

We shall call f a definable function (when ¢ is understood). We can have

more than one definable function: if f1, ..., f, are definable functions we shall
have the theory RCFy, which extends RCF by all the defining axioms for
Jiy-., fa- The process can be iterated: if @(z1,... 2m,y) is now an £ U
{f1,..., fa}-Tformula such that

RCFy, g, = ViTlyp(7,y)

we can have (RCFy, ¢ )¢ (where fis defined by ¢ in ROFy, ¢ ). However,
it 1s an easy exercise that f can already be defined in RCF. We express this as
follows: definable functions are closed under composition.

Let f be an n-ary definable function. We shall call f eliminable if for every
quantifier-free L-formula B(y,u1,... ,u,) there exists another quantifier-free
L-formula C(aq, ..., %, u1, ..., Uy) such that

RCF; E VXU (B(f(Z),4) & C(#,))

We note, that also the eliminable functions are closed under composition: if
Fofis oo, fa are eliminable, g(&) is defined as f(fi (%), ..., fo(¥)), and B(y, )
is quantifier-free, then, in RCF, f 7 7

B(g(f),ﬁ) o C(ﬁ(?)vvf“(?)vﬁ)
o Clfo(@), .. fal@), 7, 1)

& (7, )

for suitable quantifier-free formulas C, C4, ..., C),.
Polynomial relations. Every term t(xq, ..., 2,) of £ denotes a polynomial in
indeterminates x4, ..., x, and integer coefficients.

A formulat(#) > 0, where ¢ is an L-term, is called a polynomial relation. Fv-
ery quantifier-free formula is, in RCF, equivalent to a propositional combination
of polynomial relations: e.g., 1 = s is equivalent to =(1 — s > 0) A —=(s — 1 > 0).
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Therefore, for testing whether a definable function is eliminable, 1t suffices
to look at polynomial relations.

We shall make use of the following theorem, familiar from elementary analysis;
the proof is omitted.

Theorem 8.6 (Rolle’s Theorem for Real Closed Fields) Let K be a real
closed field and P € K[X] be a polynomial with coefficients in K. Let P’ denote
its derwative; then

K EVey(xr <yA P(x) = Ply) = Jz(z <z <y A P(z) =0)
The following lemma will take up most of this section.

Lemma 8.7 Lett(x,21,...,2m) be an L-term, regarded as a polynomial whose
degree in x is n. Then:

a) There are eliminable functions &1 (21, ..., 2m)y - En—1(®1, ..., ) such
that the following statements are consequences of RCFg, ¢

L4 Vl‘1 B (€1 (?) <--- < €W,71(’/;’:));

o for all i, ... 2y, the function x — t(x, ¥) is either constant, or
it s strictly monotonic (increasing or decreasing) on each interval

(7007&:1 (?))7 (£1 (?)7€2(?))7 R (€W,72(£)7€n—1 (?))7 (gn—1 (?)7 OO)

b) There are eliminable functions k(Z), m (%), ..., n,(¥) such that the follow-
ing statements are consequences of RCFy ., -

o K(F) =0V - -VE(F) =n+1;
o i (F) < -emn(F);

o For each j € {1,... n}: k(¥) = j implies that n(¥),... ,n;(¥) are
exactly the zeros of i(x, ¥);

o k() = 0 implies that t(x, %) has no zeros;
o k(Z) = n+ 1 implies thal t(x,¥) is the constant zero polynomial.
Proof. T have given the statements in lemma 8.7 in informal language, and leave

it to the reader to see that these statements can be expressed by L-formulas.
Of course, for a natural number j, 7 1s the L-term 14 ---+ 1.
N———

7 times

We shall prove the lemma by induction on n. We write (x, #) as
ug(F)e” + -+ w1 (B + up ()

For n =0, t(2, %) = ug(#) and there is nothing to prove for a); for b), we let

. 0 ifug(¥)#0
k(m)_{ 1 ifug(#) =0



Then k(Z) is eliminable: for a polynomial relation p(y, #) > 0 we have

p(k(¥),4) >0 & (ug(¥) #0Ap(0,%) > 0)
V(ug(Z) =0 Ap(1,7) > 0)

For n =1, t(x, %) = ui(¥)x 4+ uo(#). Induction hypothesis a) means now that
the statement that either uy (%) = 0 or i(z, ) is monotonic on (—oo, o), is a
consequence of RCF. This is easy to see and left to you. For induction hypothesis
b) we let

1 ifu (%) #0

k(Z) = 0 ifu(¥) =0Aug(¥) #£0

2 ifuy (F) = 0Aug(¥) =0

Again, k(&) is eliminable. We let

- 0 ifu(¥)=0
m(#) = { uo(#) /1y (Z) otherwise

And also n; (%) is eliminable and has the right properties.

Now suppose n > 1 and we have proved the lemmafor all n' < n. Tet #'(x, ¥)
be the derivative of # (2, #) with respect to 2. Since the degree of #' in 2 is n—1, by
induction hypothesis b) we have eliminable functions k' (Z), 9} (%), ... ,n,_, (%)
satisfying b) for #/(2, ¥).

To prove a) for i(z, ¥), we take the '’s for the &’s. Now either k'(#) = n
(t(x,Z) is constant), or #(x, ¥) is monotonic on each interval of form as in a);
this follows from Rolle’s Theorem (8.6) for RCF.

To prove b) we define formulas Cy(%),..., C,_1(¥) as follows:

Col#) = (100 (7)) — 10 (7) — 1, D) (0 (), 7)) > 0
Ci(%) = t(ni(¥), %) =0v
Hmi (%), Z)t(nj 4 (#), ) <0
fori=1,... n— 2
Cna () = 1 (7). 7) =

i1 (%), ) (1 ( (@) +1,2) =, (7), 7)) <0

Now Cy(#) means that either 1(n](#), ?) > 0 and i(n) (%), %) > t(n)(¥) — 1, %),
or t(ny(¥), %) < 0 and i(n}(¥), %) < t(n)(¥) — 1,%); by the induction hypothesis
and the axioms of RCF, this means elther t(x, %) is constant or t(x,Z) has a
zero in the interval (—oco, nj(Z)). Tn a similar way, for i = 1,... 'n — 2, C;(¥)
expresses that #(x,#) has a zero in the half-open interval [n}(¥), i, (%)), and
Cn_1(¥) expresses that t(x, ¥) has a zero in (5, _, (%), 00). Note, that all C; are
quantifier-free formulas in the n’’s.

Again using Rolle’s theorem, one sees that if #(2, ) is non-constant, each
of the intervals contains at most one zero of #(x, #). Therefore we can define a
formula K (#, j), expressing that #(x, ¥) has exactly j zeros, in a quantifier-free

K(%j) = \/ (N Ce@) A\ ~Cr(#))
AC{0,...n—1}, FEA kg A
[Al=j

way by:
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Let L(#) be the quantifier-free formula ug(#) = - - - = u, (¥) = 0, then we define
k(Z) as n+1if L(Z), and j for the unique j such that K (&, j), otherwise. Every
polynomial relation p(k(Z), #) > 0 is now equivalent to a disjunction

n+1
\/ (k(Z) = j A pl(j, 7) > 0)
=0
so k 1s eliminable.
We have to define the functions ny,...,n, for (2, #). T do this in words.

71 () is defined as 0 if k(#) = 0 or k(Z) = n+ 1, and as the least zero of i(z, ¥)
otherwise.

Suppose 7;(#) has been defined; then n;41(#) is defined as n;(#) + 1 if
k(Z) < j or k(¥#) = n+ 1; otherwise it is the least zero which is greater than
n;(7).

We are left to prove that the functions n; are eliminable. Every polynomial
relation p(n; (£), ¥) > 0 is equivalent to the disjunction

n+1

\/ (k(#) = i A p(ny (), 7) > 0)

i=0

Now fori=0or i =n+ 1, k(Z) = i A p(n;(¥),7) > 0 is equivalent to k(¥) =
inp(j—1,%)>0.

Suppose we have shown that for j° < j, n;/ is eliminable. Then if 0 < i < j,
k(Z®) = i A p(n; (%), 7) > 0 is equivalent to k(¥) = ¢ Ap(n;(Z) +j —¢,7) > 0.
So we are left with the case that n;(Z) is a real zero of t(x, ). For simplicity
we assume j = 1; the other cases involve bigger formulas, but are essentially
similar. So, #(n1(¥),Z) = 0, 1 is not constant zero, and we have to consider
P (), 7) > 0.

By division with remainder in polynomial rings, there are polynomials f(z, ¥, ¥)
and g(z,#,7) such that

i

o plx, ) = f(x, 2, 0)t(x, %) + g(x, ¥, 1)
e the degree of ¢ in x is less than n.

Since 77 is a real zero of 1, we have that p(ni(¥),9) = g(n (%), #, 7). Tet the
degree of g in 2 be r < n; then we may apply induction hypothesis b) to ¢, and
assume there are eliminable functions

](?7 77)7(1 (?7 7_)‘)7 s 7(7‘(’;7‘7 7_)‘)

for ¢ as in b), i.e. giving number of zeros and list of possible zeros.

We also have the eliminable functions & (), ... ,&,_1(¥), satisfying a) for
t(x,Z). Tet us, from now on, suppress the extra variables and just write
Gy s Gty nam, p(u), g(u).

The statement p(n1) > 0 is, as we have seen, equivalent, to g(ny) > 0. This
is equivalent to a disjunction, distinguishing cases according to the relative

37



position of among the (’s: for example if { < g < (o then g(n1) > 0 is
equivalent to q( (¢1 +¢2)) > 0. So,

gm) >0 & (m <G AgG —1)>0)
Vi =G Ag(G) > 0)
V(G <m<GAg(3(G+E) >0

V(Cw <mAgG-+1)>0

By eliminability of the (’s, all parts g(& — 1) > 0, q( (¢1 + (2)) > 0, efe. are
equivalent to quantifier-free formulas not involving the (’s. So we are left with
the formulas gy < {7, ... We do the case i1 < (7. This time we distinguish cases
according to the relative position of {; among the £’s; we have (1 < & V
Take for example the case 7 < {4 < & . Recall that 5y is the first zero of ¢.
Now this zero occurs < (4 1f and only if:

either f(€1) > 0/\f(€1) >7L,(€1 — 1)/\f((1) >0
or &) <OALE) <& —T)ALG) <0

By eliminability of the &’s and (’s, these formulas are equivalent to quantifier-
free formulas not involving these symbols.
All other cases are dealt with in a similar way. This completes the proof of

lemma &8.7. [ |
Theorem 8.8 (Tarski) RCF has quantifier elimination.

Proof. By exercise 38 it suffices to consider L-formulas ¢ of form 3z A(x, ¥)
where A is a conjunction of atomic formulas and negations of atomic formulas.
By the axioms for a linear order we can eliminate the negations: —(f = s) is
equivalent to ¢ < sV s < t. So A is equivalent to a digjunction /. A; where
every A; is a conjunction of formulas of form p(z, #) = 0 or p(«, %) > 0; hence it
suffices to consider the formulas 9z A;, so we may assume that A is of this form.

For each p, we have from lemma 8.7 eliminable functions k, (%) and &} (%),

) ,Eﬁp(iﬁ') such that p(x, #) = 0 is equivalent to the digjunction

Np

\/ (ko (7) > i A = &0 ()

i=1

and p(x, %) > 0 is equivalent to the disjunction

(T<€”( 7) Ap(&Y (F) —1,%) > 0) v

Vizy (€ @) < o < & (F) Ap(5(E (&) + &4 (7)), F) > 0)
V(e > &5 (F) Ap(&], () + 1, T)>0)

V Vi i > by (8) A = €0(F) A pl&D (7). 7) > 0)

So again, we can reduce to the case of a formula 3z A where A is a conjunction
of statements of form: z is in a certain interval bounded by £!’s; and some other
side conditions which don’t depend on .
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Then 32 A is equivalent to the statement that the side conditions hold (which,
by eliminability of the £’s, is equivalent to a quantifier-free L-formula, and that
the intersection of the intervals i1s nonempty; this is equivalent to a quantifier-

free L-formula. [ |

8.2 Model Completeness and Model Companions

We now return to model complete theories. Robinson’s Test (Exercise 40) sug-
gests to look at so-called eristentially closed models of a theory T. Tet 2 C B
be an embedding of L-structures. QU 1s called existentially closed in B, if for
every Yq-sentence ¢ in the language Ly, if B |= ¢ then A = ¢. 2 is existentially
closed for T if whenever 20 C B and ‘B is a model of T, 2 is existentially closed
in ‘B.

Exercise 44 Show that T is model complete if and only if every model of T is
existentially closed for T

Now let T" be an arbitrary L-theory, not necessarily model complete. Suppose
that the class of L-structures which are models of T and existentially closed for
T, is elementary, so equal to the class of models of a theory 7. Then T C T’
and T" is model complete.

There are several examples of mathematical theories 7' for which the class of
existentially closed models of T"is indeed the class of models of such an extension
T', and moreover, every model of T' can be completed, that is: embedded in a
model of T”:

e FEvery torsion-free abelian group can be embedded in a divisible torsion-
free abelhian group;

e every integral domain can be embedded in an algebraically closed field;
e every distributive lattice can be embedded in an atomless Boolean algebra;
e every ordered field can be embedded in a real closed field.

In Model Theory, this situation is described with the notion of model companion.

Let T and T" be L-theories. T” is called a model companion of T if the following
conditions hold:

i) Every model of T' can be embedded in a model of T’, and vice versa;

i) T is model complete.

Exercise 45 Show that condition i) above is equivalent to: Ty = Ty, where Ty
is the set of all TTy-sentences which are consequences of T'
[Hint: use Exercise 17]



Tn this section we shall prove for two pairs of theories 7 and 7’ that 7" is a model
companion of T: distributive lattices atomless Boolean algebras, and integral
domains algebraically closed fields.

Definition 8.9 A lattice is a partial order which has a least and greatest ele-
ment, and in which for each pair of elements 2, y the infimum (or meet) 2Ny and
the supremum (or join) 2Ly exist; these elements are defined by the conditions:

Va(elUly<zeoae<zAy<z)
Vez(z<aNyez<aAz<y)

A lattice 1s called distributive if moreover the distributive law holds:
Veyz(zM(yUz) = (e Ny) U (M 2))

Exercise 46 a) Show that the conditions which My and 2 Uy are required
to satisfy, indeed determine these elements uniquely;

b) show, that the distributive law implies its dual:
Veyz(z U (yMz) = (e Uy) N (zU2))

The most immediate examples of distributive lattices are: collections of subsets
of a given set. X which contain §# and X, and are closed under union and inter-
section (with inclusion of subsets as the partial order). We shall soon see, that
every distributive lattice is isomorphic to one of this form.

A lattice which 1s not distributive is the following partial order:

We now define formally the theory of distributive lattices.

Definition 8.10 The theory of distributive lattices, DI, is formulated in the
language {0, 1;M, 1} and has the following axioms:

Vey(e My =yNax) Vey(e Uy =yUx)
Veyz(xM(yMz)=(xNy)MNz) Veyz(zU (yUz) = (ezUy)Lz2)
Ve(l Ne =) Ve(0 Uz =)

Ve(0Ma =0) Ve(lUaz=1)

Ve(eMe =x) Ve(eUr =2)

Vay(e M (y L) = x) Vay(y U (zNy) =y)

together with the distributive law:
Veyz(zM(yUz) = (e Ny) U (M 2))

A distributive lattice 1s a model of DI..
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Exercise 47 Show, that definitions 8.9 and 8.10 agree. Tn particular, given a
model of DT, if we define
r<yiffzNy==x

we get a partial order, such that My is the meet of x and y, and =Ly the join,
0 is the least element, and 1 the greatest.

Tet (A;0,1;M,U) be a distributive lattice, @ € A. A complement of a in A is
an element b satisfying a b = 0Aallb = 1. Tf a has a complement, it 1s
unique. This follows by distributivity: if both b and & are complements of a,
then b=5bM1=bN(alld)y=((bNa)L (b )y=0UBNY)=5bMb s0 b < ¥,
similarly, ¥ < b. Note that this also implies that complements are preserved by
any homomorphism of distributive lattices.

A distributive lattice in which every element has a complement is called a
Boolean algebra. Note, that a Boolean algebra is a model of DI, together with
the axiom:

Vedy(xMy=0AzUy=1)

We call this the theory of Boolean algebras. Since DI, has a set of IT;-axioms,
the theory of Boolean algebras has a set of TTs-axioms.

Examples of Boolean algebras are: the power-set of any set. (where comple-
ment is “real” complement); if 7" is a theory, we can consider the set of equiva-
lence classes of sentences in the language of T') with ¢ ~ o iff T |= ¢ < 1; for
equivalence classes [@], [¢] we have [¢] M [¢] = [¢ A ], [¢] L [¢] = [¢ V ], and
the complement of [¢] is [=¢]. This Boolean algebra is called the Lindenbaum
algebra of the theory T'. Note, that 7 1s complete if and only if its Lindenbaum
algebra has exactly two elements. An important case is, where we just consider
equivalence classes of formulas in propositional logic, with propositional vari-
ables po, p1,.... The resulting Lindenbaum algebra is the free Boolean algebra
on countably many generators.

et A be a distributive lattice, and a € A. a is called an atom in Aifa £ 0
and for every b < a we have b = 0 or b = a. A Boolean algebra which contains
no atoms is called atomless. Note that an atomless Boolean algebra is a Boolean
algebra satisfying the axiom

Vedy(x 0 >y #0Ay# 2 Ay=yNa)

So also the theory of atomless Boolean algebras has a set of Tly-axioms. The
free Boolean algebra on countably many generators is an example of an atomless
Boolean algebra.

Theorem 8.11 Fuvery distributive lattice can be embedded in a Boolean algebra,
and every Boolean algebra can be embedded in an atomless Boolean algebra.
Therefore, every existentially closed distributive lattice 1s an atomless Boolean
algebra.

Proof. Tet us first show the last statement, assuming the first: if 2 is a
distributive lattice and a € A, the statement “a has a complement” can be
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expressed by a ¥j-sentence of Lg. So since every distributive lattice can be
embedded in a Boolean algebra, if 2 is existentially closed it is a Boolean algebra.
Similarly, the statement “a is not an atom” can be expressed by a ¥-sentence
of Ly, so if 2 1s existentially closed, it must be atomless.

For the first statement we use the notion of filter and prime filter. In a
distributive lattice 21, a filter is a subset UU of A with the properties: 0 & U,
aclUa<b=belU,a,belU =>albelU,and 1 € U. Note that if a # 0, the
set, 1(a) = {b € A|a < b} is a filter.

A prime filter is a filter I/ which moreover has the property that whenever
albelU,aclUorbel.

First we prove: if, in a distributive lattice, a £ b, there is a prime filter U
which contains a but not b. This is done with the help of Zorn’s Lemma: since
a £ b, a#0sot(a)is a filter containing a but not b. So the partially ordered
set, of all filters which contain a but not b (ordered by inclusion), is nonempty.
One easily sees that it 18 closed under unions of chains. By Zorn’s Lemma, it
has a maximal element, /. Suppose that elld € U but ¢ @ U, d & U. Then by
maximality of U, there must be uq,us € U such that eMuy < b and dMuy < b.
Then u = w3 Musy € U, and we have

uM(eld)=(uNe)U(und) <b

so b € U; contradiction.
Now lett X be the set of all prime filters of the distributive lattice 2A. Define
f:A—=P(X) by
fla)={U e X |aeU}

By what we just proved, it follows that f is 1-1, and that f(allb) = f(a)U f(b).
Clearly, f(1) = X, f(0) = 0, and f(aT1b) = f(a) N f(b), so f is an embedding
of distributive lattices; and P(X) is a Boolean algebra.

Next, we show that every Boolean algebra can be embedded in an atomless
Boolean algebra. Since every Boolean algebra is a distributive lattice, 1t can
be embedded in a Boolean algebra of the form P(X), so it suffices to see that
every P(X) can be embeeded in an atomless Boolean algebra. For this we
observe that for every function f: Y — X of sets, the “inverse image” function
' P(X) = P(Y) is a homomorphism of distributive lattices. Moreover, if f
is a surjective function, then £~ is 1-1.

We define a chain of Boolean algebras and embeddings:

71_—1
1

P(Xo) ™ PX) D -

by letting Xqg = X, X;11 = X; x 40,1} and m; : X;31 — X, the projection. We
may assume X # ), so all m; are surjective and the 71';1 therefore injective. The
atoms in P(X;) are the singleton subsets of X;. Now for y € X;, =, '({y}) =
{(3,0), (y,1)} so m; ' sends every atom to a non-atom.

Let B be the colimit of the chain above. Since the theory of Boolean algebras
has a set of TTy-axioms, i1t 18 preserved under unions of chains so B is a Boolean
algebra, in which all P(X;) embed. T.et b € B. Then by the construction of
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the colimit, b comes from an element of some P(X;), say Y C X;. If Y is not
an atom in P(X;) then b is certainly not an atom in B, but if ¥ is an atom,
71';1 (V) is anon-atom, and gives the same element b in the colimit. So, b cannot
be an atom, and B is an atomless Boolean algebra in which all P(X;) embed.

This completes the proof. [ |

Next, we wish to prove that every atomless Boolean algebra is existentially
closed for the theory of distributive lattices. Equivalently, that the theory of
atomless Boolean algebras is model complete. This will follow from Lindstrgm’s
Test (Lemma 8.15) below, once we have proved that the theory of atomless
Boolean algebras is w-categorical. So we do that first.

Lemma 8.12 «) et A be an atomless Boolean algebra and a € A, a # 0.
Then for each n € IN there are elements by, ... b, in A such that b; # 0,
b b, =0 fori#j, and by Ll --- L b, = a.

b) Let 2 be an atomless Boolean algebra, and € C D be an embedding of finite
Boolean algebras. Then every embedding € — A extends to an embedding
D — 2

Proof. a) is proved by induction on n. For n =1 take by = a. For n + 1: since
a is not an atom, there is 0 < b,11 < a in A; then if ¢ 18 the complement of
bpy1, ale # 0. Moreover, b, 11 LI(aMe¢) = a. So apply the induction hypothesis
to find by, ... b, for alle.

For b), we note that every finite Boolean algebra is isomorphic to P(X) for
a finite set X. Now every embedding f : P(X) — P(YV) (for finite X,V is
determined by its values on the singleton subsets of X, since it must preserve
unions and every subset of X is a finite union of singletons. Tf X = {zy,... | z,}
we see that f({z; })Nf({z;}) = 0 fori # j (since f preserves §§ and intersection),
F({z:}) # 0 (since fis an embedding) and | J;_, f({z;}) = YV since f preserves
1 and unions. So f divides YV into n parts. Now suppose ¢ : P(X) — 2 is
an embedding. For each y € YV there is a unique i with y € f({z;}); suppose
FH=:}) = {vi,---,ym}. By a), choose by, ... by in A for g({2;}) and send
{y;} to b;. This extends to an embedding h : P(V) — 2, such that g = hof. Il

Corollary 8.13 The theory of atomless Boolean algebras is w-categorical.

Proof. Tet A = {an,a1,as,...} and B = {bg,b1,ba,...} be two countable
atomless Boolean algebras. We define a chain of isomorphisms f; : A, — B;
such that Ay C Ay C Ay C -+ is a chain of finite Boolean algebras with union
A, and By C By C By C --- is a chain of finite Boolean algebras with union B,
and fiyq1 @ Ajp1 — Biyr extends f; for each i. The construction is very similar
to Cantor’s “back-and-forth” construction for dense linear orders.

Let Ag be the sub-Boolean algebra of A containing just the elements 0, 1, and
By likewise the sub-Boolean algebra of B with two elements, and fy : Ay — By
the obvious isomorphism.

Suppose f; : A; — B; is constructed. Let (; be the sub-Boolean algebra
of A generated by A; U {a;}. Then C; is finite, and A; C (7;. Since f; gives
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an embedding of A; into the atomless Boolean algebra B, by lemma 8.12 f;
extends to an embedding ¢; : C; — B. Let D; be the image of g; and B;y; the
sub-Boolean algebra of B generated by D; U {b;}. Since ¢; is an embedding, its
inverse is an embedding of 1); in A, which again by lemma 8.12 extends to an
embedding h; : B;11 — A. Let A;11 be the image of h;. Then the inverse of h;
18 an 1somorphism fi1q1 : A;j11 — By which extends f;. Since a; € A; 44, the
union of the A;’s 1s A, and similarly the union of the B;’s is B; and the union
of the f;’s is an isomorphism A — B. [ |

The following two general lemmas find frequent application in the study of model
completeness.

Lemma 8.14 et T be an L-theory with a set of Ny-arioms. Then for any
model A of T, there is an embedding of A into a model B of T which is eris-
tentially closed for T. Moreover, if |A| > |L| we may assume that |B| = |A|.

Proof. We construct a chain of models of T":
A=Ay CA; C A, C - -+

as follows: if 2 has been defined, let T, be a maximal set of ¥;-sentences in
the language Lg, , such that T U Ag, U Ty is consistent (such a set exists by
Zorn’s Lemma). Let i1 be a model of TU Ag, UTy; then 2 C Ay

Let B be the colimit of this chain. Since T has a set of Tly-axioms, B is a
model of T'. Suppose ¢ 1s a Yy-sentence of Lo which holds in some extension of
B which is a model of T'. By construction of the colimit, ¢ is already an Ly -
sentence for some k; then T'U Ag, UT, U ¢ 18 consistent, whence by maximality
of Ty, ¢ € T, and ¢ holds in A1, so ¢ holds in B. So B 1s existentially closed
for T.

To prove the final statement: if |A] > |£| we may take all 2 such that
|4kl = [A]. Then |B| = | Al N

Lemma 8.15 (Lindstrem’s Test) Suppose T is an L-theory with a set of Tly-
artoms, which only has infinite models, and is a-categorical for some cardinal
number o > ||L||. Then T is model complete.

Proof. If 2 is a model of T' of cardinality «, then by the previous lemma 2
may be extended to an existentially closed model B of cardinality «. Since T
s a-categorical, 2 22 B so A is existentially closed for T'. So every model of T'
of cardinality a is existentially closed for T

Now let 2 C B be an arbitrary embedding of models of T. We have to show
that 2 is existentially closed in B.

First suppose |A| > a. Then for any ¥j-sentence ¢ of Lg which holds in 9B,
there is by downward TLowenheim-Skolem-Tarski (3.2) an elementary submodel
A of A of cardinality o, which contains all constants occurring in ¢; then 2 is
existentially closed so ¢ holds in it; so ¢ holds in 2A too. So 2 is existentially
closed for T
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Tf |A| < o we view B as a model for the language LU { X} where X is a new
1-ary relation symbol, putting X® = A.

Consider the language £’ = LU{X} U {ey | A € A} where A is a set of
cardinality o and the ¢, are new constants; let T' be the £'-theory consisting of
the elementary diagram of B (as Lo U { X }-structure) together with the set of
axioms

{X(e) M e AU {=(ex=en [ A £ N}

Since 2 is infinite (because T has only infinite models), every finite subset of
I has an interpretation in ®8B; hence, I" is consistent and has a model €. Then
¢ is a model of T and an clementary extension of B; and X¢ is the domain
of a submodel A’ of € which is an elementary extension of 2. This is seen as
follows: for an Ly-sentence ¢, let $X be obtained by replacing each quantifier
Yz by V(X (2) — ---) and each 3z by Fz(X () A---). Then A |= ¢ iff B | ¥
iff ¢ = oX iff U = o.

Note, that 2 has cardinality at least o, so by what we have already proved,
A’ is existentially closed in €. But now it is easy to deduce that 2 is existentially

closed 1n ¢B. [ |

Corollary 8.16 The theory of atomless Boolean algebras 1s model complete;
hence, it 15 a model companion of the theory of distributive lattices.

Proof. Every atomless Boolean algebra is infinite (this follows at once from
lemma 8.12), and the theory of atomless Boolean algebras is w-categorical, as
we have seen (8.13)7 so this follows from Lindstrem’s Test.

As a final example of a model companion, we show that the theory of alge-
braically closed fields is a model companion of the theory of integral domains
(commutative rings with 1 # 0 having no zero divisors). By elementary algebra,
every integral domain is embedded in a field and every field is embedded in an
algebraically closed field.

Since, for an integral domain 2, the statement that a € A is either 0 or has
a multiplicative inverse, and the statement that the polynomial ag X" 4+ --- +
an,_1X + a, has a root (where ag, ..., a, € A), are Ey-sentences of Lo which
hold in some extension of 2, every existentially closed integral domain is an
algebraically closed field.

Conversely, let 2 be an algebraically closed field, and ¢ = 3z - - - 2,9 where
¥ 18 a conjunction of atomic Ly-formulas and negations of such; by Exercise 38
it suffices to consider sentences of this form. First we use the axioms of a field,
to reduce formulas =(t = s) to Jy(y(t — s) — 1 = 0), so ¢ is equivalent to
a1 -2y x where y is a conjunction of statements P(#) = 0, P a polynomial
with coefficients in QL.

In order to show that 20 is existentially closed we need to show for such ¢
that if ¢ holds in some extension of 2, it holds in 2. This follows from the
following elementary theorem from commutative algebra:
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Theorem 8.17 (Hilbert Nullstellensatz) et K be an algebraically closed

field and fy,..., f. be polynomials in Xq,... X, with coefficients in K. If
there is no m-tuple ay, ... a, € K such that
filar, ... am) == folar, ... am) =0
then there are polynomials g1,... ,gn in Xy, ..., Xy and coefficients in K, such
that
f1.(]1 + - '.fngn =1in [\/7[}(1 P Xm]

Tet Pr(Xq,..., Xm),---, Pa(X1, ..., Xim) be the system of polynomials in the
formula y, and suppose that this system has a common zero by, ... b, in an
extension I, of 2. Then the by,...,b,, induce a ring homomorphism
UX1, ..., X] = L by f= f(br,.o b))

On the other hand, if the system has no common zero in 2L, by the Nullstellen-
satz there are Q1,...,Q, with 3" P,Q; =1 in A[Xy,..., X,,]. Combining,

this gives 0 = 1 in L, a contradiction.
Conclusion:

Corollary 8.18 The theory of algebraically closed fields 1s a model companion
of the theory of integral domains.

8.3 Model Completions, Amalgamation, Quantifier Elim-
ination

In this section we collect some miscellaneous facts and definitions about model
completeness and model companions.

Let us first observe that if a theory 7 has a model companion 1t is unique
up to equivalence of theories. For, suppose T} and Ty are model companions of
T. Then Ty, Ty are model complete, and every model of 77 can be embedded in
a model of T, and vice versa. So given any model 2 of T} we can form a chain

A=Ay CA C Ay C - - -

where Ay, Ao, Ay, ... are models of 77, and 2y, Az, ... are models of Ty. Tf B

is the colimit, then since both theories are model complete we have:

Ay <Ay <Aq < ---< B
W <Az <As < ---< B

So A is also a model of T5. By symmetry, T} and T3 have the same models.
Definition 8.19 T.et T be an L-theory.

a) A model 2 of T is said to be algebraically prime if 2 can be embedded in
every model of T

b) T is said to have the joint embedding property if for every two models 2
and B of T, there is a model € of T" and embeddings A — €, B — ¢,
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¢) T is said to have the amalgamation property if every diagram
A——B
¢

of embeddings of models of T', can be completed to a commutative diagram
A—B
C—9
of embeddings between models of T'.
Exercise 48 T.et T be model complete.

i)  [Prime Model Test] If T has an algebraically prime model, T is com-
plete;

it) T is complete if and only if T has the joint embedding property.

The notion of model completion is a refinement of that of model companion. Tf
T" is a model companion of T', every model of T' can be embedded in a model of
T'. T’ is a model completion, such an extension is unique up to elementary
equivalence (in parameters of the model one starts with). The formal definition
is:

Definition 8.20 7" is called a model completion of T if T is a model companion
of T" and for every model A of T', TV U Ag is complete.

Exercise 49 Tet 77 be a model companion of T'. Show that the following two
statements are equivalent:

i) T"is a model completion of T}
it) T has the amalgamation property.

Exercise 50 Tet T be a model complete theory. Show that the following are
equivalent:

i) T is a model completion of Ty;
il) Ty has the amalgamation property;
iii) T has quantifier elimination.

Exercise 51 a) Prove that the theory of integral domains has the amalga-
mation property.

b)  Deduce from a), that the theory of algebraically closed fields has quantifier
elimination.
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9 Countable Models

In this section we shall be concerned with countable languages and countable
structures.  So, £ is countable in this chapter (and, if 2 is a countable £-
structure, of course Lg is countable too).

If T 1s a set of L-formulas with at most the variables x4, ...z, free, we write
T(xy,...,2,) or T(£). An L-structure A realizes T(Z) if there is an n-tuple
a,...,a, € Asuch that A | (ay, ..., a,) for every o(xy,... 2,) € T(Z). Tf

A does not realize T', A is said to omit T.

Let T be an L-theory. T is said to realize T locally, if there is an L-formula
G(a1,...,2,) such that TU {3y - - 2,0(F)} is consistent, and T' = VZ(H(F) —
(%)) for every o(¥) € T.

Theorem 9.1 (Omitting Types Theorem) let T be a consistent L-theory,
and for each m € N let Ty, be a set of formulas in variables x1, ... xg, . If T
does not realize any Ty, locally, then T has a countable model which omits each
Ty, .

Proof. First we add a countable set. C' = {1, ¢a,...} of new constants to the
language £; let £ = LU . Fix an enumeration ¢g, ¢1, ... of all £’-sentences,
in such a way that every £’-sentence occurs infinitely often in this enumeration.

We shall build a chain of £'-theories
T=To,CTHy CTy C---
such that the following hold:
e Every T, is a consistent extension of 7' by finitely many £’-sentences;
o if T, U{¢,} is consistent, then ¢, € T,
o if ¢, = 2ty and ¢, € T, 41, then ¥(e) € T, 44 for some ¢ € C'

e for each m < n and each k,,-tuple ¢ of elements of ' which occur in T,,,
there is a formula (a1, ..., 2g, ) € Ty, such that (@) € Ty

Now suppose we have constructed 7Ty C 77 C --- with these properties; let
T, = Un Tn. Then T, is consistent and has a model 2; but by construction,
2 has a submodel B with underlying set {¢%|c € C}; and B is actually an
elementary submodel, so is a countable model of 7. And B omits each T',,, by
construction.

To construct our chain, we start by putting Ty, = T'; T was assumed consis-
tent, which is all there is to check at this stage.

Suppose T, has been constructed. We build 7,11 in stages:
Stage 1. We check ¢,,. T T'U{¢,} is consistent, we put ¢, in T,,;1. If not, we
do nothing in this stage.
Stage 2. If ¢, = Jxyp was put into 7,41 at stage 1, let ¢ be the first constant
in the enumeration of ' which doesn’t occur in T,, (which contains only finitely
many constants from C' by induction hypothesis), and put ¥(¢) into T, 4.
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Stage 3. Tet (' be the finite set of constants from ' which so far occur in
Tn+] .

For each m < n let L, = {¢,...,¢m)} be a list of all k., -tuples of
elements of C’. We work through each m and each j, 0 < j < U(m), as follows:
we start with m = 0,7 = 0. At substage (m, j) we have added a finite number
of L'-formulas to T let Cy, ; be the conjunction of these. Write Cy, ; as

9((317"'7Ckm,7d17"'7du)

where (e1,... ¢, ) is the tuple &, and dy, ..., d, are the other constants from
C'. Since T does not locally realize T, there is a formula (2, ... 25, ) € Ty
such that

TNy g, Qg (e, 2, Y1, ) = (1,0 25,,))

Now add —¢(er, ..., eg,,) to Thp1 and proceed to substage (m,j + 1) if j <
U(m); otherwise to (m—+1,0) if m < n; otherwise, stage 3 is completed and the
construction of 7T, 11 too. [ |

The Omitting Types Theorem is often applied in order to construct (count-
able) models which have to be ‘small’ in some sense: there are no elements (or
tuples) realizing any of countably many sets of formulas.

An example of this is the construction of end-extensions; another one 1s in
the construction of atomic models.

9.1 End extensions of models of PA

The theory of Peano Arithmetic (PA) is formulated in the language £ = {0, 1; 4+, -},
and its axioms are:

Ve—(z+1=0) Vey(e+1=y+1— 2=y

Ve(e+0=2) Va(z-0 =0)

Voy(e + (y+1) = (v +y) +1) Vay(e-(y+1) =wy+7)
VE[((0, %) AVy(e(y, ) = oy +1,7))) — VYye(y, 7)]

The last axiom is meant to be an axiom for every L-formula ¢(y,#). These
axioms are called induction arioms.

Any model 2 of PA has the properties that 4+ and - are commutative and
associative, that - is distributive over +; that the formula 3z(z + (z + 1) = y)
defines a linear order x < y, for which 0 is the least element, and such that
every element = has a successor, that is a least element greater than x.

Let 2 C B be an embedding of models of PA. B is called an end extension
of 2, or A an initial segment of B, if fora e Aand b€ B: if b <a then b e A.
We say that the embedding is proper, if A # B.

We shall use the Omitting Types Theorem to show that every countable
model of PA has a countable proper elementary end extension.
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Exercise 52 Let 2 be a model of PA and ¢(u, z) be an Lg-formula such that
A EVeAyWau (2 > y A p(u, ) = =(u = z2))
Show, using the induction axioms of PA, that
A EVAWeu (x> yAp(u,2) = u>2)

Proposition 9.2 Fuvery countable model of PA has a countable proper elemen-
tary end extension.

Proof. Tet 2 be a countable model of PA; let £ = Lo U {c} where ¢ is a new
constant. Consider the £'-theory

EFRyu{e>alaec A}

Clearly, T is consistent by the Compactness Theorem, and every model of T 1s
a proper elementary extension of 2L.
Now consider for each a € A the set of formulas

Tu(z) = {z<alU{=(xz=0)]|bec A}

Convince yourself that a proper elementary end extension of 2 is nothing but a
model of T which omits each T, (2).

Since there are only countably many sets T, () because 2 is assumed count-
able, the Omitting Types Theorem gives us such a (countahle) model, provided
we can show that no T',(2) is locally realized by T

So suppose #'(x) is an L'-formula such that

1) TEVY2® () = x<a)
2) TEVYz(#(z) = —-(xz=0>5)) forallbe A

Write 0/ (2) = 6(x, ¢) where 6 is an Lg-formula. From 1) we deduce, using the
Compactness Theorem, that there is some a’ € A such that

3) UEVeulu>ad ANb(x,u) =2 < a)

From 2) we deduce in the same way that for each b € A there is ' € A such
that 2 = Vaeu(u > b Af(x,u) = —(z =b)); in other words,

A = VzIuwVaeu(u > w Az, u) = —(x = z))
Applying Exercise 52, we find that
A = VeIuwVaeu(u > wA(x,u) — o > 2)

However, combining this with 3), we get a contradiction unless A | —3zuf(x, u);
but this means that 7'U {3x6'(2:)} is inconsistent.
Therefore, no T',(x) is locally realized by T, and we are done. [ |
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9.2 Atomic Theories and Atomic Models

If 2 is an L-structure and aq,...,a, € A, the set of L-formulas

Para, ={p(r, o mn) [ plar, . an)}

is maximal w.r.t. the property that it is realized in some L-structure.

We call Ty, ..., the type of the tuple aq1,...  a,.
Tn general, if T is an L-theory and T'(xy,...,2,) a set of L-formulas in
variables xq,...  x, which 1s maximal w.r.t. the property that it 1s realized in

some model of T, we call T' a type of T.

Exercise 53 Tf a type T'(¥) of T is locally realized by T, there is a formula #(F)
such that

T(#) = {o(®) | T | VE (6(F) — o(#)))

In this case we say that the type " is principal for T, and that T is generated
by 8(%).

Exercise 54 Tet Lp(Z) be the set of equivalence classes of L-formulasin vari-
ables #, where (&) ~ ¢(&) if and only if T | V¥ (o(¥) & (&)).

Show that Lp(Z) is a Boolean algebra. Show that T'(%) is realized in some
model of T'if and only if the set {[+] |y € T'} is contained in a filter on Ly (Z).
Show that T'(Z) is a type of T if and only if T' = {~|[y] € U} for some ultrafilter
U on Lp(%).

We say that T is an afomic theory if every L-formula (&) such that T U
{3%p(F)} is consistent, is an element of a principal type (in Z) of T.

An L-structure A is called atomic if for every n-tuple aq,... , a,, the type
Ty, a, is principal for Th(20).

n

Exercise 55 Call a Boolean algebra B atomic if for every b € B, if b # 0 there
s some atom in B which is <.

Show that in a Boolean algebra, b 1s an atom if and only if the filter 14 is an
ultrafilter.

Show that a theory T is atomic if and only if for each tuple # of variables,
the Boolean algebra Ly (&) is atomic.

Exercise 56 Tet 2 be an L-structure such that for each a € A there is an
L-formula ¢(x) such that

A EVe (p(x) & 2 =a)
Show that 20 is atomic.

Theorem 9.3 et T be a complete L-theory.

a) If for every n € N, T has only countably many types in a1, ... x,, T has
a countable atomic model.
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b) If2is a countable atomic model of T, AU is elementarily embedded in every
model of T.

c) If2A and B are countable atomic models of T, they are isomorphic.

Proof. For a), we use the Omitting Types Theorem. Since there are only
countably many types altogether, there are certainly only countably many non-
principal types. So by the Omitting Types Theorem, let 2 be a countable
model of T" which omits each non-principal type (we cannot omit a principal
type; whyT). Then for each aq,...,a, € A, the type T, .., is principal for
T = Th(2), so A is atomic.

For b), suppose 2l is a countable atomic model of T', and let B be any model
of T. Tist A as ag,ay,.... Since Ty, is principal for Th(2) = T, there is a
formula y(2q) such that Ty, = {e(20) | T | Yo (0o (20) = ©(20))}. Since T is

complete, T' = Jzg0(20), so B | y(bg) for some by € B.

n

Now suppose we have defined by, ..., b, € B such that by,... b, realizes
Tagoa, i B Thetype Ty 4, ., is generated by some formulay, 1 (20, ..., 2n41).
Then the formula 3z, 110,11 isan element of Ty, 80 B = O (bo, ... bygd)
for some b, 1. Then by, ... b,y realizes Ty o -

The map a,, — b, is then an elementary embedding: 2 — B.
¢) is proved by performing the construction of b) in two directions; this is similar
to the back-and-forth method in the proof of Corollary 8.13, and is left to you.
||

Exercise 57 Work out the proof of ¢) above.

Exercise 58 Theorem 9.3b) has a converse: if 2 is a countable structure such
that 2L is elementarily embedded in every structure that is a model of Th(2l),
then 2 is atomic.

[Hint: foray,... a, € A, show that T, ., must be locally realized by Th(2L),
using the Omitting Types Theorem. So it must be principal]

Exercise 59 Show, for a complete theory T, that 7" has a countable atomic
model if and only if T is an atomic theory.

[Hint: in one direction, if 2 is an atomic model of T and A%p(¥) consistent
with T, show that ©(¥) is realized by a tuple @ in A; so o(¥) € Tz, which is a
principal type.

For the other direction, let, for each n, T, be the set of formulas = (a1, ...  ap,)
for ¢ such that i generates a principal type for T. Use the Omitting Types
Theorem to show that T has a countable model which omits each T,,, and hence
is atomic]

Exercise 60 Let £ be the language of partial orders, together with a countably
infinite set of new constants ¢y, ¢q,.... Let T" be the L-theory

DLo U {e; < ¢iqq i € IN}
Describe (up to isomorphism) the countable models of T. Does T have an

atomic modell’
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Exercise 61 For those of you who are familiar with Godel’s Tncompleteness
Theorems.

a) Show that Peano Arithmetic has an atomic model: the standard model
N. Show that the model A is not elementarily embedded in every other
model of PA. Why is this not in conflict with Theorem 9.3T

b) The theory RCF of real closed fields has an atomic model. What is itT
Show, that rRCF has uncountably many types in one variable. So the
converse to 9.3¢) is false.

T finish this chapter with a theorem giving a characterization of w-categorical
theories in terms of the number of types. Tts proof uses atomic models.

Theorem 9.4 et T be a complete theory which has infinite models. Then T
18 w-categorical +of and only if for every n € IN, T has only finitely many types
mEy, ... Ty

Proof. First suppose T is w-categorical; let 2 be a countably infinite model of T
Every model of T is infinite (check!), hence has a countable elementary submodel
by downwards Lowenheim-Skolem-Tarski; therefore, since T' 18 w-categorical, A
is elementarily embedded in every model of T. So 2 is atomic by exercise 58.

Let T'(Z) be a type of T. Then T(Z) is realized in some countable model of
T, so it is realized in 2 which is atomic; it follows that T'(#) = Tz for some
d € A, so T'(Z) is principal. So every type of T is principal.

Consider now the set

Y(Z) = {-9(Z) | ¥(¥) generates a type of T}

Then X(#) cannot be extended to a type (because every type is principal). By
the compactness theorem, there are finitely many formulas 4 (), ... , ¥ (%),
generators of types, such that

T E (0 (F) V-V ()

We see that the types generated by the ¢;(#) are the only types of T, which
therefore has only finitely many types.

Conversely, if T has only finitely many types in & (for each tuple #), then each
Boolean algebra Lp(#) must be finite (for, if T (£ VZ (o(#) — (%)), there
is a type which contains ¢(#) but not (¥)). Tt follows that every type of T
is principal, so that every model of T is atomic. Then T is w-categorical by

Theorem 9.3c¢). [ |

Exercise 62 Show that a Boolean algebra B has only finitely many ultrafilters
if and only if B itself is finite. Show moreover, that every infinite Boolean
algebra has a nonprincipal ultrafilter.

Exercise 63 Describe the types of DO in variables z1,...  x,.
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9.3 w-Saturated Models

The notion of a saturated model 1s dual to the notion of atomic model: saturated
models are ‘large’, they realize as many types as possible. In this chapter, where
we focus on countable models, we restrict ourselves to the notion of w-saturated
model.

Definition 9.5 Tet 2A be an L-structure. We say that 2 is w-saturated if
for every finitely generated substructure B of 2 and every set of Lyg-formulas
T(xy,...,2,) in free variables 21, ... | 2, the following holds: if T is realized in
an Lg-elementary extension of 2, then T is realized in 2.

Exercise 64 Show that every finite structure is w-saturated.

Let’s recall that if B is generated by aq, ..., a,,, wemayreplace Ly by Lia, 4,1
Exercise 65 Suppose 2 and B are L-structures and aq, ... ,a, € A by,... b, €
B. We can then see 2l and B as LU{¢q, ..., ¢, }-structures by putting (¢;)® = a;
and (¢;)® = b; (of course, the constants ¢; are new).

We write Uy, ..a, = Bp, b, if the LU {eq, ... e, }-structures thus defined,

are elementarily equivalent.
Prove: 2 18 w-saturated if and obly if for each L-structure B the following
hold:

1) TF A =B then for every b € B there is an a € A such that 2, = By;

2) fortuples ay,... a, € Aand by,... b, € B such that A, ..., = B, ..t
and every b, € B, there is a1 € A such that 2, ., =By, 4, -

Theorem 9.6 et T be a complete L-theory.

a) IfUis an w-saturated model of T, every countable model of T is elemen-

tarily embedded in 2,

b) T has a countable w-saturated model if and only if for each n € N, T has
only countably many types in x1,... ,xp;

¢) if T has a countable w-saturated model, T' has an atomic model.

Proof. a) Suppose 2 is an w-saturated model of 7', and B a countable model
of T. Enumerate B as {b1,bs,...}. Since T is complete, A = B. Therefore,
applying Exercise 65, we can find a sequence (a,), in A such that for each
n, Wgy.oa, = Bp,..b,- The assignment b, — a, now defines an elementary
embedding of B into 2.

b) Tf T has a countable w-saturated model 2, then there can he at most
countably many types since every type is realized in 2.

Conversely, suppose T has only countably many types in x4, ..., z, for each
n. Let 2 be a countable model of T. Then we can enumerate all pairs (d@;, T;),
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where @, is a finite (possibly empty) tuple (a,,,...,a,,) of elements of A, and
T'; is a type in variables (2,,,..., 25,41, .-, Yg,), such that the sef

r7(ﬁ7) = {7(”’“17"' sy Ony Y1y - 71/16,) |7(?7m € r7}

is realized in some Lz -elementary extension of 2. We construct a chain of
models

A=Ay <A <Ay < -

as follows: suppose 2, is constructed. et 9B, 1 be a countable £; -elementary
extension of 2 such that T, (d@,) is realized in 9B,,11. Then certainly 2 < 9B, 4
so W, = By, 41; let A, 11 be a countable common elementary extension of them.
One sees by induction that for each n, 2,11 realizes T;(d@;) for all i <n.
Let 2 be the colimit of the chain Ay < Ay < ---. Then A is countable,
A < AM and moreover the following property holds:

o For every finitely generated substructure 98 of 2 and every set T'(21, ... | 2,)
of Lyg-formulas which is realized in some Lg-elementary extension of 2,
T is realized in A1)

Now we 1terate this procedure infinitely often:
A=< AN <A™ < ...

where each A(") is countable, and each A(™+1) has the property o w.r.t. (™).
Let € be the colimit of the chain ™). Now it is easy to see that € is
countable and w-saturated.
¢) follows at once from b) and Theorem 9.3a). [ |

Exercise 66 Show that if 2 and B are two countable w-saturated models of a
complete theory T'| then 2 =2 B.
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10 Stone Duality

In this chapter we shall establish a natural correspondence between Boolean
algebras and a certain type of topological spaces, the so-called Stone spaces.
The correspondence, when applied to the Lindenbaum algebra Ly of a theory
T, or to the algebras Lp(&), gives another perspective on the Compactness
Theorem.

Let us first recall and collect the facts about filters on a Boolean algebra
that we have already seen at different places, or that are easy to derive:

e A filter on a Boolean algebra B is an upwards closed, nonempty proper
subset of B which is closed under finite meets (infima);

e an ultrafilter is a maximal filter;
e in a Boolean algebra, the notions of prime filter and ultrafilter coincide;

e if a £ bin a Boolean algebra B, there is an ultrafilter on B which contains
a but not b;

e a filter [/ is an ultrafilter if and only if for each b € B, exactly one element
of {b,b°} belongs to U (here b° denotes the complement, of b);

e if f 1 A — RBisahomomorphismof Boolean algebras and U/ is an ultrafilter
on B, then f~'(U) is an ultrafilter on A;

e if A1s a subset of a Boolean algebra B, there is an ultrafilter on B which
contains A, if and only if for each finite subset {a1,... ,a,} of A, a3 M
c-May, # 0.

Tet B be a Boolean algebra. We denote the set of ultrafilters on B by S(B).
We give S(B) a topology.

Let, for b € B, Uy be {F € S(B)|b e F}.

T claim that the collection {U, | b € B} forms a basis for a topology on S(B).
Tndeed, it is clear that S(B) = UbeR Uy, and you can check for yourself that
Up N Uy = Upripy -

We now examine the topological space S(B) (with the topology generated
by the sets Up).

Proposition 10.1 The space S(B) is a compact Hausdor[f space which has a
basis of clopen (closed and open) sels.

Proof. Every set U, is clopen, since its complement is Upe. So S(B) has a basis
of clopen sets.

IfF#Gin S(B), thereisbe Bwithbe Fand b G;s0 F € Uy, G € Upe,
which are disjoint, open neighborhoods of F and G, respectively. So S(B) is
Hausdorff.

Finally, suppose the collection {Uy, | i € T} covers S(B); then every ultrafilter
on B contains some b;. Tt follows, that the set {(b;)° |7 € T} is not a subset of any
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ultrafilter. But then we must have, for some iy, ... 4, € I, that b; [1---Mb; =0
in B; but this implies that {Us, ,...,Up, } covers S(B). So S(B) is compact.

At this generality, Proposition 10.1 says all there is to say about S(B). This
follows from:

Proposition 10.2 Let X be a nonempty, compact Hausdorff space which has
a basis of clopen sets. Then there is a Boolean algebra B(X), unique up to
isomorphism, such that X is homeomorphic to S(B(X)). Consequently, if B is
a Boolean algebra, then B(S(B)) is isomorphic to B.

Proof. For any topological space X, the set B(X) of clopen subsets of X
contains # and X and is closed under finite unions and intersections as well as
under taking complements. Therefore it is a Boolean algebra.

Now consider an ultrafilter F on B(X). Tn particular this is a collection of
closed subsets of X which 1s closed under finite intersections, so if X 1s compact,
the intersection [ F is nonempty, and if X is Hausdorfl, the intersection is a
singleton {2}, by maximality of the filter. So, we have a function h : S(B(X)) —
X which is easily seen to be a bijection. Tt is also continuous, for if h(F) = =
then F = {UU C X |U clopen,z € U}; so for a clopen basiselement A we have

h'(A)={F e S(B(X))|AeF}t=Uax

which is a basic open in S(B(X)). Since both X and S(B(X)) are compact
Hausdorff, we are done and h is an homeomorphism.

Now let’s look at B(S(B)). Clearly, there is a homomorphism of Boolean
algebras: B — B(S(B)) given by b — U,. This is an injective map. Now
take any clopen subset W of S(B). Then both W and its complement are
unions of clopen basis elements. Since S(B) is compact, we must have W =
Uy, U---UU, forsomeby, ... b, € B;so W = Uy, u...up, and we see that the
map B — B(S(B)) is also surjective. Tt is easy to see that its inverse is also a
homomorphism of Boolean algebras. [ |

Definition 10.3 A Stone space is a compact Hausdorff space with a basis of
clopen sets.

Exercise 67 (Examples) i) Show that Cantor space is a Stone space. Show,
that under the correspondence of proposition 10.2, it corresponds to the

Boolean algebra P(IN).

i) Show that the set {0} U {1 |n € IN,n > 0}, viewed as a subspace of R, is
a Stone space. To which Boolean algebra does it correspondTl’

We shall now extend the correspondence of proposition 10.2 also to maps.
Suppose f : X — Y is a continuous function between topological spaces.
Then f~' : P(Y) — P(X) maps clopen sets to clopen sets, and commutes with
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finite unions and intersections, as well as complements. So it is a homomorphism
of Boolean algebras: B(Y) — B(X).

Now if X and YV are Stone spaces, every homomorphism ¢ : B(Y) — B(X)
is 7! for a unique continuous f : X — Y. For, we have seen that points
of a Stone space are in 1 1 correspondensce with ultrafilters on its associated
Boolean algebra. Since ¢~ ' sends ultrafilters on B(X) to ultrafilters on B(Y),
it determines a map f: X — Y such that ¢ = f=', and it is left to you to see
that f is continuous.

Summing up: we have established that for Stone spaces X and Y there 1s
a 1-1 correspondence between continuous maps X — Y and Boolean homo-
morphisms B(Y) — B(X). If we take Y = X, the the identity map on X

corresponds to the identity map on B(X); and given X Ly 4 7, the com-
position of f and ¢ corresponds to the composition of the maps corresponding
to ¢ and f. Tn the language of Category Theory, we say that the categories of
Stone spaces and Boolean algebras are dually equivalent, or dual to each other
(the word ‘dual’ refers to the fact that the direction of the arrows is reversed).
For the record:

Theorem 10.4 (Stone Duality Theorem) The category of Stone spaces is
dual to the category of Boolean algebras.

Exercise 68 The Boolean algebra 3 = {0, 1} has very special features:

a) for every Boolean algebra B, ultrafilters on B are in 1-1 correspondence
with Boolean homomorphisms B — {J;

b) for every Boolean algebra B there is exactly one Boolean homomorphism
6—B.

Applying Stone Duality, interpret these facts for the corresponding Stone space.

Exercise 69 TLet T be a theory and consider the Boolean algebra L. Describe
the points of the Stone space corresponding to Ly, in terms of T'.

Exercise 70 Show, without using Zorn’s Lemma or any of its equivalents, that
the Compactness Theorem is equivalent to the statement that each of the spaces
S(Lr) is compact.

Exercise 71 Tet X be an arbitrary topological space. Show that there is a
Stone space T(X) and a continnous map n: X — T(X) such that the following
holds: for every continuous function f from X to a Stone space Y, there is a

unique continuous function f: T(X) — VY such that fon =f.
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11 Literature

There are two standard reference works for general Model Theory:

C.C. Chang and H.J. Keisler, Model Theory, Amsterdam, North Holland,
3rd edition 1990

W. Hodges, Model Theory, Cambridge, Cambridge University Press, 1993

Both books are expensive and not very suitable for a first course. The first is
moreover, despite the additions in the 1990 edition, rather old-fashioned.

A nice, compact introduction is
K. Doets, Basic Model theory, Stanford, CSI.T Publications, 1996

However, its emphasis is quite different from that of these notes. Has nothing
on quantifier elimination or model completeness.

General Mathematical Logic books, such as Shoenfield’s Mathematical Logic (a
classic), or Bell & Machover’s A Course in Mathematical logic, usually have a
chapter on Model Theory where basic notions are given.

Material on Real Closed Fields can be found in

N. Jacobson, Lectures in Abstract Algebra, vol. TII, Princeton, Van Nos-
trand, 1964

The proof of Quantifier Elimination for Real Closed Fields in section 8.1 is based
on the paper

P.J. Cohen, Decision Procedures for Real and p-Adic Fields, in: Commu-
nications on Pure and Applied Mathematics XXTT (1969), pp. 131 151

For a detailed proof of Hilbert’s Nullstellensatz, look at

H. Matsumura, Commutative Ring Theory, Cambridge University Press,
1989

There are several directions in which to study Model Theory further. The
hottest fields are Stability Theory and o-Minimality Theory. A few introductory
texts:

A. Pillay, Geometric Stability Theory, New York, Clarendon Press, 1996

D. Marker, M. Messmer and A. Pillay, Model Theory of Fields, Berlin,
Springer, 1996

I.. van den Dries, Tame Topology and o-minimal structures, Cambridge
University Press 1998
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However, without some further introduction in Model Theory it is not advisable
to start on these books right away.

A nice and accessible specialization of Model Theory is the topic of models of
Peano Arithmetic. Two texts:

R. Kaye, Models of Peano Arithmetic, Oxford, Clarendon, 1991

J. van Qosten, Introduction to Peano Arithmetic  (Godel Incompleteness
and Nonstandard Models, Communications of the Mathematical Institute

21 1999, Utrecht University, 1999
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