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1 Introduction and NotationsIn the course Foundations of Mathematics we have made our acquaintance withthe notions of a language L in predicate logic, and a structure A for the lan-guage L. A language is a collection of symbols, divided into three groups: wehave constants, function symbols and relation (or predicate) symbols. Given alanguage L, we have de�ned the class of L-terms.A structure A for the language L is a pair A = (A; (�)A) where A is anonempty set, and (�)A is an interpretation function, de�ned on the symbols inL, such that for every constant c of L, (c)A is an element of A; for every n-placepredicate symbol R, (R)A is a subset of the set An of n-tuples of elements of A;and for every n-ary function symbol F of L, (F )A is a function from An to A.The set A is called the domain, universe, or underlying set of the structure A.In practice we shall often omit brackets, writing FA instead of (F )A and dittofor R.In these notes, structures will be denoted by Gothic symbols A,B, : : : ; theirdomains will be denoted by the corresponding Latin characters A;B; : : : .Given a structure A for the language L, we consider the language LA: forevery element a of A, we add a constant a to the language (and we assume,that the new constants a are di�erent from constants that are already in thelanguage L). The structure A becomes a LA-structure by putting (a)A = a, foreach a 2 A.We have also de�ned the relation A j= �, for LA-sentences �: �rst, for closedLA-terms t, we de�ne their meaning tA in A. Then we de�ned by recursion onthe LA-sentence �:� A j= t = s if and only if tA = sA;� A j= R(t1; : : : ; tn) if and only if ((t1)A; : : : ; (tn)A) 2 RA;� A j= � ^  if and only if A j= � and A j=  ;� A j= � _  if and only if A j= � or A j=  (or both);� A j= :� if and only if A 6j= �;� A j= 9x�(x) if and only if for some a 2 A, A j= �(a);� A j= 8x�(x) if and only if for all a 2 A, A j= �(a)Furthermore we have learnt the notions of L- (or LA-)theory: this is a collectionof L- (or LA-) sentences. A is a model of the theory T if A j= � for every � 2 T .The relation A j= � is pronounced as: A satis�es �, � is true in A, or � holdsin A.We also recall one of the most important theorems we proved in the courseFoundations of Mathematics:Theorem 1.1 (Compactness Theorem) A theory T has a model if and onlyif every �nite subset of T has a model.2



In this course, we shall give an independent proof of Theorem 1.1; that is,independent of the Completeness Theorem.Often, we shall say that a theory is consistent; in this course, this is synony-mous with: has a model.We shall also use the notation T j= �, where T is an L-theory, and � andL-sentence; this means that � is true in every model of T .A theory T is complete if for every sentence � in the language of T , eitherT j= � or T j= :� holds.
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2 Homomorphisms, Embeddings, and DiagramsThe purpose of Model Theory is the study of theories by means of their classesof models. A very useful tool of Model Theory is the possibility of varying thelanguage. Suppose we have two languages L � L0. If B is an L0-structure, thenrestricting its interpretation function to L gives an L-structure A. We say thatA is the L-reduct of B, and that B is an L0-expansion of A. In our de�nitionof A j= �, we have already seen the expansion of A to LA.We start by giving some structure on the class of L-structures. Let A =(A; (�)A) and B = (B; (�)B) be L-structures. A function f : A ! B is called ahomomorphism of L-structures, if it commutes with the interpretation functions.That is:� For every constant c of L, f((c)A) = (c)B;� for every n-ary function symbol F of L and every n-tuple a1; : : : ; an ofelements of A, we have f((F )A(a1; : : : ; an)) = (F )B(f(a1); : : : ; f(an));� for every n-place predicate symbol R of L and n-tuple a1; : : : ; an of el-ements of A, we have: if (a1; : : : ; an) 2 (R)A then (f(a1); : : : ; f(an)) 2(R)B.Examples. If L is the language of groups and A and B are groups, a homo-morphism of L-structures is nothing but a homomorphism of groups. If L is thelanguage f�g of partial orders and A, B are partial orders, a homomorphism isnothing but an order-preserving map. Similar for: rings, graphs, etcetera.We note immediately that if f : A!B and g : B! C are homomorphismsof L-structures, then so is the composition gf : A! C. Moreover, the identityfunction A! A is always a homomorphism of L-structures. A homomorphismf : A ! B is an isomorphism if there is a homomorphism g : B ! A inverseto f (so the compositions gf and fg are the identity functions on A and B,respectively).Exercise 1 Prove: if f : A ! B is an isomorphism of L-structures then forany L-formula �(x1; : : : ; xn) and any n-tuple a1; : : : ; an from A we have:A j= �(a1; : : : ; an) ,B j= �(f(a1); : : : ; f(an))A consequence of this exercise is, that isomorphic L-structures satisfy the sameL-sentences (check this!). Two L-structures that satisfy the same L-sentencesare called elementarily equivalent. Notation: A � B. The notation for isomor-phic structures is �=. Summarizing:A �= B) A � BThe converse implication does not hold!Exercise 2 Prove: an L-theory T is complete if and only if every pair of modelsof T is elementarily equivalent. 4



One sees that the notion of completeness can be characterized by a property ofthe class of models of the theory.A homomorphism f : A ! B is called injective if the function f is. fis an embedding if f is injective and moreover for every relation symbol R ofL and every n-tuple a1; : : : ; an from A: if (f(a1); : : : ; f(an)) 2 (R)B, then(a1; : : : ; an) 2 (R)A. Clearly, if L contains no relation symbols, every injec-tive homomorphism is an embedding, but in the general case the notions aredi�erent.A substructure (or submodel) of an L-structure B is an L-structure A suchthat A is a subset of B and the interpretation function of A is the restriction ofthe one of B to A. Hence: an embedding f : A ! B de�nes an isomorphismbetween A and a submodel of B.If B is an L-structure and X � B, there is a least subset A of B whichcontains X and the elements cB (c a constant of L), and is closed under theinterpretations in B of the function symbols of L; if A 6= ;, A is the domain ofa submodel A of B, the submodel generated by the set X, which we denote byhXi.Exercise 3 Show that the domain of hXi is the setftB(x1; : : : ; xn) jn 2 IN; t(v1; : : : ; vn) an L-term, x1; : : : ; xn 2 XgA structure B is �nitely generated if B = hXi for some �nite subset X of B.Recall that a formula is called atomic if it contains no connectives or quan-ti�ers; in other words if it is of from t1 = t2 or R(t1; : : : ; tn).Exercise 4 Let f : A ! B an embedding. Then for every atomic L-formula�(x1; : : : ; xn) and every n-tuple a1; : : : ; an from A:A j= �(a1; : : : ; an) ,B j= �(f(a1); : : : ; f(an))Prove also that this equivalence in fact holds for every quanti�er-free formula.Exercise 5 Let L = f�g be the language of partial orders. Find out whena monotone map between partial orders is an injective L-homomorphism, andwhen it is an embedding. Give an example of an injective homomorphism whichis not an embedding.Let A be an L-structure with its natural expansion to LA. We de�ne a fewLA-theories in connection to A.� The positive diagram �+A of A is the collection of all atomic LA-sentencesthat are true in A.� The diagram �A of A is the collection of all atomic LA-sentences and allnegations of atomic LA-sentences, that are true in A.The notion of positive diagram generalizes the idea of multiplication table of agroup. 5



Exercise 6 Show that giving an L-homomorphism A ! B is equivalent togiving an expansion of B to LA, which is a model of the positive diagram ofA. Show also, that giving an embedding A ! B is equivalent to giving anexpansion of B to LA which is a model of the diagram of A.We now give an example, in order to apply our de�nitions to a little mathemat-ical theorem.Theorem 2.1 (Order Extension Principle) Let (A;�) be a partially or-dered set. Then there is a linear order �0 on A which extends �; equiva-lently, there is an injective, monotone function from A into a linearly orderedset (B;�00).Proof. The equivalence stated in the theorem is clear, because if (B;�00) is alinear order and f : A! B an injective, order-preserving map, then de�ning �0on A by: x �0 y i� f(x) �00 f(y), gives a linear order on A which extends �.We prove the theorem in two steps.a) First, we do it for A �nite. This is easy; induction on the number of elementsof A. If jAj = 1 we are done. Now if A = fa1; : : : ; an+1g, choose ai 2 A suchthat ai is maximal w.r.t. the order on A. By induction hypothesis Anfaig hasa linear order which extends the one of A relativized to Anfaig; put ai back in,as greatest element.b) The general case. Let L = f�g. We use the idea of diagrams, and theCompactness Theorem. Let T be the LA-theory (where A is the partial orderA, seen as L-structure) consisting of the axioms:1. The positive diagram of A;2. The axioms of a linear order;3. The axioms :(a = b) for a 6= b 2 A.In every �nite subset D of T , there is only a �nite number of constants from theset A; say a1; : : : ; an. Let fa1; : : : ; ang be the sub-partial order of A on theseelements. This has, by a), an extension to a linear order, so D has a model. Bythe Compactness Theorem, T has a model (B;�00); since B is a model of 1), 2)and 3), there is an injective, monotone map from A to B.Exercise 7 As an example of theorem 2.1, de�ne an injective, order-preservingmap from P(IN) to R, where P(IN) is the powerset of IN, ordered by the subsetrelation. 6



3 Elementary Embeddings and Elementary Di-agramsAn embedding f : A ! B of L-structures is called elementary if for ev-ery L-formula �(x1; : : : ; xn) with free variables x1; : : : ; xn and every n-tuplea1; : : : ; an of elements of A, we have:A j= �(a1; : : : ; an) ,B j= �(f(a1); : : : ; f(an))This means that the elements of A have the same properties with respect to A asto B. For example, if we consider Q and Ras �elds (or rings), the embedding isnot elementary since the element 2 of Q is a square in Rbut not in Q. However,if we consider Q and R just as ordered structures, the embedding is elementary,as we shall see later.The elementary diagram E(A) of A is the collection of all LA-sentences whichare true in A.Exercise 8 Giving an elementary embedding f : A!B is equivalent to givingan LA-expansion of B which is a model of E(A).A is called an elementary submodel ofB, notation: A �B, ifA is a substructureof B, and the inclusion is an elementary embedding. Therefore, an elementaryembedding A! B is an isomorphism between A and an elementary submodelof B. We also say that B is an elementary extension of A.Note, that A � B implies A � B. The converse implication, however, is byno means true, not even if A is a submodel of B. Example: let, for L = f�g,A = INnf0g and B = IN. Then A �= B, but the inclusion is not an isomorphism,and not an elementary embedding (check!).Exercise 9 A � B if and only if A is a submodel of B and for every LA-sentence of the form 9y�(y) which is true in B, there is a b 2 A such that �(b)is true in B.Hint: use induction on formulas.The notion of elementary submodel gives rise to the following important the-orems, called the L�owenheim-Skolem-Tarski Theorems; roughly, together theysay that to in�nite structures there are elementarily equivalent structures ofalmost arbitrary in�nite cardinality. That is: predicate logic has nothing to sayabout in�nite cardinalities!Theorem 3.1 (Upward L�owenheim-Skolem-Tarski Theorem) Every in-�nite L-structure has arbitrarily large elementary extensions.Proof. Let A be in�nite (i.e., A is in�nite). By \arbitrarily large" we mean:for every set X there is an elementary extension B of A such that there isan injective function from X into B. The proof is a simple application of theCompactness Theorem (1.1). 7



Given X, we choose for every x 2 X a new constant cx, not in LA. LetL0 = LA [ fcx jx 2 Xg. Consider the L0-theory �:E(A) [ f:(cx = cy) jx; y 2 X;x 6= ygSince A is in�nite, every �nite subset of � has an interpretation in A (simplyinterpret the constants cx by di�erent elements of A) and hence has a model. Bythe Compactness Theorem, � has a modelB. Since B is a model of E(A), thereis an elementary embedding A ! B, so we can identify A with an elementarysubmodel of B. And the assignment x 7! (cx)B is an injective function from Xinto B.The Downward L�owenheim-Skolem-Tarski Theorem is a little bit more in-volved. First, we recall that jjLjj is de�ned as the maximum of the cardinalnumbers ! and jLj (! is the cardinality of the set IN). Recall also, that jjLjj isthe cardinality of the set of all L-formulas.Theorem 3.2 (Downward L�owenheim-Skolem-Tarski Theorem) Let Bbe an L-structure such that jjLjj � jBj and suppose X � B is a set with jjLjj �jXj. Then there is an elementary submodel A of B such that X � A andjXj = jAj.Proof. Given X, let LX = L [X (elements of X as new constants; as usual,we take this union to be disjoint). Note, that jjLXjj = jXj. For every LX -sentence � = 9x (x) which is true in B, we choose an element b 2 B such thatB j=  (cb). Let X1 be the union of X and all the b's so chosen. Again, since weadd at most jjLX jj many new elements, jX1j = jXj. Now repeat this, with X1in the place of X (and LX1 , etcetera), obtaining X2, and this in�nitely often,obtaining a chain X = X0 � X1 � X2 � : : :Let A = Sn2NXn. By induction one proves easily that jXnj = jXj for all n, sojAj = jXj since X is in�nite.Now if � = 9x (x) is an LA-formula which is true in B, then for some n,� is an LXn-formula, so by construction there is a b 2 Xn+1 � A such thatB j=  (b). In particular, this holds for formulas 9x(x = F (a1; : : : ; an)), so A isclosed under the interpretations in B of the function symbols of L, hence A isthe domain of a submodel A of B. But by the same token, A is an elementarysubmodel (exercise 9).An immediate application of the L�owenheim-Skolem-Tarski theorems is the so-called  Los-Vaught test. A theory is called �-categorical for some cardinal number�, if for every pair A;B of models of T with jAj = jBj = �, we have A �= B.Theorem 3.3 ( Los-Vaught Test) Suppose T is a theory which has only in�-nite models, and T is �-categorical for some cardinal number � � jjLjj (L is thelanguage of T ). Then T is complete. 8



Proof. Suppose A and B are models of T . Then both A and B are in�nite byhypothesis, so if � is the maximum of f�; jAj; jBjg then by 3.1 both A and Bhave elementary extensions A0, B0 respectively, with jA0j = jB0j = �. By 3.2,A0 and B0 have elementary submodels A00 and B00 respectively, of cardinality �.Since T is �-categorical, we have:A � A0 � A00 �= B00 � B0 � BHence, A � B for any two models A;B of T ; hence, T is complete (exercise 2).Examples of categorical theoriesa) Let L = f�g and T the theory of dense linear orders without end-points.By the familiar back-and-forth construction, T is !-categorical. T is not2!-categorical, because (0; 1) and (0; 1)[ (1; 2) are nonisomorphic modelsof T .b) \Torsion-free divisible abelian groups".Let L be the language of groups, say L = f0; +;�g and T the L-theorywith axioms: Axioms of an abelian group\torsion-free" f8x(x+ � � �+ x| {z }n times = 0 ! x = 0) jn � 1g\divisible" f8x9y(y + � � �+ y| {z }n times = x) jn � 1gT is not !-categorical, but T is categorical for uncountable cardinalities �.Sketch of proof: a divisible torsion-free abelian group is a Q-vector space.If such a space has uncountable cardinality �, then since Q is countable,it must have a basis of cardinality �; but any two vector spaces over thesame �eld with bases of the same cardinality are isomorphic as vectorspaces, hence as abelian groups.If the cardinality of the vector space is ! however, then its basis may be�nite or countably in�nite.c) \Algebraically closed �elds of a given �xed characteristic".Again, this is categorical in every uncountable cardinality but not !-categorical; consider the �elds Q and Q(X). Their algebraic closures Qand Q(X) are both countable, but not isomorphic (Why?).d) Let L consist of one 1-place function symbol F . Let T be the theory withaxioms: 8xy(F (x) = F (y) ! x = y)8x9y(F (y) = x)f8x:(Fn(x) = x) jn � 1gA model of T is nothing but a set X with aZ-action on it, which action isfree. So X naturally decomposes into a number of orbits, which are all in9



1-1 correspondence with Z. Therefore if jXj > !, the number of orbits isequal to jXj. So T is categorical in every uncountable cardinality. Howeverif X is countable, the number of orbits may be either �nite or countablyin�nite.In this list we have seen examples of theories that are !-categorical but not cate-gorical in higher cardinalities, or the converse: categorical in every uncountablecardinal, but not in ! (of course, there are also theories which are categoricalin every cardinality: the empty theory). That this is not a coincidence, is thecontent of the famous Morley Categoricity Theorem: if a theory (in a countablelanguage) is categorical in an uncountable cardinality, it is categorical in everyuncountable cardinality. This is a deep result of Model Theory, and the startingpoint of a whole branch of Model Theory, Stability Theory.
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4 Directed Systems of L-structuresLet (K;�) be a partially ordered set (or poset for short). K is called directed ifK is nonempty and every pair of elements of K has an upper bound in K, thatis K satis�es 8xy9z(x � z ^ y � z).A directed system of L-structures consists of a family (Ak)k2K of L-structuresindexed by K, together with homomorphisms fkl : Ak ! Al for k � l. Thesehomomorphisms should satisfy:� fkk is the identity homomorphism on Ak� if k � l � m, then fkm = flmfklGiven such a directed system, we de�ne its colimit as follows.First, take the disjoint union of all the sets Ak:Gk2KAk = f(k; a) j k 2 K; a 2 AkgThen de�ne an equivalence relation � on this by putting (k; a) � (l; b) if there ism � k; l in K such that fkm(a) = flm(b) (see for yourself how the directednessof K is used to show that this relation is transitive!). Let A = (Fk2K Ak)= �be the set of equivalence classes; we denote the equivalence class of (k; a) by[k; a].We de�ne an L-structure A with underlying set A as follows. For an n-aryfunction symbol F of L we putFA([k1; a1]; : : : ; [kn; an]) = [k; FAk(fk1k(a1); : : : ; fknk(an))]where, by directedness of K, k is chosen so that k � k1; : : : ; k � kn all hold. Ofcourse we must show that this de�nition makes sense: that it does not dependon the choice of representatives, or the choice of k. This is done in the followingexercise:Exercise 10 Prove: if (k1; a1) � (k01; a01); : : : ; (kn; an) � (k0n; a0n) and k0 �k01; : : : ; k0n, then(k; FAk(fk1k(a1); : : : ; fknk(an))) � (k0; FAk0 (fk01k0(a01); : : : ; fk0nk0(a0n)))If R is an n-place relation symbol of L and [k1; a1]; : : : ; [kn; an] are n elementsof A, we let ([k1; a1]; : : : ; [kn; an]) 2 RA if and only if there is k � k1; : : : ; kn inK such that (fk1k(a1); : : : ; fknk(an)) 2 RAkAgain, check that this does not depend on representatives.Lemma 4.1 The function fk : Ak ! A de�ned by fk(a) = [k; a], is a homo-morphism of L-structures. If k � l, the diagramAk //fkl
  fk AA

AA
AA

A
Al

�� fl~ ~
~ ~
~ ~
~A11



of L-structures and homomorphisms, is commutative. Moreover, if (gk : Ak !B)k2K is another K-indexed system of homomorphisms satisfying glfkl = gkwhenever k � l, there is a unique homomorphism f : A!B such that ffk = gkfor all k 2 K.Exercise 11 Prove lemma 4.1.Exercise 12 In the notation of lemma 4.1 and above: if all the maps fkl :Ak ! Al are injective then all the maps fk : Ak ! A are injective. The sameholds with \injective" replaced by \an embedding".Lemma 4.2 (Elementary System Lemma) If all fkl : Ak ! Al are ele-mentary embeddings, so are all the maps fk.Proof. So we suppose all fkl : Ak ! Al are elementary embeddings. Now byinduction we prove for an L-formula �(x1; : : : ; xn):For all k 2 K and all a1; : : : ; an 2 Ak,Ak j= �(a1; : : : ; an) , A j= �(fk(a1); : : : ; fk(an))Note, that the universal quanti�er \for all k 2 K" occurs inside the inductionhypothesis!I give only the quanti�er step (in fact, the step for atomic � is included inexercise 12, and the steps for the propositional connectives are easy). So let� � 9x .If Ak j= 9x (x; a1; : : : ; an) so for some a 2 Ak, Ak j=  (a; a1; : : : ; an),then by induction hypothesis A j=  (fk(a); fk(a1); : : : ; fk(an)) whence A j=9x (x; fk(a1); : : : ; fk(an)).Conversely, suppose A j= 9x (x; fk(a1); : : : ; fk(an)). Then for some [k0; a] 2A we have A j=  ([k0; a]; fk(a1); : : : ; fk(an)). Take, by directedness of K, ak00 2 K with k00 � k; k0. Since fk00fk0k00 = fk0 , fk00fkk00 = fk and [k0; a] =[k00; fk0k00(a)], we haveA j=  (fk00(fk0k00(a)); fk00 (fkk00(a1)); : : : ; fk00 (fkk00(an)))By induction hypothesis, we have:Ak00 j=  (fk0k00(a); fkk00(a1); : : : ; fkk00 (an))whence Ak00 j= 9x (x; fkk00(a1); : : : ; fkk00(an)). Now we use the fact that fkk00is an elementary embedding, to deduce that Ak j= 9x (x; a1; : : : ; an), and weare done. 12



5 Theorems of Robinson, Craig and BethWe shall see an application of the Elementary System Lemma 4.2 below, in theproof of Theorem 5.2. First a lemma whose proof is another application of theCompactness Theorem:Lemma 5.1 Let L � L0, A an L-structure and B an L0-structure. Supposemoreover that A is elementarily equivalent to the L-reduct of B. Then there isan L0-structure C and a diagram of embeddings:A
��

f
??

??
??

??B //g Cwhere g is an elementary embedding of L0-structures, and f is an elementaryembedding of L-structures.Proof. We consider the language L0AB = LA[L0B, where we take the constantsfrom A and B disjoint. In L0AB consider the theory T = E(A) [ E(B) (E(A)is an LA-theory, and E(B) is an L0B-theory, so both are L0AB-theories). Thenany model C of T gives us the required diagram, by exercise 8.So for contradiction, suppose T has no model. By Compactness, some �-nite subset of T has no model, so taking conjunctions we may assume thatfor some �(a1; : : : ; an) 2 E(A) and  (b1; : : : ; bm) 2 E(B), � ^  has nomodel. But then, no L0B-structure which satis�es  (b1; : : : ; bm) can be ex-panded with interpretations for a1; : : : ; an such that the expansion satis�es �;this means that every L0B-structure which satis�es  (b1; : : : ; bm) will satisfy8x1 � � �8xn:�(x1; : : : ; xn). This is a contradiction, since this is an L-sentence,A j= 9x1 � � �xn�(x1; : : : ; xn), and A is elementarily equivalent to the L-reductof B.Exercise 13 Prove that for two L-structures A and B, the following are equiv-alent:i) A � Bii) A and B have a common elementary extension.Theorem 5.2 (Robinson's Consistency Theorem) Let L1 and L2 be twolanguages, L = L1 \ L2. Suppose that T is a complete L-theory and let T1 bean L1-theory, T2 an L2-theory which both extend T . If both T1 and T2 have amodel, so has T1 [ T2.Proof. Let A0 be a model of T1, B0 a model of T2. Then A0 and B0 are alsomodels of T and hence, since T is complete, their L-reducts are elementarily13



equivalent. By lemma 5.1, there is a diagramA0
!!

f0
CC

CC
CC

CCB0 //h0 B1with h0 an elementary extension of L2-structures, and f0 elementary as a mapbetween L-structures. The L-reducts of A0 and B1 are still elementarily equiv-alent, so applying the same lemma in the other direction gives a diagramA0 //k0
!!

g0 CC
CC

CC
CC

A1B0 //h0 B1OO g0with g0 an elementary map of L-structures and k0 elementary of L1-structures.We can proceed in this way, obtaining a directed systemA0 //k0
!!f0 CC

CC
CC

CC
A1 //k1

!!f1 CC
CC

CC
CC

A2 // � � �B0 //h0 B1OO g0 //h1 B2OO g1 // � � �in which the k's are elementary maps of L1-structures, the f 's and g's of L-structures, and the h's of L2-structures. Since the colimit C of this system isequally the colimit of the A's and the colimit of the B's, it has an L1 [ L2-structure into which both A0 and B0 embed elementarily, by lemma 4.2. So Cis the required model of T1 [ T2.The following theorem states a property that is commonly known as \theamalgamation property for elementary embeddings".Theorem 5.3 Every diagram BA ??f ~~~~~~~

��
g @@

@@
@@

@@ C14



consisting of elementary embeddings between L-structures, can be completed toa commutative diagram B
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DC >>~~~~~~~~of elementary embeddings between L-structures.Proof. Formulate the elementary diagram E(B) in the languageL1 = LA [ fb j b 62 f [A]g(simply replacing the constants f(a) by a); and similarly, write E(C) inL2 = LA [ fc j c 62 g[A]gThen L1 \ L2 = LA. In LA we have the complete theory E(A), and E(B) andE(C) are extensions of it in L1, L2, respectively. By 5.2, E(B) [ E(C) has amodel D. Check that this gives a diagram of the required form.Exercise 14 Give also a direct proof of theorem 5.3, not using theorem 5.2 butalong the lines of the proof of lemma 5.1.A more serious application of Robinson's Consistency Theorem is Craig's Inter-polation Theorem.Theorem 5.4 (Craig Interpolation Theorem) Suppose � and  areL-sentences such that � j=  , that is: every L-structure in which � is true,satis�es also  . Then there is an L-sentence � with the properties:i) � j= � and � j=  ;ii) Every non-logical symbol (function symbol, constant or relation symbol)which occurs in �, also occurs both in � and  Proof. Such a � as in the theorem is called a Craig interpolant for � and  .We assume for a contradiction, that no such Craig interpolant exists.Then � has a model, for otherwise 9x:(x = x) is a Craig interpolant. Simi-larly, : has a model, for otherwise 8x(x = x) were a Craig interpolant.Let L� the set of non-logical symbols in �, and L of those in  ; let L0 =L� \L . Let � be the set of L0-sentences � such that either � j= � or : j= �.Suppose � [ f�g has no model. Then by compactness, there are sentences�1 and �2 such that � j= �1 and : j= �2, and f�1; �2; �g has no model. Thensince � j= �1, f�; �2g has no model, whence� j= :�2 and :�2 j=  15



contradicting our assumption that no Craig interpolant exists. In a similar way,� [ f: g is consistent.Now apply Zorn's Lemma to �nd a set �0 of L0-sentences which is maximalwith respect to the properties that � � �0 and both �0 [f�g and �0 [f: g areconsistent. I claim that �0 is a complete L0-theory.For, suppose �0 is not complete, then there is a sentence � such that � 62 �0and �0 [ f�g is consistent. Then by maximality of �0, either �0 [ f�; �g, or�0 [ f�;: g is inconsistent. In the �rst case, there is a sentence � 2 �0 suchthat � j= � ! :�. Then � ! :� is, by de�nition of �, in �0; since also � 2 �0we see that � [ f�g is inconsistent, contradicting the choice of �. In the othercase one obtains a similar contradiction. So �0 is complete.We are now in the position to apply Robinson's Consistency Theorem 5.2to the complete L0-theory �0 and its consistent extensions �0 [ f�g and �0 [f: g. The conclusion is that �0[f�;: g is consistent, but this contradicts theassumption � j=  .Our last theorem in this section is due to Beth. We consider a language L, anda new n-place relation symbol P not in L. Let T be an L [ fPg-theory. T issaid to de�ne P implicitly if for any L-structure A, there is at most one way toexpand A to an L[fPg-structure which is a model of T . This can be said in adi�erent way: let P 0 be another, new n-place relation symbol and consider thetheory T (P 0) where all P 's are replaced by P 0's. Then T de�nes P implicitly ifand only ifT [ T (P 0) j= 8x1 � � �xn(P (x1; : : : ; xn) $ P 0(x1; : : : ; xn))On the other hand we say that T de�nes P explicitly if there is an L-formula'(x1; : : : ; xn) such thatT j= 8x1 � � �xn(P (x1; : : : ; xn) $ '(x1; : : : ; xn))Clearly, if T de�nes P explicitly, then T de�nes P implicitly; the converse isknown as Beth's De�nability Theorem.Theorem 5.5 (Beth De�nability Theorem) If T de�nes P implicitly, thenT de�nes P explicitly.Proof. Add new constants c1; : : : ; cn to the language. By the remark above,we have T [ T (P 0) j= P (c1; : : : ; cn) ! P 0(c1; : : : ; cn)By Compactness we can �nd �nite � � T and �0 � T (P 0) such that� [�0 j= P (c1; : : : ; cn) ! P 0(c1; : : : ; cn)Taking conjunctions we can in fact �nd an L[fPg-formula  , such that T j=  and  ^  (P 0) j= P (c1; : : : ; cn) ! P 0(c1; : : : ; cn)16



Taking the P 's to one side and the P 0's to another, we get (P ) ^ P (c1; : : : ; cn) j=  (P 0) ! P 0(c1; : : : ; cn)By the Craig interpolation theorem, there is an L-formula �, such that  (P ) ^P (c1; : : : ; cn) j= �(c1; : : : ; cn) and �(c1; : : : ; cn) j=  (P 0) ! P 0(c1; : : : ; cn). Re-placing P 0 by P again in this second entailment and using that T j=  (P ),we �nd that �(c1; : : : ; cn) is, in T , equivalent to P (c1; : : : ; cn); so since thec1; : : : ; cn are arbitrary new constants,T j= 8x1 � � �xn(�(x1; : : : ; xn) $ P (x1; : : : ; xn))and we are done.Exercise 15 In this section we have proved the Craig Interpolation Theoremfrom Robinson's Consistency Theorem. Now assume the Craig InterpolationTheorem and use it to give another proof of the Robinson Consistency Theorem.
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6 Preservation TheoremsLet T be an L-theory. We consider the class of models of T , as subclass of theclass of L-structures; if the class of models of T is closed under certain operationsof L-structures, we also say that T is preserved under those operations. In thissection we shall see that preservation under certain operations can be related tothe syntactical structure of axioms for T . For example, the  Los-Tarski Theorembelow (Theorem 6.2) says that a theory is preserved under submodels if andonly if it is equivalent to a theory consisting solely of sentences of the form8x1 � � �8xn' with ' quanti�er-free.We shall now de�ne some notions precisely. A set of axioms for T is a theoryT 0 which has exactly the same models as T (hence, is logically equivalent to T ).An L-formula of the form 8x1 � � � 8xn', with ' quanti�er-free, is called a �1-formula; a formula 9x1 � � � 9xn', with ' quanti�er-free, is called a �1-formula.Generally, a formula is �n+1 if it is of form 8x1 � � �8xm' with ' a �n-formula,and dually it is �n+1 if it is of form 9x1 � � � 9xm' with ' a �n-formula. Onealso says ' 2 �n, meaning ' is a �n-formula, etc.Lemma 6.1 Let T be an L-theory and � a set of L-sentences which is closedunder disjunction. Suppose that the following holds: whenever A is a model ofT , and B an L-structure which satis�es all sentences in � which are true in A,then B is a model of T . Then T has a set of axioms which is a subset of �.Proof. Let � be the set f� 2 � jT j= �g. We show that every model of � is amodel of T , so that � is a set of axioms for T .Suppose B is a model of �. Let � = f:� j � 2 �;B j= :�g. I claim thatT [� is consistent. For suppose not, then for some :�1; : : : ;:�n 2 � we wouldhave T j= :(:�1 ^ � � � ^ :�n), i.e. T j= �1 _ � � � _ �n. Since � is closed underdisjunctions, (�1 _ � � � _ �n) 2 �. We obtain a contradiction, since on the onehand B is a model of �, on the other hand B j= :(�1 _ � � � _ �n).Let A be a model of T [�. Then for � 2 � we have: if A j= � then (:�) 62 �,hence B 6j= :�, so B j= �. By the assumption in the lemma, and the fact thatA is a model of T , we get that B is a model of T . Since we started with anarbitrary model B of �, we see that � is a set of axioms for T .A theory T is said to be preserved under substructures if any substructure of amodel of T is again a model of T . For example, any substructure of a group isa group; but not every subring of a �eld is a �eld; hence the theory of groups ispreserved under substructures but the theory of �elds isn't.Theorem 6.2 ( Los-Tarski) A theory is preserved under substructures if andonly if it has a set of axioms consisting of �1-sentences.Proof. Every �1-sentence which is true in A, is true in every substructure ofA (check!), so one direction is obvious.For the other, we shall apply Lemma 6.1, observing that the set of L-sentences which are equivalent to �1-sentences, is closed under disjunction.18



So let A be a model of T , and suppose every �1-sentence which is true inA also is true in B. Now consider the theory T [�B in LB. If this theory isinconsistent, then there is a quanti�er-free sentence �(b1; : : : ; bn) in �B suchthat T[f�g has no model. This means, that A, which is a model of T , cannot beexpanded to an L[fb1; : : : ; bng-structure which models �; from which it followsthat A j= 8x1 � � � 8xn:�(x1; : : : ; xn). But this is a �1-sentence, so by assump-tion we must have B j= 8x1 � � � 8xn:�(x1; : : : ; xn); which is a contradiction,since �(b1; : : : ; bn) is an element of �B.We conclude that T [�B has a model C, and B embeds into C. Because Tis preserved under submodels, B is a model of T .Lemma 6.1 now tells us that T has a set of axioms consisting of �1-formulas.Exercise 16 Strengthen the argument in the proof of Theorem 6.2 to prove:if A and B are L-structures such that every �1-sentence which is true in A, istrue in B, then B is a substructure of an elementary extension of A.Exercise 17 Use the previous exercise to prove the following result. Let T8 bethe set of �1-sentences which are consequences of T . Then every model of T8is a substructure of a model of T . Conversely, every substructure of a model ofT is a model of T8.Exercise 18 Relativise Theorem 6.2 to: suppose T is a subtheory of T 0 andfor every pair A;B of models of T with B a submodel of A, we have that if Ais a model of T 0, then so is B. Then there is a set of �1-sentences � such thatT [ � is a set of axioms for T 0.Hint: consider the set � of sentences � for which there is a �1-sentence  suchthat T j= �$  Our next theorem characterizes theories which have a set of �2-axioms. We saythat a theory T is preserved under directed unions if for any directed system(Ak)k2K of L-structures as in section 4 such that all homomorphisms fkl (fork � l) are embeddings: if all Ak are models of T , then so is the colimit of thesystem.Theorem 6.3 (Chang- Los-Suszko) A theory T is preserved under directedunions if and only if T has a set of axioms consisting of �2-sentences.Proof. First, we do the easy direction: let A be the colimit. Then every �2-sentence which is true in every Ak, is also true inA, for let 8x1 � � �8xn9y1 � � �9ym be such a sentence, with  quanti�er-free; and take a1; : : : ; an 2 A. Thenby construction of the colimit, since K is directed there is k 2 K such thata1 = fk(a01); : : : ; an = fk(a0n) for suitable a01; : : : ; a0n 2 Ak. Then in Ak we can�nd b1; : : : ; bm such that Ak j=  (a01; : : : ; a0n; b1; : : : ; bm). Because fk : Ak ! Ais an embedding, we haveA j=  (a1; : : : ; an; fk(b1); : : : ; fk(bm))19



Hence, A j= 8x1 � � � 8xn9y1 � � �9ym .For the other direction, we use again Lemma 6.1, observing that the disjunctionof two �2-sentences is equivalent to a �2-sentence. So, let A be a model of T ,T be preserved under directed unions, and B satis�es every �2-sentence whichis true in A. We construct a directed system of embeddings, in fact a chain:B = B0 ! A1 !B1 ! A2 !B2 ! � � �with the properties:i) An � Aii) the composed embedding Bn !Bn+1 is elementary;iii) every �1-sentence in the language LBn which is true in Bn, is also truein An+1 (regarding An+1, via the embedding, as an LBn -structure in theobvious way)The construction will proceed inductively, and we shall assume each of theconditions i){iii) as induction hypothesis, as we go along. We start by puttingB0 = B; this was easy.If Bn has been constructed, in order to make An+1 we consider the theoryTh(A)[�Bn , where Th(A) is the set of all L-sentences which are true in A, and�Bn is the set of �1-sentences in the language LBn which are true in Bn (note,that every quanti�er-free sentence is trivially a �1-sentence, so �Bn � �Bn ).Suppose this theory is inconsistent; then for some sentence = 8y1 � � � 8yn'(b1; : : : ; bm; y1; : : : ; yn)with  2 �Bn , we have that Th(A)[f g has no model. As before, we see thenthat A j= 8x1 � � �8xm9y1 � � �9yn:'Since this is a �2-sentence, it must, by assumption on A and B, be true in B,which by induction hypothesis is an elementary submodel of Bn; but this is incontradiction with the fact that  is true in Bn (check!).Therefore, Th(A) [ �Bn is consistent, and we let An+1 be a model of it.Clearly, An+1 � A, and condition iii) also holds, for Bn and An+1.If An+1 has been constructed, we consider the theory E(Bn) [ �An+1 in thelanguage LAn+1 (since Bn is a submodel of An+1 we can take E(Bn) to be atheory in this language).Suppose this theory is inconsistent. Then for some formulas � 2 E(Bn) and 2 �An+1 we have � j= : . Now  is of form  (b1; : : : ; bk; a1; : : : ; al) witha1; : : : ; al 2 An+1nBn and b1; : : : ; bk 2 Bn. We see, thatBn j= 8x1; : : : ; xl: (b1; : : : ; bk; x1; : : : ; xl)20



which is a �1-sentence in the language LBn . By induction hypothesis iii) then,An+1 j= 8x1; : : : ; xl: (b1; : : : ; bk; x1; : : : ; xl)which is, in a now familiar way, a contradiction.We let Bn+1 be a model of E(Bn) [ �An+1 . Then the embedding Bn !Bn+1 is elementary, which is the only induction hypothesis we have to check atthis stage. This �nishes the construction of the sequenceB0 ! A1 !B1 ! A2 ! � � �In order to �nish the argument: let C be the colimit of this chain. Then C isequally the colimit of the chainA1 ! A2 ! � � �which is a chain of models of T ; so since T is preserved by directed unions, C isa model of T . On the other hand, C is also colimit of the chainB0 !B1 !B2 ! � � �which is a chain of elementary embeddings; by the Elementary System Lemma(4.2), B ! C is an elementary embedding. It follows that B is a model of T ,which was to be proved. A �nal application of Lemma 6.1 now yields the result.Exercise 19 Use Theorem 6.3 to prove the following equivalence: T has a setof axioms consisting of �2-sentences if and only if the following property holds:whenever A is an L-structure and for every �nite subset A0 � A there is asubstructure B of A such that A0 � B and B is a model of T , then A is a modelof T .Exercise 20 Suppose that T satis�es the following property: whenever A is amodel of T , and B;C are substructures of A which are also models of T , andB \C 6= ;, then B \ C (the substructure with domain B \C) is also a modelof T .Show that T has a set of axioms consisting of �2-sentences.I mention one more preservation theorem, without proof. Call a formula positiveif it does not contain the symbols : or !.A theory T is said to be preserved under homomorphic images if wheneverA is a model of T and f : A ! B a surjective homomorphism, then B is amodel of T .Theorem 6.4 A theory is preserved under homomorphic images if and only ifit has a set of positive axioms.Exercise 21 Prove the easy part of theorem 6.4, that is: every positive sentenceis preserved under homomorphic images.21



7 Filters and UltraproductsLet I be a set. A �lter over I is a subset U of P(I), the powerset of I, satisfyingthe properties:i) I 2 U ;ii) if U 2 U and U � V � I, then V 2 U ;iii) U; V 2 U implies U \ V 2 U , for any U; V � I;iv) ; 62 U .Examples. For every nonempty subset J of I, there is the principal �lterUJ = fA � I j J � AgIf I is in�nite, there is the Fr�echet �lter or co�nite �lterUF = fA � I j InA is �nitegExercise 22 Let A be a set of nonempty subsets of I, such that for every �nitesubcollection fA1; : : : ; Ang of A, the intersectionA1 \ � � � \Anis nonempty. Show, that the collectionfU � I j 9A1 � � �An 2 A(A1 \ � � � \An � U )gis a �lter (it is said to be the �lter generated by A).Exercise 23 (Filters and Congruence Relations) A congruence relation onP(I) is an equivalence relation � on P(I), such that � satis�es the two prop-erties: A � B ) C \A � C \BA � B ) InA � InBShow: every �lter U over I determines a congruence relation on P(I) by:A � B i� (((InA) [B) \ (A [ (InB))) 2 UConversely, show that for every congruence relation on P(I) such that ; 6� I,fA jA � Ig is a �lter over I.Let U be a �lter over the set I, and suppose that (Ai)i2I is a family of sets.We de�ne the reduced product modulo U , written �UAi, as follows. The set�UAi will be (Yi2I Ai)= �22



where Qi2I Ai is the product of all the sets Ai (that is the set of all I-indexedsequences (xi)i2I such that xi 2 Ai for all i), and � is the equivalence relationgiven by: (xi)i2I � (yi)i2I i� fi 2 I jxi = yig 2 UThis is an equivalence relation: since I 2 U we have (x)i � (x)i; and obviously,the relation is symmetric. If (x)i � (y)i and (y)i � (zi), then if U = fi 2I jxi = yig and V = fi 2 I j yi = zig then clearly U \ V � fi 2 I jxi = zig, so(x)i � (z)i.Exercise 24 Show that if U is the principal �lter UJ for J � I, then �UAi isin bijective correspondence with Qi2J Ai.An ultra�lter is a maximal �lter, i.e. a �lter that cannot be extended to a larger�lter.Exercise 25 Show that for an ultra�lter U over I:a) U 2 U or InU 2 U , for every U � I;b) if U [ V 2 U , then U 2 U or V 2 U .Exercise 26 Show that in the correspondence of Exercise 23, an ultra�ltercorresponds to a congruence relation with exactly two classes.Exercise 27 Show:a) If an ultra�lter is a principal �lter UJ , J is a singleton set;b) if an ultra�lter is not principal, it contains every co�nite set.Lemma 7.1 Every �lter is contained in an ultra�lter.Exercise 28 Prove Lemma 7.1, using Zorn's Lemma.Exercise 29 Re�ne Lemma 7.1 to the following statement: suppose U is a�lter, and A a collection of subsets of I such that no element of U is a subsetof a �nite union of elements of A. Then U is contained in an ultra�lter that isdisjoint from A.If U is an ultra�lter, the reduced product QU Ai is called an ultraproduct.Exercise 30 Let I = IN, and Ai = f0; 1g for all i 2 IN. Show that for everyultra�lter U over IN, the ultraproduct QU Ai has cardinality 2.Exercise 31 Let again I = IN, and Ai = f0; : : : ; ig. Let U be an ultra�lterover IN. Show:a) If U is principal, QU Ai is �nite;b) if QU Ai is non-principal, QU Ai is uncountable.23



We shall now extend the reduced product construction to L-structures.First, if we are given, for each i, an n-ary function fi : (Ai)n ! Ai, we havea function f : (Qi2I Ai)n !Qi2I Ai de�ned byf((a1i )i; : : : ; (ani )i) = (fi(a1i ; : : : ; ani )iNow if U is a �lter over I and (a1i )i � (b1i )i; : : : ; (ani )i � (bni )i in the equivalencerelation de�ning the reduced productQU Ai, then for each k = 1; : : : ; n we havefi j aki = bki g 2 Uso since U is closed under �nite intersections,fi j 8k(1 � k � n! aki = bki )g 2 UThis clearly implies fi j fi(a1i ; : : : ; ani ) = fi(b1i ; : : : ; bni )g 2 U , sof((a1i )i; : : : ; (ani )i) � f((b1i )i; : : : ; (bni )i)Hence f determines a function: (QU Ai)n !QU Ai, which we shall also denoteby f . By the above, we may putf([(a1i )i]; : : : ; [(ani )i]) = [(fi(a1i ; : : : ; ani ))i]Secondly, if in every Ai an element ci is chosen, this determines an obviouselement [(ci)i] of QU Ai.Thirdly, if for every i we have an n-ary relation Ri � (Ai)n, we de�ne ann-ary relation R on QU Ai byR = f([(a1i )i]; : : : ; [(ani )i]) jfi j (a1i ; : : : ; ani ) 2 Rig 2 UgExercise 32 Show that R is well-de�ned.In this way, we see that if every Ai is the domain of an L-structure Ai, QU Aiis the domain of an L-structure QU Ai.Exercise 33 If t is an L-term with variables x1; : : : ; xn and A = QU Ai, and[(a1i )i]; : : : ; [(ani )i] are elements of QU Ai, thentA([(a1i )i]; : : : ; [(ani )i]) = [(tAi(a1i ; : : : ; ani ))i]From this exercise, and the de�nition of the interpretation of relation symbolsof L in the reduced product, we see:Proposition 7.2 Let A = QU Ai as above. Then every atomic L-formula 'has the following property: if ' has n free variables x1; : : : ; xn, then for everyn-tuple ([(a1i )i]; : : : ; [(ani )i]) of elements of QU Ai,A j= '([(a1i )i]; : : : ; [(ani )i]) ,fi jAi j= '(a1i ; : : : ; ani )g 2 U24



Lemma 7.3 The collection � of L-formulas which have the property in Propo-sition 7.2, is closed under conjunction and existential quanti�cation.Proof. Let us drop the constants from the notation. Since always U \ V 2 Uif and only if both U 2 U and V 2 U , we have for ';  2 �:A j= ' ^  ,fi jAi j= 'g 2 U and fi jAi j=  g 2 U ,fi jAi j= ' ^ g 2 Uso ' ^  is in �.For existential quanti�cation, suppose '(x) 2 � (again, ' may have morefree variables, which we suppress). If A j= 9x' so A j= '([(ai)i]) then byassumption fi jAi j= '(ai)g 2 U so certainly fi jAi j= 9x'g 2 U since this is abigger set.Conversely if fi jAi j= 9x'g = U 2 U , pick for each i 2 U an ai 2 Aisuch that Ai j= '(ai). For i 62 U , let ai 2 Ai arbitrary. Then (ai)i satis�es:fi jAi j= '(ai)g 2 U , so by assumption A j= '([(ai)i]); hence A j= 9x'.Theorem 7.4 ( Los; Fundamental Theorem for Ultraproducts)a) If U is an ultra�lter, every L-formula has the property of proposition 7.2;b) hence, for L-sentences �,A j= �, fi 2 I jAi j= �g 2 UProof. a). From Proposition 7.2 and Lemma 7.3 we know that the collection� of formulas satisfying the mentioned property, contains all atomic formulasand is closed under ^ and 9. Because every formula is logically equivalent toa formula that contains only f^; 9;:g, it su�ces to show that when U is anultra�lter, the collection � is closed under :.But we know for an ultra�lter U , that U 2 U if and only if InU 62 U , so' 2 � implies: A j= :' ,fi jAi j= 'g 62 U ,fi jAi j= :'g 2 Uso :' 2 �.b) This is an immediate consequence of a).Exercise 34 a) Suppose Ai = A for all i 2 I, and U is an ultra�lter over I.The ultraproduct QU A is then called an ultrapower of A. Show, that themap A!QU A, given by a 7! [(a)i], is an elementary embedding.b) Suppose (Ai)i, (Bi)i are two I-indexed collections of L-structures, and letfi : Ai !Bi be a homomorphism for all i. Given an ultra�lter U over I,de�ne a homomorphism f : QU Ai ! QUBi and show: if every fi is anelementary embedding, so is f . 25



We turn now to some applications of the Fundamental Theorem for Ultra-products, and the Compactness Theorem.Let K be a class of L-structures. We say that the class K is de�nable if thereis an L-sentence � such that K is the class of models of �. K is elementary ifthere is an L-theory T such that K is the class of models of T . The followingtheorem characterizes de�nable and elementary classes.Theorem 7.5 a) A class K of L-structures is de�nable if and only if bothK and its complement are elementary;b) K is elementary if and only if K is closed under elementary equivalenceand ultraproducts.Proof. a) If K is the class of models of �, then the complement of K is the classof models of :�, so both classes are elementary. Conversely if K is the class ofmodels of an L-theory T , and its complement is the class of models of anothertheory T 0, then clearly T [T 0 is inconsistent; so, assuming T and T 0 to be closedunder conjunctions, by Compactness there are sentences � 2 T ,  2 T 0 suchthat � ^  has no model. Clearly then, every model of � is a model of T (andconversely, since � 2 T ), and every model of  is a model of T 0 and vice versa.So K is de�nable.b) One direction follows directly from the Fundamental Theorem: if K is theclass of models of T , (Ai)i2I is a family of elements of K and U is an ultra�lterover I, then the ultraproduct QU Ai is a model of T , hence in K. And obviously,K is closed under elementary equivalence.Conversely, suppose K is closed under ultraproducts and elementary equiv-alence. Let T the set of L-sentences which are true in all elements of K. Weshow that K is the class of models of T . So let B be a model of T . Let� = f�1; : : : ; �ng be a �nite subset of Th(B) (the set of L-sentences true in B).Then there is an element of K in which every element of � is true; for otherwise,:(�1 ^ � � � ^ �n) would be an element of T . But this cannot be, since B is amodel of T . Choose for every such � a model A� of �, from K. So, I is the setof all �nite subsets of Th(B). For every � 2 Th(B) let U� be f� jA� j= �g.Then the collection fU� j� 2 Th(B)g is closed under �nite intersections, hencegenerates a �lter U which can be extended to an ultra�lter F ; let C be theultraproduct QF A�. Just as in the ultraproduct proof of the Compactnesstheorem, one sees that C is a model of Th(B), hence is elementarily equivalentto B. Moreover, C is an element of K since K is closed under ultraproducts; soB is an element of K since K is closed under elementary equivalence. Since westarted with an arbitrary model B of T , we see that K contains every model ofT .In a way quite similar to the proof of Theorem 7.5b), we can use the Funda-mental Theorem for Ultraproducts to prove the Compactness Theorem.Suppose � is a set of L-sentences such that every �nite subset � of � has amodel A�. We let I = f� � � j� �niteg, and for each � 2 � let U� = f� 2I j� 2 �g. Since f�;  g 2 U� \ U for all �;  2 �, the collection fU� j� 2 �gis contained in an ulttra�lter F over I.26



Exercise 35 Prove yourself that the ultraproduct QF A� is a model of �.The following exercise gives some examples of the use of Theorem 7.5.Exercise 36 (Examples) a) Let I = IN, Ai = f0; : : : ; ig and F a nonprin-cipal ultra�lter over I. Use the ultraproduct QF Ai to show:i) The class of cyclic abelian groups is not elementary;ii) the class of well-founded linear orders is not elementary (a linearorder is well-founded if there is no in�nite chain a0 > a1 > a2 > � � � );iii) the class of connected graphs is not elementary (a graph is connectedif for every pair of points a; b there is a �nite path a = a0 ! a1 !� � � ! an = b)b) Let I � IN be the set of primes, Ai = f0; : : : ; i � 1g, F a nonprincipalultra�lter over I. Show that QF Ai is a �eld of characteristic zero, andconclude that the class of �elds of characteristic 6= 0 is not elementary;c) An abelian group G is divisible if for every n � 2,G j= 8x9y(y + � � �+ y| {z }n times = x)Construct yourself an ultraproduct example to show that the class of non-divisible abelian groups is not elementary (hence, the theory of divisiblegroups not �nitely axiomatizable).A strengthening of Exercise 13 is given by the following theorem, which we statewithout proof.Theorem 7.6 (Keisler-Shelah) Let A and B be L-structures. Then A � B ifand only if there exist a set I and an ultra�lter F over I such that the ultrapowersQF A and QFB are isomorphic.Exercise 37 Use Theorem 7.6 to obtain the following re�nement of Theo-rem 7.5: A class K of L-structures is elementary if and only if K satis�es theproperties:a) K is closed under isomorphism and under ultraproducts;b) Whenever some ultrapower of A is in K, then A is in K.I �nish this chapter with a theorem whose proof is an application of the ideaof ultra�lters. It is an important theorem in the �eld of in�nite combinatoricsand �nds applications in advanced Model Theory, though possibly not in thiscourse.Theorem 7.7 (Ramsey) Let I be an in�nite set. Write Pn(I) for the collec-tion of subsets of I with exactly n elements. If Pn(I) = A [B then there is anin�nite subset J of I such that either Pn(J) � A or Pn(J) � B.27



Proof. If I is uncountable, we may take any countable subset of I, so withoutloss of generality we may assume I = IN. The theorem is trivial for n = 1(check!), so assume n > 1. For a �nite subset � of IN we write � < k for8m 2 �(m < k).Let F be a nonprincipal ultra�lter over IN. We de�ne, for 1 � r � n, setsAr ; Br � Pr(IN) as follows: let An = A and Bn = B. If, for 1 � r < n, Ar+1and Br+1 have been de�ned we putAr = f� 2 Pr(IN) j fm > � j� [ fmg 2 Ar+1g 2 FgBr = f� 2 Pr(IN) j fm > � j� [ fmg 2 Br+1g 2 FgThen if Pr+1(IN) � Ar+1 [Br+1, also Pr(IN) � Ar [Br : if � 2 Pr(IN), � 62 Arthen fm > � j� [ fmg 2 Ar+1g 62 F . Since F is a nonprincipal ultra�lter andfm j� 6< mg is �nite (so not inF), we must have fm > � j�[fmg 2 Br+1g 2 F .In particular we have ffng jn 2 INg � A1[B1 and therefore either fn j fng 2A1g 2 F or fn j fng 2 B1g 2 F ; assume fn j fng 2 A1g 2 F ; the other case isdealt with in a symmetric way.We de�ne J as follows. Let j0 be the least n such that fng 2 A1. Inductively,suppose j0 < j1 < � � � < jk have been de�ned such that for all 1 � r � n andall � 2 Pr(fj0; : : : ; jkg), � 2 Ar.Then for all 1 � r < n and all � 2 Pr(fj0; : : : ; jkg) we haveUr;� = fm > � j�[ fmg 2 Ar+1g 2 FNow there are only �nitely many pairs (r; �) with 1 � r < n and� 2 Pr(fj0; : : : ; jkg), so the setfn j fng 2 A1g \ \1�r<n;�2Pr(fj0;::: ;jkg) Ur;�is an element of F . Let jk+1 be the least element in this set which is > jk.Convince yourself that again, for each 1 � r � n and � 2 Pr(fj0; : : : ; jk+1g),� 2 Ar.The set J = fj0; j1; : : :g thus constructed, has the property that Pn(J) � A.
28



8 Quanti�er Elimination and Model Complete-nessWe say that an L-theory T admits elimination of quanti�ers, or T has quanti�erelimination, if for every L-formula '(x1; : : : ; xn) there is a quanti�er-free L-formula  with at most the variables x1; : : : ; xn free, such thatT j= 8x1 � � �xn('(~x) $  (~x))In particular, every L-sentence is, in T , equivalent to a quanti�er-free sentence.Therefore, if T has quanti�er elimination and T j= � or T j= :� for everyquanti�er-free L-sentence �, then T is complete.Exercise 38 a) Show: T has quanti�er elimination if and only if every for-mula� of form 9xA, where A is quanti�er-free, is equivalent to a quanti�er-free formula having at most the same free variables;b) show that we can simplify further to: � of form 9xA, where A is a con-junction of atomic formulas and negations of atomic formulas.[Hint: for a), use induction on the number of quanti�ers; for b), by disjunc-tive normal form, every formula of form in a) is equivalent to a disjunction offormulas of the form in b)]An immediate consequence of the de�nition is the following proposition:Proposition 8.1 Suppose T has quanti�er elimination. Then for any two mod-els A;B of T : if A is a substructure of B then A is an elementary substructureof B.Proof. Let '(x1; : : : ; xn) an L-formula and a1; : : : ; an 2 A. Let  (~x) bequanti�er-free such that T j= 8~x('(~x $  (~x)). Then A j= '(a1; : : : ; an) i�A j=  (a1; : : : ; an) (since A is a model of T ), i� B j=  (a1; : : : ; an) (since A isa substructure of B and  is quanti�er-free), i� B j= '(a1; : : : ; an) (since B isa model of T ).The property stated in Proposition 8.1 is weaker than quanti�er elimination,and is called model completeness of the theory T : a theory T is model completeif for any two models A;B of T , A � B implies A � B.Examples. The theory of �elds (or even �elds of characteristic zero) is notmodel complete: Q is a sub�eld of R but not elementary, as we have seen. Thetheory of torsion-free divisible abelian groups is model complete.Exercise 39a) The following two statements are equivalent for an L-theory T :i) For every L-formula '(~x) there is a �1-formula  (~x) such that T j=8~x('(~x) $  (~x)); 29



ii) for every L-formula '(~x) there is a �1-formula  (~x) such that T j=8~x('(~x) $  (~x))b) Show that T is model complete if and only if T satis�es the equivalentconditions of a).[Hint: use the re�nement of the  Los-Tarski Theorem in Exercise 18]Exercise 40 (Robinson's Test) Show that T is model complete if and onlyif for every embedding A �B of models of T , every �1-sentence of the languageLA which holds in B, also holds in A.Exercise 41 Use the Chang- Los-Suszko Theorem (Theorem 6.3) and the Ele-mentary System Lemma (Lemma 4.2) to show that every model complete theoryhas a set of �2-axioms.Exercise 42 Show that T is model complete if and only if for every model Aof T , T [�A is a complete LA-theory.We shall return to model completeness later; for the moment, we focus onquanti�er elimination for a while. We give a general lemma which characterizesquanti�er elimination in a model-theoretic way, and we shall prove for twotheories that they admit quanti�er elimination: the theories of dense linearorders without end-points, and real closed �elds. Before starting, however, wehave to clear up a triviality about the logic.Linguistic detail From now on, we assume that in the predicate logic we areusing, there is an atomic sentence ?, which is never true in a model. Of course,we have then that j= ?$ 9x:(x = x) so ? is redundant in a sense, but withoutit there may be no quanti�er-free sentences at all (if L has no constants or 0-aryrelation symbols).Lemma 8.2 The following three conditions are equivalent for an L-theory T :i) For any model B of T and any �nitely generated substructure A of B,T [�A is a complete LA-theory;ii) T has quanti�er elimination;iii) For every pair A f! B, A g! C of embeddings of L-structures, where Band C are models of T , and A is �nitely generated, there is a commutativediagram A //f
��

g B
��
kC //h Dwhere h; k are elementary embeddings.30



Proof. We prove iii))i))ii))i))iii).iii))i): this is easy. A model B of T [�A is nothing but an embedding of Ainto a model of T . By iii), every two such models have a common elementary ex-tension such that the diagram commutes; this means that they are elementarilyequivalent LA-structures. Hence, T [�A is complete by Exercise 2.i))ii). This is somewhat similar to the proof of the  Los-Tarski Theorem (6.2).Let '(x1; : : : ; xn) be an L-formula. Pick new constants c1; : : : ; cn and let �be the set of all quanti�er-free L [ fc1; : : : ; cng-sentences � such that T j='(c1; : : : ; cn) ! �.Suppose B is a model of T [�. Let A be the substructure of B generatedby cB1 ; : : : ; cBn ; so, A is the setftB(cB1 ; : : : ; cBn ) j t(x1; : : : ; xn) an L-termgSuppose B j= :'(c1; : : : ; cn). We regard '(c1; : : : ; cn) as an LA-sentence. SinceT [�A is complete, we have T [�A j= :'(c1; : : : ; cn). It follows that for somesentence  (a1; : : : ; am; c1; : : : ; cn) 2 �A,T j=  (a1; : : : ; am; c1; : : : ; cn) ! :'(c1; : : : ; cn)(Here the constants ai are the constants from A di�erent from the ci) It followsthat T j= 8y1 � � �ym( (y1; : : : ; ym; c1; : : : ; cn) ! :'(c1; : : : ; cn)).Now pick for each ai an L-term ti such that ai = tBi (~c). ThenT j=  (t1(~c); : : : ; tm(~c); ~c) ! :'(~c)so : (t1(~c); : : : ; tm(~c); ~c) is an element of � and therefore true in B; but this isa contradiction since ai = tBi (~cB). We conclude that B j= '(~c); since B was anarbitrary model of T [�, we have T [� j= '(~c) and hence, for some �(~c) 2 �,T j= �(~c) ! '(~c), so T j= �(~c) $ '(~c), so T j= 8~x(�(~x) $ '(~x)), as required.ii))i). Let '(a1; : : : ; an) be an LA-sentence, where A is a substructure of amodel B of T . Since T admits quanti�er elimination,T j= '(a1; : : : ; an) $  (a1; : : : ; an)for some quanti�er-free  (a1; : : : ; an). If  (a1; : : : ; an) 2 �A then T [�A j='(a1; : : : ; an), and if  (a1; : : : ; an) 62 �A then T [�A j= :'(a1; : : : ; an). SoT [�A is complete.i))iii). Since both B and C are models of the complete theory T [�A, theyare LA-elementarily equivalent and have therefore a common LA-elementaryextension by Exercise 13. The extension is then also L-elementary, and the factthat it is a common LA-elementary extension entails that the diagram in iii)commutes.We shall now use this lemma to prove that the theory of dense linear orderswithout end-points has quanti�er elimination. Let's recall the axioms of this31



theory: the language L is f<g, and the axioms are:irreexivity :(x < x)transitivity (x < y ^ y < z) ! x < zlinearity x < y _ x = y _ y < xdensity x < y ! 9w(x < w ^w < y)no end-points 9wz(w < x ^ x < z)We shall call this theory dlo.Lemma 8.3 Let A be a �nite linear order a1 < � � � < am. Suppose A is em-bedded in both B and C, where B and C are models of dlo. Consider B;C asLA-structures. Then for any LA-formula '(x1; : : : ; xn) we have: if two n-tuplesb1; : : : ; bn 2 B, c1; : : : ; cn 2 C satisfy the conditions:81 � i � m; 1 � j � n ((ai < bj , ai < cj) ^ (bj < ai , cj < ai))81 � i; j � n (bi < bj , ci < cj)then B j= '(b1; : : : ; bn) if and only if C j= '(c1; : : : ; cn).Proof. We use induction on '. The case for atomic ' is left to you, as are theinduction steps for : and ^. Now suppose the lemma is true for '(x; x1; : : : ; xn),the tuples b1; : : : ; bn 2 B, c1; : : : ; cn 2 C satisfy the condition in the lemma, andB j= 9x'(x; b1; : : : ; bn). Then for some b 2 B, B j= '(b; b1; : : : ; bn). It su�esnow to �nd c 2 C such that the n+ 1-tuples b; b1; : : : ; bn 2 B, c; c1; : : : ; cn 2 Csatisfy the conditions in the lemma; but it is easy to see that thanks to theaxioms of dlo, this can always be achieved.Corollary 8.4 dlo is model complete.Proof. If B � C are models of dlo, apply Lemma 8.3 with A empty.Theorem 8.5 dlo has quanti�er elimination.Proof. We prove property iii) of Lemma 8.2 for dlo.So suppose A is a substructure of B and of C, where B;C are models of dlo.We regard B and C as LA-structures. Suppose dlo[�B[�C is inconsistent (asLA;B;C-theory). Then for some quanti�er-free '(b1; : : : ; bn) and  (c1; : : : ; cm)such that B j= '(b1; : : : ; bn) and C j=  (c1; : : : ; cm), we havedlo j= '(~b) ! : (~c)hence dlo j= 8~y('(~b) ! : (~y)). Now in ' and  together there are �nitelymany constant fromA, say a1; : : : ; ak. By the axioms of dlo, pick inB elementsb01; : : : ; b0m, such that the m-tuples b01; : : : ; b0m 2 B, c1; : : : ; cm 2 C satisfy theconditions in Lemma 8.3, with respect to the linear order on fa1; : : : ; akg. Thenby that lemma we must have B j=  (b01; : : : ; b0m). Clearly, a contradiction isobtained. 32



Therefore, dlo [�B [�C is consistent as LA;B;C-theory, and has a modelD. This means we have a commutative diagramA
��

// B
��
kC //h Dwith h; k embeddings. But we have already seen that dlo is model com-plete (8.4), so the embeddings h; k are elementary. This proves property iii)of Lemma 8.2 for dlo, which therefore has quanti�er elimination.8.1 Quanti�er Elimination: Real Closed FieldsIn this section we review a famaous theorem by Tarski, that the theory of realclosed �elds has quanti�er elimination. The proof is not extremely di�cult, butrather long (if one doesn't want to assume deep results from algebra); and thetechniques used in it have little to do with the rest of these notes. ThereforeI have decided to put it in a separate section, which may be skipped withoutdisturbing one's reading of these notes.There are a number of equivalent ways to formulate the theory of real closed�elds. We shall use the language L = f0; 1; +; �;<g, which we �x for this entiresection. The theory rcf is given by the following axioms:1) The axioms for a �eld;2) the axioms for a linear order;3) 8x(0 < x! 9y(y2 = x))4) 8x1 � � �xn (x21 + � � �+ x2n = 0 ! x1 = 0 ^ � � � ^ xn = 0)for all n;5) 8y1 � � �yn9x(xn + y1xn�1 + � � �+ yn�1x+ yn = 0)for all odd n.A real closed �eld is a model of rcf. Examples are R and various sub�elds ofR, such as the algebraic closure of Q in R, the algebraic closure of Q(e) in R,: : : Another example is the �eld of recursive reals, that is the real numbers rwhich are the limit of a Cauchy sequence in Q that is a recursive function fromIN into Q.Exercise 43 a) Show that every real closed �eld is an ordered �eld; thismeans that the following sentences are true in it:8xyz(x < y ! x+ z < y + z)8xyz(x < y ^ 0 < z ! xz < yz)b) Show that in a real closed �eld, the ordering is dense and has no end-points; 33



c) Every real closed �eld has characteristic zero.De�nable functions. Suppose '(x1; : : : ; xn; y) is an L-formula for whichrcf j= 8~x9!y '(x1; : : : ; xn; y)Then ' de�nes an n-ary function on any real closed �eld. We may introduce afunction symbol f (or f') and consider the theory rcff in the language L[ffgwhich is rcf together with the axiom8x1 � � �xn'(x1; : : : ; xn; f(x1; : : : ; xn))The theory rcff is conservative over rcf. This means: every L-sentence whichis a consequence of rcff is also a consequence of rcf. This follows from the easyobservation that every real closed �eld has a unique expansion to an L [ ffg-structure which is a model of rcff .We shall call f a de�nable function (when ' is understood). We can havemore than one de�nable function: if f1; : : : ; fn are de�nable functions we shallhave the theory rcff1;::: ;fn which extends rcf by all the de�ning axioms forf1; : : : ; fn. The process can be iterated: if '(x1; : : : ; xm; y) is now an L [ff1; : : : ; fng-formula such thatrcff1;::: ;fn j= 8~x9!y'(~x; y)we can have (rcff1;::: ;fn )f (where f is de�ned by ' in rcff1;::: ;fn). However,it is an easy exercise that f can already be de�ned in rcf. We express this asfollows: de�nable functions are closed under composition.Let f be an n-ary de�nable function. We shall call f eliminable if for everyquanti�er-free L-formula B(y; u1; : : : ; um) there exists another quanti�er-freeL-formula C(x1; : : : ; xn; u1; : : : ; um) such thatrcff j= 8~x~u (B(f(~x); ~u) $ C(~x; ~u))We note, that also the eliminable functions are closed under composition: iff; f1; : : : ; fn are eliminable, g(~x) is de�ned as f(f1(~x); : : : ; fn(~x)), and B(y; ~u)is quanti�er-free, then, in rcfg;f;f1;::: ;fn ,B(g(~x); ~u) $ C(f1(~x); : : : ; fn(~x); ~u)$ C1(f2(~x); : : : ; fn(~x); ~x; ~u)...$ Cn(~x; ~u)for suitable quanti�er-free formulas C;C1; : : : ; Cn.Polynomial relations. Every term t(x1; : : : ; xn) of L denotes a polynomial inindeterminates x1; : : : ; xn and integer coe�cients.A formula t(~x) > 0, where t is an L-term, is called a polynomial relation. Ev-ery quanti�er-free formula is, in rcf, equivalent to a propositional combinationof polynomial relations: e.g., t = s is equivalent to :(t� s > 0) ^ :(s � t > 0).34



Therefore, for testing whether a de�nable function is eliminable, it su�cesto look at polynomial relations.We shall make use of the following theorem, familiar from elementary analysis;the proof is omitted.Theorem 8.6 (Rolle's Theorem for Real Closed Fields) Let K be a realclosed �eld and P 2 K[X] be a polynomial with coe�cients in K. Let P 0 denoteits derivative; thenK j= 8xy(x < y ^ P (x) = P (y) ! 9z(x < z < y ^ P 0(z) = 0))The following lemma will take up most of this section.Lemma 8.7 Let t(x; x1; : : : ; xm) be an L-term, regarded as a polynomial whosedegree in x is n. Then:a) There are eliminable functions �1(x1; : : : ; xm); : : : ; �n�1(x1; : : : ; xm) suchthat the following statements are consequences of rcf�1;::: ;�m :� 8x1 � � �xm (�1(~x) < � � � < �n�1(~x));� for all x1; : : :xm, the function x 7! t(x; ~x) is either constant, orit is strictly monotonic (increasing or decreasing) on each interval(�1; �1(~x)); (�1(~x); �2(~x)); : : : ; (�n�2(~x); �n�1(~x)); (�n�1(~x);1)b) There are eliminable functions k(~x); �1(~x); : : : ; �n(~x) such that the follow-ing statements are consequences of rcfk;�1;::: ;�n :� k(~x) = 0 _ � � � _ k(~x) = n+ 1;� �1(~x) < � � ��n(~x);� For each j 2 f1; : : : ; ng: k(~x) = j implies that �1(~x); : : : ; �j(~x) areexactly the zeros of t(x; ~x);� k(~x) = 0 implies that t(x; ~x) has no zeros;� k(~x) = n+ 1 implies that t(x; ~x) is the constant zero polynomial.Proof. I have given the statements in lemma 8.7 in informal language, and leaveit to the reader to see that these statements can be expressed by L-formulas.Of course, for a natural number j, j is the L-term 1 + � � �+ 1| {z }j times .We shall prove the lemma by induction on n. We write t(x; ~x) asu0(~x)xn + � � �+ un�1(~x)x+ un(~x)For n = 0, t(x; ~x) = u0(~x) and there is nothing to prove for a); for b), we letk(~x) = � 0 if u0(~x) 6= 01 if u0(~x) = 035



Then k(~x) is eliminable: for a polynomial relation p(y;~v) > 0 we havep(k(~x); ~v) > 0 $ (u0(~x) 6= 0 ^ p(0; ~v) > 0)_(u0(~x) = 0 ^ p(1; ~v) > 0)For n = 1, t(x; ~x) = u1(~x)x + u0(~x). Induction hypothesis a) means now thatthe statement that either u1(~x) = 0 or t(x; ~x) is monotonic on (�1;1), is aconsequence of rcf. This is easy to see and left to you. For induction hypothesisb) we let k(~x) = 8<: 1 if u1(~x) 6= 00 if u1(~x) = 0 ^ u0(~x) 6= 02 if u1(~x) = 0 ^ u0(~x) = 0Again, k(~x) is eliminable. We let�1(~x) = � 0 if u1(~x) = 0u0(~x)=u1(~x) otherwiseAnd also �1(~x) is eliminable and has the right properties.Now suppose n > 1 and we have proved the lemma for all n0 < n. Let t0(x; ~x)be the derivative of t(x; ~x) with respect to x. Since the degree of t0 in x is n�1, byinduction hypothesis b) we have eliminable functions k0(~x); �01(~x); : : : ; �0n�1(~x)satisfying b) for t0(x; ~x).To prove a) for t(x; ~x), we take the �0's for the �'s. Now either k0(~x) = n(t(x; ~x) is constant), or t(x; ~x) is monotonic on each interval of form as in a);this follows from Rolle's Theorem (8.6) for rcf.To prove b) we de�ne formulas C0(~x); : : : ; Cn�1(~x) as follows:C0(~x) � (t(�01(~x); ~x)� t(�01(~x) � 1; ~x))(t(�01(~x); ~x)) > 0Ci(~x) � t(�0i(~x); ~x) = 0_t(�0i(~x); ~x)t(�0i+1(~x); ~x) < 0for i = 1; : : : ; n� 2Cn�1(~x) � t(�0n�1(~x); ~x) = 0_t(�0n�1(~x); ~x)(t(�0n�1(~x) + 1; ~x) � t(�0n�1(~x); ~x)) < 0Now C0(~x) means that either t(�01(~x); ~x) > 0 and t(�01(~x); ~x) > t(�01(~x) � 1; ~x),or t(�01(~x); ~x) < 0 and t(�01(~x); ~x) < t(�01(~x)� 1; ~x); by the induction hypothesisand the axioms of rcf, this means either t(x; ~x) is constant or t(x; ~x) has azero in the interval (�1; �01(~x)). In a similar way, for i = 1; : : : ; n � 2, Ci(~x)expresses that t(x; ~x) has a zero in the half-open interval [�0i(~x); �0i+1(~x)), andCn�1(~x) expresses that t(x; ~x) has a zero in (�0n�1(~x);1). Note, that all Ci arequanti�er-free formulas in the �0's.Again using Rolle's theorem, one sees that if t(x; ~x) is non-constant, eachof the intervals contains at most one zero of t(x; ~x). Therefore we can de�ne aformula K(~x; j), expressing that t(x; ~x) has exactly j zeros, in a quanti�er-freeway by: K(~x; j) � _A�f0;::: ;n�1g;jAj=j ((k̂2ACk(~x)) ^ (k̂ 62A:Ck(~x)))36



Let L(~x) be the quanti�er-free formula u0(~x) = � � � = un(~x) = 0, then we de�nek(~x) as n+1 if L(~x), and j for the unique j such that K(~x; j), otherwise. Everypolynomial relation p(k(~x); ~v) > 0 is now equivalent to a disjunctionn+1_j=0(k(~x) = j ^ p(j;~v) > 0)so k is eliminable.We have to de�ne the functions �1; : : : ; �n for t(x; ~x). I do this in words.�1(~x) is de�ned as 0 if k(~x) = 0 or k(~x) = n+ 1, and as the least zero of t(x; ~x)otherwise.Suppose �j(~x) has been de�ned; then �j+1(~x) is de�ned as �j(~x) + 1 ifk(~x) � j or k(~x) = n + 1; otherwise it is the least zero which is greater than�j(~x).We are left to prove that the functions �j are eliminable. Every polynomialrelation p(�j(~x); ~v) > 0 is equivalent to the disjunctionn+1_i=0(k(~x) = i ^ p(�j(~x); ~v) > 0)Now for i = 0 or i = n + 1, k(~x) = i ^ p(�j(~x); ~v) > 0 is equivalent to k(~x) =i ^ p(j � 1; ~v) > 0.Suppose we have shown that for j0 < j, �j0 is eliminable. Then if 0 � i < j,k(~x) = i ^ p(�j(~x); ~v) > 0 is equivalent to k(~x) = i ^ p(�i(~x) + j � i;~v) > 0.So we are left with the case that �j(~x) is a real zero of t(x; ~x). For simplicitywe assume j = 1; the other cases involve bigger formulas, but are essentiallysimilar. So, t(�1(~x); ~x) = 0, t is not constant zero, and we have to considerp(�1(~x); ~v) > 0.By division with remainder in polynomial rings, there are polynomials f(x; ~x;~v)and g(x; ~x;~v) such that� p(x;~v) = f(x; ~x;~v)t(x; ~x) + g(x; ~x;~v)� the degree of g in x is less than n.Since �1 is a real zero of t, we have that p(�1(~x); ~v) = g(�1(~x); ~x;~v). Let thedegree of g in x be r < n; then we may apply induction hypothesis b) to g, andassume there are eliminable functionsl(~x;~v); �1(~x;~v); : : : ; �r(~x;~v)for g as in b), i.e. giving number of zeros and list of possible zeros.We also have the eliminable functions �1(~x); : : : ; �n�1(~x), satisfying a) fort(x; ~x). Let us, from now on, suppress the extra variables and just write�1; : : : ; �r; �1; : : : ; �n�1; �1; p(u); g(u).The statement p(�1) > 0 is, as we have seen, equivalent to g(�1) > 0. Thisis equivalent to a disjunction, distinguishing cases according to the relative37



position of �1 among the �'s: for example if �1 < �1 < �2 then g(�1) > 0 isequivalent to g(12(�1 + �2)) > 0. So,g(�1) > 0 $ (�1 < �1 ^ g(�1 � 1) > 0)_ (�1 = �1 ^ g(�1) > 0)_ (�1 < �1 < �2 ^ g(12 (�1 + �2)) > 0..._ (�r < �1 ^ g(�r + 1) > 0By eliminability of the �'s, all parts g(�1 � 1) > 0, g(12 (�1 + �2)) > 0, etc. areequivalent to quanti�er-free formulas not involving the �'s. So we are left withthe formulas �1 < �1, : : : We do the case �1 < �1. This time we distinguish casesaccording to the relative position of �1 among the �'s; we have �1 < �1 _ � � �Take for example the case �1 < �1 < �1. Recall that �1 is the �rst zero of t.Now this zero occurs < �1 if and only if:either t(�1) > 0 ^ t(�1) > t(�1 � 1) ^ t(�1) > 0or t(�1) < 0 ^ t(�1) < t(�1 � 1) ^ t(�1) < 0By eliminability of the �'s and �'s, these formulas are equivalent to quanti�er-free formulas not involving these symbols.All other cases are dealt with in a similar way. This completes the proof oflemma 8.7.Theorem 8.8 (Tarski) rcf has quanti�er elimination.Proof. By exercise 38 it su�ces to consider L-formulas � of form 9xA(x; ~x)where A is a conjunction of atomic formulas and negations of atomic formulas.By the axioms for a linear order we can eliminate the negations: :(t = s) isequivalent to t < s _ s < t. So A is equivalent to a disjunction WiAi whereevery Ai is a conjunction of formulas of form p(x; ~x) = 0 or p(x; ~x) > 0; hence itsu�ces to consider the formulas 9xAi, so we may assume that A is of this form.For each p, we have from lemma 8.7 eliminable functions kp(~x) and �p1(~x),: : : ,�pnp(~x) such that p(x; ~x) = 0 is equivalent to the disjunctionnp_i=1(kp(~x) � i ^ x = �pi (~x))and p(x; ~x) > 0 is equivalent to the disjunction(x < �p1(~x) ^ p(�p1 (~x) � 1; ~x) > 0)_Wnp�1i=1 (�pi (~x) < x < �pi+1(~x) ^ p(12(�pi (~x) + �pi+1(~x)); ~x) > 0)_ (x > �pnp (~x) ^ p(�pnp(~x) + 1; ~x) > 0)_ Wi+1 np(i > kp(~x) ^ x = �pi (~x) ^ p(�pi (~x); ~x) > 0)So again, we can reduce to the case of a formula 9xA where A is a conjunctionof statements of form: x is in a certain interval bounded by �pi 's, and some otherside conditions which don't depend on x.38



Then 9xA is equivalent to the statement that the side conditions hold (which,by eliminability of the �'s, is equivalent to a quanti�er-free L-formula, and thatthe intersection of the intervals is nonempty; this is equivalent to a quanti�er-free L-formula.8.2 Model Completeness and Model CompanionsWe now return to model complete theories. Robinson's Test (Exercise 40) sug-gests to look at so-called existentially closed models of a theory T . Let A � Bbe an embedding of L-structures. A is called existentially closed in B, if forevery �1-sentence � in the language LA, ifB j= � then A j= �. A is existentiallyclosed for T if whenever A �B and B is a model of T , A is existentially closedin B.Exercise 44 Show that T is model complete if and only if every model of T isexistentially closed for T .Now let T be an arbitrary L-theory, not necessarily model complete. Supposethat the class of L-structures which are models of T and existentially closed forT , is elementary, so equal to the class of models of a theory T 0. Then T � T 0and T 0 is model complete.There are several examples of mathematical theories T for which the class ofexistentially closed models of T is indeed the class of models of such an extensionT 0, and moreover, every model of T can be completed, that is: embedded in amodel of T 0:� Every torsion-free abelian group can be embedded in a divisible torsion-free abelian group;� every integral domain can be embedded in an algebraically closed �eld;� every distributive lattice can be embedded in an atomless Boolean algebra;� every ordered �eld can be embedded in a real closed �eld.In Model Theory, this situation is described with the notion of model companion.Let T and T 0 be L-theories. T 0 is called a model companion of T , if the followingconditions hold:i) Every model of T can be embedded in a model of T 0, and vice versa;ii) T 0 is model complete.Exercise 45 Show that condition i) above is equivalent to: T8 = T 08, where T8is the set of all �1-sentences which are consequences of T[Hint: use Exercise 17] 39



In this section we shall prove for two pairs of theories T and T 0 that T 0 is a modelcompanion of T : distributive lattices{atomless Boolean algebras, and integraldomains{algebraically closed �elds.De�nition 8.9 A lattice is a partial order which has a least and greatest ele-ment, and in which for each pair of elements x; y the in�mum (or meet) xuy andthe supremum (or join) xty exist; these elements are de�ned by the conditions:8z(x t y � z $ x � z ^ y � z)8z(z � x u y $ z � x ^ z � y)A lattice is called distributive if moreover the distributive law holds:8xyz(x u (y t z) = (x u y) t (x u z))Exercise 46 a) Show that the conditions which xuy and xty are requiredto satisfy, indeed determine these elements uniquely;b) show, that the distributive law implies its dual:8xyz(x t (y u z) = (x t y) u (x t z))The most immediate examples of distributive lattices are: collections of subsetsof a given set X which contain ; and X, and are closed under union and inter-section (with inclusion of subsets as the partial order). We shall soon see, thatevery distributive lattice is isomorphic to one of this form.A lattice which is not distributive is the following partial order:1a �������� b c= = = = = = = =0> > > > > > > >

��������We now de�ne formally the theory of distributive lattices.De�nition 8.10 The theory of distributive lattices, dl, is formulated in thelanguage f0; 1;u;tg and has the following axioms:8xy(x u y = y u x) 8xy(x t y = y t x)8xyz(x u (y u z) = (x u y) u z) 8xyz(x t (y t z) = (x t y) t z)8x(1 u x = x) 8x(0 t x = x)8x(0 u x = 0) 8x(1 t x = 1)8x(x u x = x) 8x(x t x = x)8xy(x u (y t x) = x) 8xy(y t (x u y) = y)together with the distributive law:8xyz(x u (y t z) = (x u y) t (x u z))A distributive lattice is a model of dl.40



Exercise 47 Show, that de�nitions 8.9 and 8.10 agree. In particular, given amodel of dl, if we de�ne x � y i� x u y = xwe get a partial order, such that xuy is the meet of x and y, and xty the join;0 is the least element, and 1 the greatest.Let (A; 0; 1;u;t) be a distributive lattice, a 2 A. A complement of a in A isan element b satisfying a u b = 0 ^ a t b = 1. If a has a complement, it isunique. This follows by distributivity: if both b and b0 are complements of a,then b = b u 1 = b u (a t b0) = (b u a) t (b u b0) = 0 t (b u b0) = b u b0 so b � b0;similarly, b0 � b. Note that this also implies that complements are preserved byany homomorphism of distributive lattices.A distributive lattice in which every element has a complement is called aBoolean algebra. Note, that a Boolean algebra is a model of dl together withthe axiom: 8x9y(x u y = 0 ^ x t y = 1)We call this the theory of Boolean algebras. Since dl has a set of �1-axioms,the theory of Boolean algebras has a set of �2-axioms.Examples of Boolean algebras are: the power-set of any set (where comple-ment is \real" complement); if T is a theory, we can consider the set of equiva-lence classes of sentences in the language of T , with � �  i� T j= � $  ; forequivalence classes [�]; [ ] we have [�] u [ ] = [� ^  ], [�] t [ ] = [� _  ], andthe complement of [�] is [:�]. This Boolean algebra is called the Lindenbaumalgebra of the theory T . Note, that T is complete if and only if its Lindenbaumalgebra has exactly two elements. An important case is, where we just considerequivalence classes of formulas in propositional logic, with propositional vari-ables p0; p1; : : : . The resulting Lindenbaum algebra is the free Boolean algebraon countably many generators.Let A be a distributive lattice, and a 2 A. a is called an atom in A if a 6= 0and for every b � a we have b = 0 or b = a. A Boolean algebra which containsno atoms is called atomless. Note that an atomless Boolean algebra is a Booleanalgebra satisfying the axiom8x9y(x 6= 0 ! y 6= 0 ^ y 6= x ^ y = y u x)So also the theory of atomless Boolean algebras has a set of �2-axioms. Thefree Boolean algebra on countably many generators is an example of an atomlessBoolean algebra.Theorem 8.11 Every distributive lattice can be embedded in a Boolean algebra,and every Boolean algebra can be embedded in an atomless Boolean algebra.Therefore, every existentially closed distributive lattice is an atomless Booleanalgebra.Proof. Let us �rst show the last statement, assuming the �rst: if A is adistributive lattice and a 2 A, the statement \a has a complement" can be41



expressed by a �1-sentence of LA. So since every distributive lattice can beembedded in a Boolean algebra, ifA is existentially closed it is a Boolean algebra.Similarly, the statement \a is not an atom" can be expressed by a �1-sentenceof LA, so if A is existentially closed, it must be atomless.For the �rst statement we use the notion of �lter and prime �lter. In adistributive lattice A, a �lter is a subset U of A with the properties: 0 62 U ,a 2 U; a � b) b 2 U , a; b 2 U ) a u b 2 U , and 1 2 U . Note that if a 6= 0, theset "(a) = fb 2 A j a � bg is a �lter.A prime �lter is a �lter U which moreover has the property that whenevera t b 2 U , a 2 U or b 2 U .First we prove: if, in a distributive lattice, a 6� b, there is a prime �lter Uwhich contains a but not b. This is done with the help of Zorn's Lemma: sincea 6� b, a 6= 0 so "(a) is a �lter containing a but not b. So the partially orderedset of all �lters which contain a but not b (ordered by inclusion), is nonempty.One easily sees that it is closed under unions of chains. By Zorn's Lemma, ithas a maximal element U . Suppose that c t d 2 U but c 62 U , d 62 U . Then bymaximality of U , there must be u1; u2 2 U such that cu u1 � b and duu2 � b.Then u = u1 u u2 2 U , and we haveu u (c t d) = (u u c) t (u u d) � bso b 2 U ; contradiction.Now let X be the set of all prime �lters of the distributive lattice A. De�nef : A! P(X) by f(a) = fU 2 X j a 2 UgBy what we just proved, it follows that f is 1-1, and that f(at b) = f(a)[f(b).Clearly, f(1) = X, f(0) = ;, and f(a u b) = f(a) \ f(b), so f is an embeddingof distributive lattices; and P(X) is a Boolean algebra.Next, we show that every Boolean algebra can be embedded in an atomlessBoolean algebra. Since every Boolean algebra is a distributive lattice, it canbe embedded in a Boolean algebra of the form P(X), so it su�ces to see thatevery P(X) can be embeeded in an atomless Boolean algebra. For this weobserve that for every function f : Y ! X of sets, the \inverse image" functionf�1 : P(X) ! P(Y ) is a homomorphism of distributive lattices. Moreover, if fis a surjective function, then f�1 is 1-1.We de�ne a chain of Boolean algebras and embeddings:P(X0) ��10! P(X1) ��11! � � �by letting X0 = X, Xi+1 = Xi � f0; 1g and �i : Xi+1 ! Xi the projection. Wemay assume X 6= ;, so all �i are surjective and the ��1i therefore injective. Theatoms in P(Xi) are the singleton subsets of Xi. Now for y 2 Xi, ��1i (fyg) =f(y; 0); (y; 1)g so ��1i sends every atom to a non-atom.LetB be the colimit of the chain above. Since the theory of Boolean algebrashas a set of �2-axioms, it is preserved under unions of chains so B is a Booleanalgebra, in which all P(Xi) embed. Let b 2 B. Then by the construction of42



the colimit, b comes from an element of some P(Xi), say Y � Xi. If Y is notan atom in P(Xi) then b is certainly not an atom in B, but if Y is an atom,��1i (Y ) is a non-atom, and gives the same element b in the colimit. So, b cannotbe an atom, and B is an atomless Boolean algebra in which all P(Xi) embed.This completes the proof.Next, we wish to prove that every atomless Boolean algebra is existentiallyclosed for the theory of distributive lattices. Equivalently, that the theory ofatomless Boolean algebras is model complete. This will follow from Lindstr�m'sTest (Lemma 8.15) below, once we have proved that the theory of atomlessBoolean algebras is !-categorical. So we do that �rst.Lemma 8.12 a) Let A be an atomless Boolean algebra and a 2 A, a 6= 0.Then for each n 2 IN there are elements b1; : : : ; bn in A such that bi 6= 0,bi u bj = 0 for i 6= j, and b1 t � � � t bn = a.b) Let A be an atomless Boolean algebra, and C � D be an embedding of �niteBoolean algebras. Then every embedding C ! A extends to an embeddingD! A.Proof. a) is proved by induction on n. For n = 1 take b1 = a. For n+ 1: sincea is not an atom, there is 0 < bn+1 < a in A; then if c is the complement ofbn+1, auc 6= 0. Moreover, bn+1t (auc) = a. So apply the induction hypothesisto �nd b1; : : : ; bn for a u c.For b), we note that every �nite Boolean algebra is isomorphic to P(X) fora �nite set X. Now every embedding f : P(X) ! P(Y ) (for �nite X;Y ) isdetermined by its values on the singleton subsets of X, since it must preserveunions and every subset of X is a �nite union of singletons. If X = fx1; : : : ; xngwe see that f(fxig)\f(fxjg) = ; for i 6= j (since f preserves ; and intersection),f(fxig) 6= ; (since f is an embedding) and Sni=1 f(fxig) = Y since f preserves1 and unions. So f divides Y into n parts. Now suppose g : P(X) ! A isan embedding. For each y 2 Y there is a unique i with y 2 f(fxig); supposef(fxig) = fy1; : : : ; ymg. By a), choose b1; : : : ; bm in A for g(fxig) and sendfyjg to bj . This extends to an embedding h : P(Y ) ! A, such that g = h�f .Corollary 8.13 The theory of atomless Boolean algebras is !-categorical.Proof. Let A = fa0; a1; a2; : : :g and B = fb0; b1; b2; : : :g be two countableatomless Boolean algebras. We de�ne a chain of isomorphisms fi : Ai ! Bisuch that A0 � A1 � A2 � � � � is a chain of �nite Boolean algebras with unionA, and B0 � B1 � B2 � � � � is a chain of �nite Boolean algebras with union B,and fi+1 : Ai+1 ! Bi+1 extends fi for each i. The construction is very similarto Cantor's \back-and-forth" construction for dense linear orders.Let A0 be the sub-Boolean algebra of A containing just the elements 0; 1, andB0 likewise the sub-Boolean algebra of B with two elements, and f0 : A0 ! B0the obvious isomorphism.Suppose fi : Ai ! Bi is constructed. Let Ci be the sub-Boolean algebraof A generated by Ai [ faig. Then Ci is �nite, and Ai � Ci. Since fi gives43



an embedding of Ai into the atomless Boolean algebra B, by lemma 8.12 fiextends to an embedding gi : Ci ! B. Let Di be the image of gi and Bi+1 thesub-Boolean algebra of B generated by Di [ fbig. Since gi is an embedding, itsinverse is an embedding of Di in A, which again by lemma 8.12 extends to anembedding hi : Bi+1 ! A. Let Ai+1 be the image of hi. Then the inverse of hiis an isomorphism fi+1 : Ai+1 ! Bi+1 which extends fi. Since ai 2 Ai+1, theunion of the Ai's is A, and similarly the union of the Bi's is B; and the unionof the fi's is an isomorphism A! B.The following two general lemmas �nd frequent application in the study of modelcompleteness.Lemma 8.14 Let T be an L-theory with a set of �2-axioms. Then for anymodel A of T , there is an embedding of A into a model B of T which is exis-tentially closed for T . Moreover, if jAj � jjLjj we may assume that jBj = jAj.Proof. We construct a chain of models of T :A = A0 � A1 � A2 � � � �as follows: if Ak has been de�ned, let �k be a maximal set of �1-sentences inthe language LAk , such that T [�Ak [ �k is consistent (such a set exists byZorn's Lemma). Let Ak+1 be a model of T [�Ak [ �k; then Ak � Ak+1.Let B be the colimit of this chain. Since T has a set of �2-axioms, B is amodel of T . Suppose � is a �1-sentence of LB which holds in some extension ofB which is a model of T . By construction of the colimit, � is already an LAk-sentence for some k; then T [�Ak [�k[� is consistent, whence by maximalityof �k, � 2 �k and � holds in Ak+1, so � holds in B. So B is existentially closedfor T .To prove the �nal statement: if jAj � jjLjj we may take all Ak such thatjAkj = jAj. Then jBj = jAj.Lemma 8.15 (Lindstr�m's Test) Suppose T is an L-theory with a set of �2-axioms, which only has in�nite models, and is �-categorical for some cardinalnumber � � jjLjj. Then T is model complete.Proof. If A is a model of T of cardinality �, then by the previous lemma Amay be extended to an existentially closed model B of cardinality �. Since Tis �-categorical, A �= B so A is existentially closed for T . So every model of Tof cardinality � is existentially closed for T .Now let A � B be an arbitrary embedding of models of T . We have to showthat A is existentially closed in B.First suppose jAj � �. Then for any �1-sentence � of LA which holds in B,there is by downward L�owenheim-Skolem-Tarski (3.2) an elementary submodelA0 of A of cardinality �, which contains all constants occurring in �; then A0 isexistentially closed so � holds in it; so � holds in A too. So A is existentiallyclosed for T . 44



If jAj < � we view B as a model for the language L[fXg where X is a new1-ary relation symbol, putting XB = A.Consider the language L0 = L [ fXg [ fc� j� 2 �g where � is a set ofcardinality � and the c� are new constants; let � be the L0-theory consisting ofthe elementary diagram of B (as LB [ fXg-structure) together with the set ofaxioms fX(c�) j� 2 �g [ f:(c� = c�0 j� 6= �0gSince A is in�nite (because T has only in�nite models), every �nite subset of� has an interpretation in B; hence, � is consistent and has a model C. ThenC is a model of T and an elementary extension of B; and XC is the domainof a submodel A0 of C which is an elementary extension of A. This is seen asfollows: for an LA-sentence �, let �X be obtained by replacing each quanti�er8x by 8x(X(x) ! � � � ) and each 9x by 9x(X(x)^� � � ). Then A j= � i� B j= �Xi� C j= �X i� A0 j= �.Note, that A0 has cardinality at least �, so by what we have already proved,A0 is existentially closed in C. But now it is easy to deduce that A is existentiallyclosed in B.Corollary 8.16 The theory of atomless Boolean algebras is model complete;hence, it is a model companion of the theory of distributive lattices.Proof. Every atomless Boolean algebra is in�nite (this follows at once fromlemma 8.12), and the theory of atomless Boolean algebras is !-categorical, aswe have seen (8.13), so this follows from Lindstr�m's Test.As a �nal example of a model companion, we show that the theory of alge-braically closed �elds is a model companion of the theory of integral domains(commutative rings with 1 6= 0 having no zero divisors). By elementary algebra,every integral domain is embedded in a �eld and every �eld is embedded in analgebraically closed �eld.Since, for an integral domain A, the statement that a 2 A is either 0 or hasa multiplicative inverse, and the statement that the polynomial a0Xn + � � �+an�1X + an has a root (where a0; : : : ; an 2 A), are �1-sentences of LA whichhold in some extension of A, every existentially closed integral domain is analgebraically closed �eld.Conversely, let A be an algebraically closed �eld, and � � 9x1 � � �xn where is a conjunction of atomic LA-formulas and negations of such; by Exercise 38it su�ces to consider sentences of this form. First we use the axioms of a �eld,to reduce formulas :(t = s) to 9y(y(t � s) � 1 = 0), so � is equivalent to9x1 � � �xm� where � is a conjunction of statements P (~x) = 0, P a polynomialwith coe�cients in A.In order to show that A is existentially closed we need to show for such �that if � holds in some extension of A, it holds in A. This follows from thefollowing elementary theorem from commutative algebra:45



Theorem 8.17 (Hilbert Nullstellensatz) Let K be an algebraically closed�eld and f1; : : : ; fn be polynomials in X1; : : : ; Xm with coe�cients in K. Ifthere is no m-tuple a1; : : : ; am 2 K such thatf1(a1; : : : ; am) = � � � = fn(a1; : : : ; am) = 0then there are polynomials g1; : : : ; gn in X1; : : : ; Xm and coe�cients in K, suchthat f1g1 + � � �fngn = 1 in K[X1; : : : ; Xm]Let P1(X1; : : : ; Xm); : : : ; Pn(X1; : : : ; Xm) be the system of polynomials in theformula �, and suppose that this system has a common zero b1; : : : ; bm in anextension L of A. Then the b1; : : : ; bm induce a ring homomorphismA[X1; : : : ; Xm] ! L by f 7! f(b1; : : : ; bm).On the other hand, if the system has no commonzero inA, by the Nullstellen-satz there are Q1; : : : ; Qn with Pni=1 PiQi = 1 in A[X1; : : : ; Xm]. Combining,this gives 0 = 1 in L, a contradiction.Conclusion:Corollary 8.18 The theory of algebraically closed �elds is a model companionof the theory of integral domains.8.3 Model Completions, Amalgamation, Quanti�er Elim-inationIn this section we collect some miscellaneous facts and de�nitions about modelcompleteness and model companions.Let us �rst observe that if a theory T has a model companion it is uniqueup to equivalence of theories. For, suppose T1 and T2 are model companions ofT . Then T1, T2 are model complete, and every model of T1 can be embedded ina model of T2, and vice versa. So given any model A of T1 we can form a chainA = A0 � A1 � A2 � � � �where A0;A2;A4; : : : are models of T1, and A1, A3, : : : are models of T2. If Bis the colimit, then since both theories are model complete we have:A0 � A2 � A4 � � � � � BA1 � A3 � A5 � � � � � BSo A is also a model of T2. By symmetry, T1 and T2 have the same models.De�nition 8.19 Let T be an L-theory.a) A model A of T is said to be algebraically prime if A can be embedded inevery model of T ;b) T is said to have the joint embedding property if for every two models Aand B of T , there is a model C of T and embeddings A! C, B! C;46



c) T is said to have the amalgamation property if every diagramA
��

// BCof embeddings of models of T , can be completed to a commutative diagramA
��

// B
��C // Dof embeddings between models of T .Exercise 48 Let T be model complete.i) [Prime Model Test] If T has an algebraically prime model, T is com-plete;ii) T is complete if and only if T has the joint embedding property.The notion of model completion is a re�nement of that of model companion. IfT 0 is a model companion of T , every model of T can be embedded in a model ofT 0. If T 0 is a model completion, such an extension is unique up to elementaryequivalence (in parameters of the model one starts with). The formal de�nitionis:De�nition 8.20 T 0 is called a model completion of T if T 0 is a model companionof T and for every model A of T , T 0 [�A is complete.Exercise 49 Let T 0 be a model companion of T . Show that the following twostatements are equivalent:i) T 0 is a model completion of T ;ii) T has the amalgamation property.Exercise 50 Let T be a model complete theory. Show that the following areequivalent:i) T is a model completion of T8;ii) T8 has the amalgamation property;iii) T has quanti�er elimination.Exercise 51 a) Prove that the theory of integral domains has the amalga-mation property.b) Deduce from a), that the theory of algebraically closed �elds has quanti�erelimination. 47



9 Countable ModelsIn this section we shall be concerned with countable languages and countablestructures. So, L is countable in this chapter (and, if A is a countable L-structure, of course LA is countable too).If � is a set of L-formulas with at most the variables x1; : : : ; xn free, we write�(x1; : : : ; xn) or �(~x). An L-structure A realizes �(~x) if there is an n-tuplea1; : : : ; an 2 A such that A j= '(a1; : : : ; an) for every '(x1; : : : ; xn) 2 �(~x). IfA does not realize �, A is said to omit �.Let T be an L-theory. T is said to realize � locally , if there is an L-formula�(x1; : : : ; xn) such that T [ f9x1 � � �xn�(~x)g is consistent, and T j= 8~x(�(~x) !'(~x)) for every '(~x) 2 �.Theorem 9.1 (Omitting Types Theorem) Let T be a consistent L-theory,and for each m 2 IN let �m be a set of formulas in variables x1; : : : ; xkm . If Tdoes not realize any �m locally, then T has a countable model which omits each�m.Proof. First we add a countable set C = fc1; c2; : : :g of new constants to thelanguage L; let L0 = L [ C. Fix an enumeration �0; �1; : : : of all L0-sentences,in such a way that every L0-sentence occurs in�nitely often in this enumeration.We shall build a chain of L0-theoriesT = T0 � T1 � T2 � � � �such that the following hold:� Every Tn is a consistent extension of T by �nitely many L0-sentences;� if Tn [ f�ng is consistent, then �n 2 Tn+1� if �n � 9x and �n 2 Tn+1, then  (c) 2 Tn+1 for some c 2 C� for each m � n and each km-tuple ~c of elements of C which occur in Tn,there is a formula '(x1; : : : ; xkm) 2 �m such that :'(~c) 2 Tn+1.Now suppose we have constructed T0 � T1 � � � � with these properties; letT! = Sn Tn. Then T! is consistent and has a model A; but by construction,A has a submodel B with underlying set fcA j c 2 Cg; and B is actually anelementary submodel, so is a countable model of T . And B omits each �m byconstruction.To construct our chain, we start by putting T0 = T ; T was assumed consis-tent, which is all there is to check at this stage.Suppose Tn has been constructed. We build Tn+1 in stages:Stage 1. We check �n. If T [f�ng is consistent, we put �n in Tn+1. If not, wedo nothing in this stage.Stage 2. If �n � 9x was put into Tn+1 at stage 1, let c be the �rst constantin the enumeration of C which doesn't occur in Tn (which contains only �nitelymany constants from C by induction hypothesis), and put  (c) into Tn+1.48



Stage 3. Let C 0 be the �nite set of constants from C which so far occur inTn+1.For each m � n let Lm = f~c0; : : : ; ~cU(m)g be a list of all km-tuples ofelements of C 0. We work through each m and each j, 0 � j � U (m), as follows:we start with m = 0; j = 0. At substage (m; j) we have added a �nite numberof L0-formulas to T ; let Cm;j be the conjunction of these. Write Cm;j as�(c1; : : : ; ckm ; d1; : : : ; du)where (c1; : : : ; ckm) is the tuple ~cj, and d1; : : : ; du are the other constants fromC. Since T does not locally realize �m, there is a formula '(x1; : : : ; xkm) 2 �msuch thatT 6j= 8x1 � � �xkm(9y1 � � �yu�(x1; : : : ; xkm ; y1; : : : ; yu) ! '(x1; : : : ; xkm))Now add :'(c1; : : : ; ckm) to Tn+1 and proceed to substage (m; j + 1) if j <U (m); otherwise to (m+ 1; 0) if m < n; otherwise, stage 3 is completed and theconstruction of Tn+1 too.The Omitting Types Theorem is often applied in order to construct (count-able) models which have to be `small' in some sense: there are no elements (ortuples) realizing any of countably many sets of formulas.An example of this is the construction of end-extensions; another one is inthe construction of atomic models.9.1 End extensions of models of PAThe theory of Peano Arithmetic (PA) is formulated in the languageL = f0; 1; +; �g,and its axioms are:8x:(x+ 1 = 0) 8xy(x + 1 = y + 1 ! x = y)8x(x+ 0 = x) 8x(x�0 = 0)8xy(x + (y + 1) = (x+ y) + 1) 8xy(x�(y + 1) = x�y + x)8~x[('(0; ~x) ^ 8y('(y; ~x) ! '(y + 1; ~x))) ! 8y'(y; ~x)]The last axiom is meant to be an axiom for every L-formula '(y; ~x). Theseaxioms are called induction axioms.Any model A of PA has the properties that + and � are commutative andassociative, that � is distributive over +; that the formula 9z(x + (z + 1) = y)de�nes a linear order x < y, for which 0 is the least element, and such thatevery element x has a successor, that is a least element greater than x.Let A � B be an embedding of models of PA. B is called an end extensionof A, or A an initial segment of B, if for a 2 A and b 2 B: if b � a then b 2 A.We say that the embedding is proper, if A 6= B.We shall use the Omitting Types Theorem to show that every countablemodel of PA has a countable proper elementary end extension.49



Exercise 52 Let A be a model of PA and '(u; x) be an LA-formula such thatA j= 8z9y8xu (x > y ^ '(u; x) ! :(u = z))Show, using the induction axioms of PA, thatA j= 8z9y8xu (x > y ^ '(u; x) ! u > z)Proposition 9.2 Every countable model of PA has a countable proper elemen-tary end extension.Proof. Let A be a countable model of PA; let L0 = LA [ fcg where c is a newconstant. Consider the L0-theoryE(A) [ fc > a j a 2 AgClearly, T is consistent by the Compactness Theorem, and every model of T isa proper elementary extension of A.Now consider for each a 2 A the set of formulas�a(x) = fx < ag [ f:(x = b) j b 2 AgConvince yourself that a proper elementary end extension of A is nothing but amodel of T which omits each �a(x).Since there are only countably many sets �a(x) because A is assumed count-able, the Omitting Types Theorem gives us such a (countable) model, providedwe can show that no �a(x) is locally realized by T .So suppose �0(x) is an L0-formula such that1) T j= 8x(�0(x) ! x < a)2) T j= 8x(�0(x) ! :(x = b)) for all b 2 AWrite �0(x) = �(x; c) where � is an LA-formula. From 1) we deduce, using theCompactness Theorem, that there is some a0 2 A such that3) A j= 8xu(u > a0 ^ �(x; u) ! x < a)From 2) we deduce in the same way that for each b 2 A there is b0 2 A suchthat A j= 8xu(u > b0 ^ �(x; u) ! :(x = b)); in other words,A j= 8z9w8xu(u > w ^ �(x; u) ! :(x = z))Applying Exercise 52, we �nd thatA j= 8z9w8xu(u > w ^ �(x; u) ! x > z)However, combining this with 3), we get a contradiction unless A j= :9xu�(x; u);but this means that T [ f9x�0(x)g is inconsistent.Therefore, no �a(x) is locally realized by T , and we are done.50



9.2 Atomic Theories and Atomic ModelsIf A is an L-structure and a1; : : : ; an 2 A, the set of L-formulas�a1���an = f'(x1; : : : ; xn) jA j= '(a1; : : : ; an)gis maximal w.r.t. the property that it is realized in some L-structure.We call �a1���an the type of the tuple a1; : : : ; an.In general, if T is an L-theory and �(x1; : : : ; xn) a set of L-formulas invariables x1; : : : ; xn which is maximal w.r.t. the property that it is realized insome model of T , we call � a type of T .Exercise 53 If a type �(~x) of T is locally realized by T , there is a formula �(~x)such that �(~x) = f'(~x) jT j= 8~x (�(~x) ! '(~x))gIn this case we say that the type � is principal for T , and that � is generatedby �(~x).Exercise 54 Let LT (~x) be the set of equivalence classes of L-formulas in vari-ables ~x, where '(~x) �  (~x) if and only if T j= 8~x ('(~x) $  (~x)).Show that LT (~x) is a Boolean algebra. Show that �(~x) is realized in somemodel of T if and only if the set f[] j  2 �g is contained in a �lter on LT (~x).Show that �(~x) is a type of T if and only if � = f j [] 2 Ug for some ultra�lterU on LT (~x).We say that T is an atomic theory if every L-formula '(~x) such that T [f9~x'(~x)g is consistent, is an element of a principal type (in ~x) of T .An L-structure A is called atomic if for every n-tuple a1; : : : ; an, the type�a1 ���an is principal for Th(A).Exercise 55 Call a Boolean algebra B atomic if for every b 2 B, if b 6= 0 thereis some atom in B which is � b.Show that in a Boolean algebra, b is an atom if and only if the �lter "b is anultra�lter.Show that a theory T is atomic if and only if for each tuple ~x of variables,the Boolean algebra LT (~x) is atomic.Exercise 56 Let A be an L-structure such that for each a 2 A there is anL-formula '(x) such that A j= 8x ('(x) $ x = a)Show that A is atomic.Theorem 9.3 Let T be a complete L-theory.a) If for every n 2 IN, T has only countably many types in x1; : : : ; xn, T hasa countable atomic model. 51



b) If A is a countable atomic model of T , A is elementarily embedded in everymodel of T .c) If A and B are countable atomic models of T , they are isomorphic.Proof. For a), we use the Omitting Types Theorem. Since there are onlycountably many types altogether, there are certainly only countably many non-principal types. So by the Omitting Types Theorem, let A be a countablemodel of T which omits each non-principal type (we cannot omit a principaltype; why?). Then for each a1; : : : ; an 2 A, the type �a1���an is principal forT = Th(A), so A is atomic.For b), suppose A is a countable atomic model of T , and let B be any modelof T . List A as a0; a1; : : : . Since �a0 is principal for Th(A) = T , there is aformula �0(x0) such that �a0 = f'(x0) jT j= 8x0(�0(x0) ! '(x0))g. Since T iscomplete, T j= 9x0�0(x0), so B j= �0(b0) for some b0 2 B.Now suppose we have de�ned b0; : : : ; bn 2 B such that b0; : : : ; bn realizes�a0 ���an inB. The type �a0:::an+1 is generated by some formula �n+1(x0; : : : ; xn+1).Then the formula 9xn+1�n+1 is an element of �a0���an , soB j= �n+1(b0; : : : ; bn+1)for some bn+1. Then b0; : : : ; bn+1 realizes �a0���an+1 .The map an 7! bn is then an elementary embedding: A!B.c) is proved by performing the construction of b) in two directions; this is similarto the back-and-forth method in the proof of Corollary 8.13, and is left to you.Exercise 57 Work out the proof of c) above.Exercise 58 Theorem 9.3b) has a converse: if A is a countable structure suchthat A is elementarily embedded in every structure that is a model of Th(A),then A is atomic.[Hint: for a1; : : : ; an 2 A, show that �a1���an must be locally realized by Th(A),using the Omitting Types Theorem. So it must be principal]Exercise 59 Show, for a complete theory T , that T has a countable atomicmodel if and only if T is an atomic theory.[Hint: in one direction, if A is an atomic model of T and 9~x'(~x) consistentwith T , show that '(~x) is realized by a tuple ~a in A; so '(~x) 2 �~a, which is aprincipal type.For the other direction, let, for each n, �n be the set of formulas : (x1; : : : ; xn)for  such that  generates a principal type for T . Use the Omitting TypesTheorem to show that T has a countable model which omits each �n, and henceis atomic]Exercise 60 Let L be the language of partial orders, together with a countablyin�nite set of new constants c0; c1; : : : . Let T be the L-theorydlo [ fci < ci+1 j i 2 INgDescribe (up to isomorphism) the countable models of T . Does T have anatomic model? 52



Exercise 61 For those of you who are familiar with G�odel's IncompletenessTheorems.a) Show that Peano Arithmetic has an atomic model: the standard modelN . Show that the model N is not elementarily embedded in every othermodel of PA. Why is this not in conict with Theorem 9.3?b) The theory rcf of real closed �elds has an atomic model. What is it?Show, that rcf has uncountably many types in one variable. So theconverse to 9.3c) is false.I �nish this chapter with a theorem giving a characterization of !-categoricaltheories in terms of the number of types. Its proof uses atomic models.Theorem 9.4 Let T be a complete theory which has in�nite models. Then Tis !-categorical if and only if for every n 2 IN, T has only �nitely many typesin x1; : : : ; xn.Proof. First suppose T is !-categorical; let A be a countably in�nite model of T .Every model of T is in�nite (check!), hence has a countable elementary submodelby downwards L�owenheim-Skolem-Tarski; therefore, since T is !-categorical, Ais elementarily embedded in every model of T . So A is atomic by exercise 58.Let �(~x) be a type of T . Then �(~x) is realized in some countable model ofT , so it is realized in A which is atomic; it follows that �(~x) = �~a for some~a 2 A, so �(~x) is principal. So every type of T is principal.Consider now the set�(~x) = f: (~x) j (~x) generates a type of TgThen �(~x) cannot be extended to a type (because every type is principal). Bythe compactness theorem, there are �nitely many formulas  1(~x); : : : ;  k(~x),generators of types, such thatT j= 8~x ( 1(~x) _ � � � _  k(~x))We see that the types generated by the  i(~x) are the only types of T , whichtherefore has only �nitely many types.Conversely, if T has only �nitely many types in ~x (for each tuple ~x), then eachBoolean algebra LT (~x) must be �nite (for, if T 6j= 8~x ('(~x) !  (~x)), thereis a type which contains '(~x) but not  (~x)). It follows that every type of Tis principal, so that every model of T is atomic. Then T is !-categorical byTheorem 9.3c).Exercise 62 Show that a Boolean algebra B has only �nitely many ultra�ltersif and only if B itself is �nite. Show moreover, that every in�nite Booleanalgebra has a nonprincipal ultra�lter.Exercise 63 Describe the types of dlo in variables x1; : : : ; xn.53



9.3 !-Saturated ModelsThe notion of a saturated model is dual to the notion of atomic model: saturatedmodels are `large', they realize as many types as possible. In this chapter, wherewe focus on countable models, we restrict ourselves to the notion of !-saturatedmodel.De�nition 9.5 Let A be an L-structure. We say that A is !-saturated iffor every �nitely generated substructure B of A and every set of LB-formulas�(x1; : : : ; xn) in free variables x1; : : : ; xn the following holds: if � is realized inan LB-elementary extension of A, then � is realized in A.Exercise 64 Show that every �nite structure is !-saturated.Let's recall that ifB is generated by a1; : : : ; am, we may replace LB by Lfa1;::: ;amg.Exercise 65 Suppose A andB are L-structures and a1; : : : ; an 2 A, b1; : : : ; bn 2B. We can then see A andB as L[fc1; : : : ; cng-structures by putting (ci)A = aiand (ci)B = bi (of course, the constants ci are new).We write Aa1���an � Bb1���bn if the L [ fc1; : : : ; cng-structures thus de�ned,are elementarily equivalent.Prove: A is !-saturated if and obly if for each L-structure B the followinghold:1) If A � B then for every b 2 B there is an a 2 A such that Aa � Bb;2) for tuples a1; : : : ; an 2 A and b1; : : : ; bn 2 B such that Aa1���an � Bb1���bn ,and every bn+1 2 B, there is an+1 2 A such that Aa1���an+1 � Bb1���bn+1 .Theorem 9.6 Let T be a complete L-theory.a) If A is an !-saturated model of T , every countable model of T is elemen-tarily embedded in A;b) T has a countable !-saturated model if and only if for each n 2 IN, T hasonly countably many types in x1; : : : ; xn;c) if T has a countable !-saturated model, T has an atomic model.Proof. a) Suppose A is an !-saturated model of T , and B a countable modelof T . Enumerate B as fb1; b2; : : :g. Since T is complete, A � B. Therefore,applying Exercise 65, we can �nd a sequence (an)n in A such that for eachn, Aa1���an � Bb1���bn . The assignment bn 7! an now de�nes an elementaryembedding of B into A.b) If T has a countable !-saturated model A, then there can be at mostcountably many types since every type is realized in A.Conversely, suppose T has only countably many types in x1; : : : ; xn for eachn. Let A be a countable model of T . Then we can enumerate all pairs (~ai;�i),54



where ~ai is a �nite (possibly empty) tuple (an1; : : : ; ani) of elements of A, and�i is a type in variables (xn1 ; : : : ; xni; y1; : : : ; yki), such that the set�i(~ai) = f(an1 ; : : : ; ani; y1; : : : ; yki) j (~x; ~y) 2 �igis realized in some L~ai-elementary extension of A. We construct a chain ofmodels A = A0 � A1 � A2 � � � �as follows: suppose An is constructed. Let Bn+1 be a countable L~an-elementaryextension of A such that �n(~an) is realized in Bn+1. Then certainly A � Bn+1so An � Bn+1; let An+1 be a countable common elementary extension of them.One sees by induction that for each n, An+1 realizes �i(~ai) for all i � n.Let A(1) be the colimit of the chain A0 � A1 � � � � . Then A(1) is countable,A � A(1) and moreover the following property holds:� For every �nitely generated substructure B ofA and every set �(x1; : : : ; xn)of LB-formulas which is realized in some LB-elementary extension of A,� is realized in A(1).Now we iterate this procedure in�nitely often:A � A(1) � A(2) � � � �where each A(n) is countable, and each A(n+1) has the property � w.r.t. A(n).Let C be the colimit of the chain A(n). Now it is easy to see that C iscountable and !-saturated.c) follows at once from b) and Theorem 9.3a).Exercise 66 Show that if A and B are two countable !-saturated models of acomplete theory T , then A �= B.
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10 Stone DualityIn this chapter we shall establish a natural correspondence between Booleanalgebras and a certain type of topological spaces, the so-called Stone spaces.The correspondence, when applied to the Lindenbaum algebra LT of a theoryT , or to the algebras LT (~x), gives another perspective on the CompactnessTheorem.Let us �rst recall and collect the facts about �lters on a Boolean algebrathat we have already seen at di�erent places, or that are easy to derive:� A �lter on a Boolean algebra B is an upwards closed, nonempty propersubset of B which is closed under �nite meets (in�ma);� an ultra�lter is a maximal �lter;� in a Boolean algebra, the notions of prime �lter and ultra�lter coincide;� if a 6� b in a Boolean algebra B, there is an ultra�lter on B which containsa but not b;� a �lter U is an ultra�lter if and only if for each b 2 B, exactly one elementof fb; bcg belongs to U (here bc denotes the complement of b);� if f : A! B is a homomorphismof Boolean algebras and U is an ultra�lteron B, then f�1(U ) is an ultra�lter on A;� if A is a subset of a Boolean algebra B, there is an ultra�lter on B whichcontains A, if and only if for each �nite subset fa1; : : : ; ang of A, a1 u� � � u an 6= 0.Let B be a Boolean algebra. We denote the set of ultra�lters on B by S(B).We give S(B) a topology.Let, for b 2 B, Ub be fF 2 S(B) j b 2 Fg.I claim that the collection fUb j b 2 Bg forms a basis for a topology on S(B).Indeed, it is clear that S(B) = Sb2B Ub, and you can check for yourself thatUb \ Ub0 = Ubub0 .We now examine the topological space S(B) (with the topology generatedby the sets Ub).Proposition 10.1 The space S(B) is a compact Hausdor� space which has abasis of clopen (closed and open) sets.Proof. Every set Ub is clopen, since its complement is Ubc . So S(B) has a basisof clopen sets.If F 6= G in S(B), there is b 2 B with b 2 F and b 62 G; so F 2 Ub, G 2 Ubc ,which are disjoint open neighborhoods of F and G, respectively. So S(B) isHausdor�.Finally, suppose the collection fUbi j i 2 Ig covers S(B); then every ultra�lteron B contains some bi. It follows, that the set f(bi)c j i 2 Ig is not a subset of any56



ultra�lter. But then we must have, for some i1; : : : ; in 2 I, that bi1u� � �ubin = 0in B; but this implies that fUbi1 ; : : : ; Ubing covers S(B). So S(B) is compact.At this generality, Proposition 10.1 says all there is to say about S(B). Thisfollows from:Proposition 10.2 Let X be a nonempty, compact Hausdor� space which hasa basis of clopen sets. Then there is a Boolean algebra B(X), unique up toisomorphism, such that X is homeomorphic to S(B(X)). Consequently, if B isa Boolean algebra, then B(S(B)) is isomorphic to B.Proof. For any topological space X, the set B(X) of clopen subsets of Xcontains ; and X and is closed under �nite unions and intersections as well asunder taking complements. Therefore it is a Boolean algebra.Now consider an ultra�lter F on B(X). In particular this is a collection ofclosed subsets of X which is closed under �nite intersections, so if X is compact,the intersection TF is nonempty, and if X is Hausdor�, the intersection is asingleton fxg, by maximality of the �lter. So, we have a function h : S(B(X)) !X which is easily seen to be a bijection. It is also continuous, for if h(F) = xthen F = fU � X jU clopen; x 2 Ug; so for a clopen basiselement A we haveh�1(A) = fF 2 S(B(X)) jA 2 Fg = UAwhich is a basic open in S(B(X)). Since both X and S(B(X)) are compactHausdor�, we are done and h is an homeomorphism.Now let's look at B(S(B)). Clearly, there is a homomorphism of Booleanalgebras: B ! B(S(B)) given by b 7! Ub. This is an injective map. Nowtake any clopen subset W of S(B). Then both W and its complement areunions of clopen basis elements. Since S(B) is compact, we must have W =Ub1 [ � � � [ Ubn for some b1; : : : ; bn 2 B; so W = Ub1t���tbn and we see that themap B ! B(S(B)) is also surjective. It is easy to see that its inverse is also ahomomorphism of Boolean algebras.De�nition 10.3 A Stone space is a compact Hausdor� space with a basis ofclopen sets.Exercise 67 (Examples) i) Show that Cantor space is a Stone space. Show,that under the correspondence of proposition 10.2, it corresponds to theBoolean algebra P(IN).ii) Show that the set f0g [ f 1n jn 2 IN; n > 0g, viewed as a subspace of R, isa Stone space. To which Boolean algebra does it correspond?We shall now extend the correspondence of proposition 10.2 also to maps.Suppose f : X ! Y is a continuous function between topological spaces.Then f�1 : P(Y ) ! P(X) maps clopen sets to clopen sets, and commutes with57



�nite unions and intersections, as well as complements. So it is a homomorphismof Boolean algebras: B(Y ) ! B(X).Now if X and Y are Stone spaces, every homomorphism ' : B(Y ) ! B(X)is f�1 for a unique continuous f : X ! Y . For, we have seen that pointsof a Stone space are in 1{1 correspondensce with ultra�lters on its associatedBoolean algebra. Since '�1 sends ultra�lters on B(X) to ultra�lters on B(Y ),it determines a map f : X ! Y such that ' = f�1, and it is left to you to seethat f is continuous.Summing up: we have established that for Stone spaces X and Y there isa 1-1 correspondence between continuous maps X ! Y and Boolean homo-morphisms B(Y ) ! B(X). If we take Y = X, the the identity map on Xcorresponds to the identity map on B(X); and given X f! Y g! Z, the com-position of f and g corresponds to the composition of the maps correspondingto g and f . In the language of Category Theory, we say that the categories ofStone spaces and Boolean algebras are dually equivalent, or dual to each other(the word `dual' refers to the fact that the direction of the arrows is reversed).For the record:Theorem 10.4 (Stone Duality Theorem) The category of Stone spaces isdual to the category of Boolean algebras.Exercise 68 The Boolean algebra f = f0; 1g has very special features:a) for every Boolean algebra B, ultra�lters on B are in 1-1 correspondencewith Boolean homomorphisms B ! f;b) for every Boolean algebra B there is exactly one Boolean homomorphismf! B.Applying Stone Duality, interpret these facts for the corresponding Stone space.Exercise 69 Let T be a theory and consider the Boolean algebra LT . Describethe points of the Stone space corresponding to LT , in terms of T .Exercise 70 Show, without using Zorn's Lemma or any of its equivalents, thatthe Compactness Theorem is equivalent to the statement that each of the spacesS(LT ) is compact.Exercise 71 Let X be an arbitrary topological space. Show that there is aStone space T (X) and a continuous map � : X ! T (X) such that the followingholds: for every continuous function f from X to a Stone space Y , there is aunique continuous function ~f : T (X) ! Y such that ~f�� = f .58



11 LiteratureThere are two standard reference works for general Model Theory:C.C. Chang and H.J. Keisler, Model Theory, Amsterdam, North Holland,3rd edition 1990W. Hodges, Model Theory, Cambridge, Cambridge University Press, 1993Both books are expensive and not very suitable for a �rst course. The �rst ismoreover, despite the additions in the 1990 edition, rather old-fashioned.A nice, compact introduction isK. Doets, Basic Model theory, Stanford, CSLI Publications, 1996However, its emphasis is quite di�erent from that of these notes. Has nothingon quanti�er elimination or model completeness.General Mathematical Logic books, such as Shoen�eld's Mathematical Logic (aclassic), or Bell & Machover's A Course in Mathematical logic, usually have achapter on Model Theory where basic notions are given.Material on Real Closed Fields can be found inN. Jacobson, Lectures in Abstract Algebra, vol. III, Princeton, Van Nos-trand, 1964The proof of Quanti�er Elimination for Real Closed Fields in section 8.1 is basedon the paperP.J. Cohen, Decision Procedures for Real and p-Adic Fields, in: Commu-nications on Pure and Applied Mathematics XXII (1969), pp. 131{151For a detailed proof of Hilbert's Nullstellensatz, look atH. Matsumura, Commutative Ring Theory, Cambridge University Press,1989There are several directions in which to study Model Theory further. Thehottest �elds are Stability Theory and o-Minimality Theory. A few introductorytexts:A. Pillay, Geometric Stability Theory, New York, Clarendon Press, 1996D. Marker, M. Messmer and A. Pillay, Model Theory of Fields, Berlin,Springer, 1996L. van den Dries, Tame Topology and o-minimal structures, CambridgeUniversity Press 1998 59



However, without some further introduction in Model Theory it is not advisableto start on these books right away.A nice and accessible specialization of Model Theory is the topic of models ofPeano Arithmetic. Two texts:R. Kaye, Models of Peano Arithmetic, Oxford, Clarendon, 1991J. van Oosten, Introduction to Peano Arithmetic { G�odel Incompletenessand Nonstandard Models, Communications of the Mathematical Institute21{1999, Utrecht University, 1999
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