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1. First we verify Bn(1) = n for all n. We proceed by induction on n.

n = 0: By definition B0(1) = 0
n = 1: Again by definition we have B1(1) = 1

n + 2 > 1: Bn+2(1) = 2·Bn+1(1)−Bn(1) Applying the inductive hypothesis we obtain Bn+2(1) =
2 · (n + 1)− n = n + 2 as required.

Next the fact that deg(Bn+1(T )) = n for all n. We proceed by induction on n.

n = 0: deg(B1(T )) = deg(1) = 0
n = 1: deg(B2(T )) = deg(2T ) = 1

n + 2 > 1: deg(Bn+2(T )) = deg(2T · Bn+1(T ) − Bn(T )). Applying the inductive hypothesis
we have deg(Bn+1(T )) = n and deg(Bn(T )) = max{0, n − 1} < n + 1. Hence
deg(2T ·Bn+1(T )) = n + 1 and so deg(Bn+2(T )) = n + 1 as required.

2. We can prove this directly by a tedious induction, but there is a simpler method using
the results from the lecture. First recall

Lemma 1.

(a) ∀x, y ∈ N : x2 − (a2 − 1)y2 = 1←→ ∃n(x +
√

a2 − 1y = (a +
√

a2 − 1)n

(b) an +
√

a2 − 1a′
n = (a +

√
a2 − 1)n

Hence for a ∈ N+ we have Xn(a) = an and Yn(a) = a′
n. Similarly we used the result

Lemma 2. ∀a ∈ N+ : An(a) = an ∧Bn(a) = a′
n.

Thus it follows that the polynomials Xn(T )−An(T ) and Yn−Bn(T ) have infinitely many
roots and are therefore both the constant zero polynomial. That is, Xn(T ) = An(T ) and
Yn(T ) = Bn(T ) as required.

3. a) As in the lemma proved in the lecture, as we take the squares of U(T ) and V (T ) we
can assume without loss of generality that the lead coefficients of both are positive.
Hence there exists N ∈ N such that for x > N we have U(x) and V (x) positive
and strictly increasing. Now let a > N be a natural number. Since U, V solve the
polynomial Pell equation and U(a), V (a) ∈ N we have an instance of the integer Pell
equation U(a)2− (a2− 1)V (a)2 = 1. Hence it follows that U(a) = an and V (a) = a′

n

for some n ∈ N. Let f : N \N → N be the function taking a to the index f(a) such
that U(a) = af(a) and V (a) = a′

f(a).
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b) By lemma 1 we have that, for a > N :

U(a) +
√

a2 − 1(V (a)) = af(a) +
√

a2 − 1(a′
f(a)) = (a +

√
a2 − 1)f(a)

Hence as a→∞:

f(a) = log(U(a) + V (a)
√

a2 − 1)
log(a +

√
a2 − 1)

= O(log a)
log a +O(1) = O(1)

Hence for some K ∈ N for all a > N we have f(a) < K.
c) From b) we have that f : N \N → K. Thus by the pigeonhole principle there exists

n with 0 ≤ n < K such that f(a) = n for infinitely many values of a. We know
by lemma 2 that An(a) = an and Bn(a) = a′

n. Thus it follows that the polynomials
An(T )−U(T ) and Bn(T )− V (T ) have infinitely many roots an and a′

n respectively,
where a ∈ {a|f(a) = n}. Hence An(T ) = U(T ) and Bn(T ) = V (T ) identically.
We may conclude that the sequences An(T ) and Bn(T ) exhaust all solutions to the
polynomial Pell equation.

Mark Scheme

1. • 1 mark for a correct inductive proof of Bn(1) = n

• 1 mark for a correct inductive proof of deg(Bn+1(T )) = n

2. • 1 mark for showing Xn(a) = an and Yn(a) = a′
n

• 1 mark for concluding from this the identities.
• Alternatively, 2 marks for a correct inductive proof of the identities.
• Alternatively, 2 marks for showing Jetze’s definition satisfies the recursive definition.

3. a) • 1 mark for showing we can assume the lead coefficients positive, hence finding
N

• 1 mark for identifying the particular cases with the integer Pell equation and
arguing the existence of f.

b) • 1 mark for finding the identity U(a) +
√

a2 − 1(V (a)) = (a +
√

a2 − 1)f(a)

• 1 mark for taking logs and correctly deducing the existence of K from the be-
haviour a→∞

c) • 1 mark for correctly arguing (via Pigeonhole principle or otherwise) that for
some n f(a) = n for infinitely many values of a.

• 1 mark for concluding the identity of the polynomials from this fact.
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