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1 Monotonicity Theorem

Theorem 1.1 (Monotonicity). Let f : I → R be a definable function. Then are intervals I =
I0∪· · ·∪Ik such that on every sub-interval Ij the function F |Ij is either constant, or strictly monotone
and continuous.

Proof. Assuming the following 3 lemma’s , we will derive the theorem, let I denote an interval (a, b).

Lemma 1.1. Let f : I → R be a definable function, then there is a sub-interval of I on which F is
constant or injective.

Lemma 1.2. Let f : I → R be a definable function, if f is injective, then f is strictly monotone on a
sub-interval of I.

Lemma 1.3. Let f : I → R be a definable function, if f is strictly monotone, then f is continuous on a
sub-interval of I.

1.1 Proof of Lemma 2

Φ++(x) = ∃c1,∃c2 ∈ I
[
c1 < x < c2 & ∀y ∈ (c1, x) : f(y) > f(x)

& ∀y ∈ (x, x2) : f(y) > f(x)

]
,

Φ−−(x) = ∃c1,∃c2 ∈ I
[
c1 < x < c2 & ∀y ∈ (c1, x) : f(y) < f(x)

& ∀y ∈ (x, x2) : f(y) < ∓f(x)

]
,
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Φ+−(x) = ∃c1,∃c2 ∈ I
[
c1 < x < c2 & ∀y ∈ (c1, x) : f(y) > f(x)

& ∀y ∈ (x, x2) : f(y) < f(x)

]
,

Φ−+(x) = ∃c1,∃c2 ∈ I
[
c1 < x < c2 & ∀y ∈ (c1, x) : f(y) < f(x)

& ∀y ∈ (x, x2) : f(y) > f(x)

]
.

2 The Cell Decomposition Theorem

Definition 2.1. Let i = (i1, i2, · · · im) ∈ {0, 1}m. An i-cell is (definable) subset of Rm defined
inductively as follows

Base Case. A 0-cell is a point in R, a 1-cell is an interval in R.

Inductive Definition. . Suppose that we have already defined (i1, · · · , im)-cells, an (i1, · · · , im, 0)-cell
is the graph Γ(f) of a function f in C∞(X) with X an (i1, · · · , im)-cell. An (i1, · · · , im, 1)-cell is a
set (f, g)X where X is a (i1, · · · , im)-cell, f < g ∈ C∞(X).

Definition 2.2. A decomposition of Rm is a partition of Rm into finitely many cells. The definition
is done by induction of the dimension m:

(i) A decomposition of R is a collection of disjoint (0) and (1) cells such that their union is R,
specifically a collection{

(−∞, a1), (a1, a2) · · · , (ak,+∞), {a1}, · · · , {ak}
}
,

where a1, · · · , ak are just points in R.

(ii) A decomposition of Rm+1 is a finite partition of Rm+1 into cells A1, · · · , An such that the set if
projections {π(Ai) : 1 ≤ i ≤ n} is a decomposition of Rm.

Theorem 2.1 (Cell Decomposition). (I) Let A1, · · ·Ak ⊂ Rm, then there is a decomposition of Rm

partitioning each of A1, · · · , Ak.

(II) For each definable function f : A → R,A ⊂ Rm, there is a decomposition D of Rm such that
the restriction F |B : B → R to each cell B ∈ D is continuous.

3 Finiteness Lemma
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Proposition 3.1 (Finiteness Lemma). Let A ⊂ R2 be definable and suppose that for each x ∈ R the
fiber Ax : +{y ∈ R : (x, y) ∈ A} is finite. Then there is N ∈ N such that |Ax| < N for all x ∈ R.

λ(a,−) = lim
↑x→a

fn+1(x) if fn+1 is defined on some interval(t, a),

=∞ otherwise ,

λ(a, 0) = fn+1(a) if a ∈ dom(fn+1),

=∞ otherwise ,

λ(a,+) = lim
↓x→a

fn+1(x) if fn+1 is defined on some interval(a, t),

=∞ otherwise.

B− := {a ∈ B : ∃y(y < β(a)&(a, y) ∈ A)},
B+ := {a ∈ B : ∃y(y > β(a)&(a, y) ∈ A)},

and the functions β− : B− → R and β+ : B+ → R by

β−(a) := max{y : y < β(a)&(a, y) ∈ A},
β+(a) := max{y : y > β(a)&(a, y) ∈ A}.

Since B is infinite by assumption, one of the (definable) sets B+ ∪ B−,B+ \ B−,B− \ B+,B \ (B− ∪ B+) is
infinite, and each of these four cases will lead to a contradiction.

Corollary 3.1. Let A ∈ R2 be definable such that Ax is finite for each x ∈ R. There there are
points a1 < · · · < ak such that the intersection of A with each vertical strip (ai, ai+1) × R has the
form Γ(fi,1) ∪ · · · ∪ Γ(fi,n(i) for certain definable continuous functions fi,j : (ai, ai+1) → R with
fi,1(x) < · · · < fi,n(i)(x) for each x ∈ (ai, ai+1), we have set a0 = −∞ and ak+1 = +∞.

The proof is this is a homework exercise.
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Homework Exercises - Due 7/11
Exercise 1(3 points) Let A ∈ R2 be definable such that Ax is finite for each x ∈ R. Show that
there are points a1 < · · · < ak such that the intersection of A with each vertical strip (ai, ai+1) × R
has the form Γ(fi,1) ∪ · · · ∪ Γ(fi,n(i) for certain definable continuous functions fi,j : (ai, ai+1) → R with
fi,1(x) < · · · < fi,n(i)(x) for each x ∈ (ai, ai+1), we have set a0 = −∞ and ak+1 = +∞. (Hint: use the
functions defined in the proof of the finiteless lemma and then apply the monotonicity theorem)

We will now use the previous exercise to show that if A has infinite fibers, its boundary consists of graphs
of continuous definable functions.

Exercise 2 (1 point) Let A ∈ Rn be definable such that Ax is infinite for each x ∈ R. Show that there
are points a1 < · · · < ak such that the intersection of Bd2(A) := {(x, r) ∈ A : r ∈ ∂(Ax)} with each
vertical strip (ai, ai+1)×R has the form Γ(fi,1)∪ · · · ∪ Γ(fi,n(i) for certain definable continuous functions
fi,j : (ai, ai+1) → R with fi,1(x) < · · · < fi,n(i)(x) for each x ∈ (ai, ai+1), we have set a0 = −∞ and
ak+1 = +∞. (Here ∂Ax is the (topological) boundary of Ax)

Exercise 3 (2 points) Let f : [a, b] → R be continuous and definable. Show that f takes a maximum
and a minimum value on [a, b].

Exercise 4 (2 points) Let I and J be intervals and f : I → R and g : J → R strictly monotone
definable functions such that f(I) ⊂ g(J) and limx→r(I)f(x) = limx→r(J) g(t) in R∞, where r(I) and r(J)
are the right endpoints of the intervals I and J in R∞. Show that near these right endpoints f and g are
reparametrisations of each other, that is there are subintervals I ′ of I and J with r(I) = r(I ′), r(J) = r(J ′)
and a strictly increasing definable bijection h : I ′ → J ′ such that f(x) = g(h(x)) for all s ∈ I ′.
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