
solution to exercise 1

For part (1), let A ✓ R definable. Then A is a finite union of intervals and
points: A =

Sk
i=1(pi, qi) [ {r1, . . . , rl}, with �1  pi < qi  +1 for every i,

and all rj 2 R. If for some i, qi = +1, then for every x > pi, x /2 R \ A. So
pi is an upper bound for R \ A. Otherwise, let s = max{q1, . . . , qk, r1, . . . , rl}.
Then clearly s is an upper bound for A. For the statement about lower bounds
the argument is entirely similar.
For part (2), first observe that every definable infinite subset A ✓ R must
contain an interval, for otherwise it would be a finite union of just points.
Second, if X is dense in R, that is: for every p, q, if p < q then there exists x

with p < x < q, then X is cofinite. For, if R \X were infinite, then we would
have an interval (p, q) ✓ R \X, contradicting X being dense in R. Now, if X
is dense in Y , then X [ (R \ Y ) is dense in R. For suppose p < q are such that
(p, q) \ (X [ (R \ Y )) = ;, then (p, q) ✓ Y \ X. But then (p, q) is open in Y

and does not intersect X, contradicting X being dense in Y . So X [ (R \ Y ) is
cofinite. Its complement, Y \X, is therefore finite. Since finite sets are closed
in Y , we see that X is open in Y .

solution to exercise 2

First we prove: for every definable A ✓ R, bd(A) is finite. Suppose not, then
by assumption (3) there exist p, q such that p < q and (p, q) ✓ bd(A). In
particular, (p, q) ✓ cl(A), so A \ (p, q) is dense in (p, q) (since every non-empty
interval (p0, q0) ✓ (p, q) is the neighborhood of a point in cl(A) and therefore
intersects A). Then by assumption (4), A\(p, q) is open in (p, q). Since A\(p, q)
is non-empty, we can find a non-empty interval (p0, q0) ✓ A \ (p, q). But then
(p, q) \ int(A) 6= ;, contradicting the assumption that (p, q) ✓ bd(A).
Now let A be an arbitrary definable subset of R. We claim that for every
interval (a, b) such that (a, b) \ bd(A) = ;, either (a, b) ✓ A or (a, b) ✓ R \ A.
We distinguish the case where one or both of the endpoints is ±1 from the case
where the endpoints are both in R.
Start with the case where at least one of the endpoints is ±1. We can assume
without loss of generality that b = +1. Note that the special case where
(a, b) = (�1,+1), that is: bd(A) = ;, also falls under this assumption. If
A = ; or A = R we are done. Otherwise, either A or R \A has an upper bound
in R. Without loss of generality assume R \ A has an upper bound and put
c = sup(R \ A) by assumption (2). Observe that for every p < c there exists
x 2 R \A such that p < x < c, since c is the least upper bound for R \A. And
for every x such that c < x, x 2 A. So for every p, q such that p < c < q, both
(p, q) \ (R \ A) 6= ; and (p, q) \ A 6= ;. So c 2 bd(A). Hence by assumption,
c /2 (a,+1). If a = �1, this constitutes a contradiction and we can conclude
that A = ; or A = R and we are done. Otherwise we must have c  a, hence
for every x > a, x 2 A. That is, (a,+1) ✓ A, as required.
Now consider (a, b) where a, b 2 R. If int(A) \ (a, b) = ;, then (R \ A) \ (a, b)

is dense in (a, b), hence open in (a, b). In that case, if a < x < b and x 2 A,
then certainly x 2 cl(A) and by assumption x /2 int(A). But then x 2 bd(A)

contradicting our assumption that (a, b) \ bd(A) = ;. So such x cannot exist,
and therefore (a, b) ✓ R \A. Similarly, if int(R \A)\ (a, b) = ;, then (a, b) ✓ A.
We are left with the case that there exist p, q such that a < p < q < b and
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(p, q) ✓ A, and r, s such that (r, s) ✓ R \ A. We will derive a contradiction.
Clearly, either q < r or s < p. Without loss of generality, assume q < r. Define
D = { x 2 R | 8y 2 R . p < y < x ! y 2 A }. Note that D is definable and
q 2 D, so we may define c = sup(D). Note that q  c  r so c 2 (a, b). Now,
for every p

0
< c there exists x such that max(p, p

0
) < x < c and therefore x 2 A.

So, clearly c 2 cl(A). And c /2 int(A), for otherwise we could find x 2 D with
x > c. But then c 2 bd(A), and c 2 (a, b) contradicting our assumption.
Finally, using that the boundary bd(A) = bd(R\A) is finite, let it be enumerated
in order by b1 < . . . < bk, and in addition put b0 = �1 and bk+1 = +1. Since
for every i  k, either (bi, bi+1) ✓ A or (bi, bi+1) ✓ R \ A, we can indeed write
A as a finite union of intervals and points.
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