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Exercise 1(3 points. Let A ∈ R2 be definable such that Ax is finite for each x ∈ R. Show that
there are points a1 < · · · < ak such that the intersection of A with each vertical strip (ai, ai+1) × R
has the form Γ(fi,1) ∪ · · · ∪ Γ(fi,n(i) for certain definable continuous functions fi,j : (ai, ai+1) → R with
fi,1(x) < · · · < fi,n(i)(x) for each x ∈ (ai, ai+1), we have set a0 = −∞ and ak+1 = +∞. (Hint: use the
functions defined in the proof of the finiteless lemma and then apply the monotonicity theorem)

The finiteness lemma gives us a number N ∈ N such that |Ax| < N for all N (0.5 point). We can now
define functions f1, · · · fN as in the proof of the finiteness lemma (0.5 point).

fi : {x ∈ R : |Ax| ≥ i}, x 7→ ith element of Ax.

We notice that the domain of fi is definable for every i and the functions fi are definable as well.
This means that we can write the domain of a function fi as the finite union of intervals and points⋃n(i)
j=1 Ii,j∪{xi, · · · , xn(i) (0.5 point). Restricting fi to one of these sub-intervals Ii,j we find a decomposition

of Ii,j into intervals by the monotonicity theorem such that f is continuous on each of these sub-intervals
(0.5 point). We shall call these new intervals Ii,j again, by abuse of notation. Doing this for every i, we
obtain a big (but finite) number of intervals. Now using the fact that the intersection of an interval is
either empty or a new interval, we take all possible intersections of all these intervals. To be precise we
consider the collection (where we index the intervals by 1 up to m)

B = {
k⋃
r=1

⋂
σ∈Sk

Iσr ⊂ A : 1 ≤ k ≤ n},

where we consider all possible intersections of k different intervals (using permutation notation). If we
again numerate these intervals I1, · · · In then on every interval, the function fi is either continuous or not
defined, so we can write (Ij × R) ∩ A = Γ(fi) ∪ · · · ∪ Γ(ft(j)), where t(j) is maximal such that ft(j) is
defined on Ij .

Now note that the collection B still covers A so we are done. (1 point for the last part of the argument,
there are many ways to do this but half a point will be subtracted if no refinement argument is considered).

We will now use the previous exercise to show that if A has infinite fibers, its boundary consists of graphs
of continuous definable functions.

Exercise 2 (1 point) Let A ∈ Rn be definable such that Ax is infinite for each x ∈ R. Show that there
are points a1 < · · · < ak such that the intersection of Bd2(A) := {(x, r) ∈ A : r ∈ bd(Ax)} with each
vertical strip (ai, ai+1)×R has the form Γ(fi,1)∪ · · · ∪ Γ(fi,n(i) for certain definable continuous functions
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fi,j : (ai, ai+1) → R with fi,1(x) < · · · < fi,n(i)(x) for each x ∈ (ai, ai+1), we have set a0 = −∞ and
ak+1 = +∞.

It is a result of chapter 1 that the boundary of a definable set is finite (0.5 point), this implies that Bd2(A)
has finite fibers and so we can apply exercise (1) to obain the desired result (0.5 point).

Exercise 3 (2 points) Let f : [a, b] → R be continuous and definable. Show that f takes a maximum
and a minimum value on [a, b].

The monotonicity theorem gives us points a, a1, · · · , ak, b such that f is constant or strictly monotone on
the subintervals (0.5 point).

We know that on every sub-interval (ai, ai+1), the function f is either constant or strictly monotone,
which means that the maximum and minimum value it takes on [ai, ai+1], it must take in the endpoints
(1 point).

Globally this means that maxx∈[a,b] f(x) = max{f(a), f(a1), · · · , f(ak), f(b)}. and the same for the min-
imum, therefore the maximum/minimum exists (0.5 point).

Exercise 4 (2 points) Let I and J be intervals and f : I → R and g : J → R strictly monotone
definable functions such that f(I) ⊂ g(J) and limx→r(I)f(x) = limx→r(J) g(t) in R∞, where r(I) and r(J)
are the right endpoints of the intervals I and J in R∞. Show that near these right endpoints f and g are
reparametrisations of each other, that is there are subintervals I ′ of I and J with r(I) = r(I ′), r(J) = r(J ′)
and a strictly increasing definable bijection h : I ′ → J ′ such that f(x) = g(h(x)) for all s ∈ I ′.

Note that since f(I) ⊂ G(J) and since their right limits agree, either f, g are both increasing or both
decreasing.(0.5 point) Since f, g preserve orders, we know that they map intervals to intervals and are
locally continuous . Now consider the limit limx→r(I) f(x) = M . This means that we can take a small
interval (a,M) which will then be mapped by f−1, g−1 into intervals (f−1(a), r(I)), (g−1(a), r(j)) because
we can take a close enough to M such that f, g are continuous on (f−1(a), r(I)), (g−1(a), r(j)).(0.5 point)

We can now define our function

h : (f−1(a), r(I))→ (g−1(a), r(I) x 7→ g−1(f(x)).

Note that g−1 and f are order preserving, so h must preserve orders as well, therefore h is injective,
continuous and maps intervals to intervals (0.5 points). In particular h is surjective since h(f−1(a)) =
g−1(a) and limx→r(I) h(x) = limx→M g−1(x) = r(J). This implies that h is a bijection, and since it is
order preserving it is both continuous and open, so an homeomorphism (0.5 point).
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