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We take an o-minimal structure (R,<, S).

1 Cell decomposition (5 points)

Take a cell C ⊂ Rm. This exercise tackles the similarity between the definition of a cell
decomposition of Rm and the definition of a decomposition of a cell. The definition of a
decomposition of a cell is given on page 70.

a. (2 points) Prove that that if D is a cell decomposition of Rm that partitions C, than
D|C = {E : EεD, E ⊆ C} is a decomposition of C.

We use induction on m. For m = 1 the result follows from the definitions.
Assume that the statement is correct for all dimensions below m > 1. Take C a cell in Rm

and D a decomposition of Rm partitioning C. Take π to be the projection of Rm to it’s first
m− 1 coordinates. Note that by the definition of decompositions, π(D) is a decomposition
of Rm−1, which by definition means it partitions Rm−1. So π(D|C) is precisely the elements
in the partition π(D) that originate form D|C. So it is a partition of π(C).
Now π(D|C) = π({AεD : A ⊂ C}) = {π(A) : AεD&A ⊂ C} = {A : π(A)επ(D)&A ⊂
π(C)} = π(D)|π(C). Hence, we have that π(D) is a decomposition of Rm−1 which parti-
tions π(C). So by the induction hypothesis, π(D)|π(C) is a decomposition of π(C). Hence
by the inductive definition of decompositions of cells we get that D|C is a decomposition of C.

b. (3 points) Prove that for any decomposition D of C, there is a cell decomposition
of Rm that restricts to D on C.

We use induction on m.
For m = 1, take a cell C in R with a decomposition D.
If C is a point C = {c}, then it’s decomposition must be D = {{c}}. So we can use the
E := {(−∞, c), {c}, (c,∞)}, which is a decomposition of R that restricts to D on C.
If C is an interval C = (α, β) with α, βεR∞, we can use the decomposition of R given by
E := D∪{(−∞, α), {α}}∪{{β}, (β,∞)}. The second part should be empty if α = −∞ and
the third part if β =∞. Either way, E is the desired decomposition.
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Now assume for m > 1 we have that the statement is correct in all dimensions lower than m.
Take C a cell in Rm and D a decomposition of C. Take π the projection of Rm to the first
m−1 coordinates. π(D) is a decomposition of π(C). So we can use the induction hypothesis
to find E a decomposition of Rm−1 which partitions π(C).
Case 1: C is a (i1, ..., im−1, 0)-cell. So there is a continuous definable function f : π(C)→ R
such that C = Γ(f). Now define F := D ∪ {(−∞, f)|F : Fεπ(D)} ∪ {(f,∞)|F : Fεπ(D)} ∪
{F ×R : FεE&F ⊂ Rm\π(C)}. A quick check yields π(F) = E, and that it partitions C.
Case 2: C is a (i1, ..., im−1, 0)-cell. So there is are continuous definable functions f, g : π(C)→
R s.t C = (f, g)π(C), f < g. Now we define F := D ∪ {(−∞, f)|F,Γ(f)|F,Γ(g)|F, (g,∞)|F :
Fεπ(D)} ∪ {F × R : FεE&F ⊂ Rm\π(C)}. If f is the constant −∞ map, all parts with f
must be removed. Same for g =∞. A quick check yields that this partition is a decomposi-
tion of Rm which partitions C and restricts to D on C.

Points:
1 for the induction basis
1 for the induction step in case that C is a (..., 0)-cell.
1 for the induction step in case that C is a (..., 1)-cell.

2 Closure (5 points)

Prove that the Euler characteristic of the closure of a bounded cell C ⊂ Rm is always 1.
Bounded means there is a box B = [a0, b0]× [a1, b1]× ...× [am, bm] with ai, biεR for all i, such
that C ⊂ B.

Hint: Use induction and consider the cases im = 0 and im = 1 separately. Use proposi-
tion 2.4.

We use induction on m. Let B = [a0, b0] × [a1, b1] × ... × [am, bm] be the bounding box
of C.
If m = 1, C is either a point {c} or an interval (c1, c2) where c1 and c2 are in R since C is
bounded. So its closure is either a point {c} or a closed interval [c1, c2] = {c1}∪(c1, c2)∪{c2}.
In both cases, the Euler Characteristic is 1.

Now take m > 1 and assume that for all dimension lower than an m, we have that all
bounded cells have a closure with Euler Characteristic 1. Take π : Rm → Rm−1, the projec-
tion to the first m − 1 coordinates. First we prove that π(cl(C)) ⊂ cl(π(C)). The converse
will be proven in the separate cases.
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If xεπ(cl(C)), then there is a yεR such that (x, y)εcl(C), hence for any open box in Rm con-
taining (x, y) we have that it’s intersection with C is non-empty. So for any open box U in
Rm−1 containing x, we have that U×R has a non-empty intersection with C, so U = π(U×R)
has a non-empty intersection with π(C). So xεcl(π(C)).

If C is an (i1, ..., im−1, 0)-cell, then there is a continuous definable function f : π(C) → R
s.t. C = Γ(f). So cl(C) = Γ(f). Take x = (x1, x2, ..., xm−1)εcl(π(Γ(f))), we want to de-
fine the fiber cl(Γ(f))x by using a limit of f to x using boxes around x. The limit of f
to x is the limit of the images of increasingly smaller boxes, both the supremum and the
infimum of those increasingly smaller boxes go to that limit. Define bx : Bx = (−∞, x1) ×
... × (−∞, xm−1) × (x1,∞) × ... × (xm−1,∞) → P(Rm−1) by b(d1, .., dm−1, e1, ..., em−1) =
(d1, e1) × ... × (dm−1, em−1). So the image of bx is all open boxes containing x. Now de-
fine s(x) := inf(sup(f(bx(Bx) ∩ π(C))), so the infimum of the supremum of the images
of all open boxes containing x. This element is definable by construction. We also define
i(x) := sup(inf(f(bx(Bx) ∩ π(C))).
For yεR, if (x, y)εcl(Γ(f)), then any open box U around (x, y) has non-empty intersection
with C. π(U)εbx(Bx). If y > s(x), we can find an open box containing (x, y) disjoint from
cl(Γ(f)), same for y < i(x). Hence yε[i(x), s(x)].
If yε[i(x), s(x)], then y is in any image of a box containing x, so (x, y)εcl(Γ(f)). Hence
cl(Γ(f))x = [i(x), s(x)].
So, for all xεcl(π(Γ(f))), we have that the fiber Γ(f)x is a closed interval (or a point if
s(x) = i(x)) and hence has Euler characteristic 1. Also note that we also have cl(π(C)) ⊂
π(cl(C)). So cl(π(C)) = π(cl(C)). Hence we can use Corollary 2.11 to conclude that with
E(cl(C)x) = 1 we get that E(cl(C)) = E(π(cl(C))) ∗ 1 = E(cl(π(C))) = 1, where the last
step follows from the induction hypothesis.

A different way to proof this case is to try and extend the map f to a map defined on
the entirety of cl(π(C)), mapping it bijectively into cl(C). This can be done by either using
properties of the map π and using an inverse, or by calculating limits the same way as is done
in the proof of proposition 2.13: Using monotonicity and coordinate permutation to study the
behaviour of f near the edge and then defining the limit on the edge as either the supremum
or infimum.
Once the map F has been constructed, one can use Proposition 2.4 to conclude that 1 =
E(cl(π(C))) = E(Γ(F )) = E(cl(C))

If C is an (i1, ..., im−1, 1)-cell, then there are continuous definable functios f, g : π(C) → R
with f < g s.t. C = (f, g)π(C). Note that [f, g]π(C) ⊂ cl(C), hence Γ(f) ⊂ cl(C) and
Γ(g) ⊂ cl(C). Also note that taking the closure of the closure does not change anything, so
we get that cl(Γ(f)) ⊂ cl(C) and cl(Γ(g)) ⊂ cl(C). Now take xεcl(π(C)). The same way
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as before, define s(x) := inf(sup(g(bx(Bx) ∩ π(C))) and i(x) := sup(inf(f(bx(Bx) ∩ π(C))).
These exist, so we at least get cl(π(C)) ⊂ π(cl(C)) hence cl(π(C)) = π(cl(C)).
More importantly, cl(C)x = [i(x), s(x)]. Proof:
If yεcl(C)x, then (x, y)εcl(C). So any open box U containing (x, y) has non-empty inter-
section with C. So U contains a point (x1, y1) which is in C. So g(x1) < y1 < f(x1). So
y ≤ sup(U ∩ C) <= sup(g(π(U) ∩ π(C)) and the same way y ≥ if(f(π(U) ∩ π(C)). This is
for all Uεbx(Bx), so i(x) ≤ y ≤ s(x).
If yε[i(x), s(x)], then any box Uεbx(Bx) has yε[f, g]U , so yεcl(C)x.
So cl(C)x = [i(x), s(x)].
We can conclude again that the fiber cl(C)x is a closed interval or a point, hence it has Euler
characteristic 1. So the same way as before we can conclude that E(cl(C)) = E(π(cl(C))) ∗
1 = E(cl(π(C))) = 1.

Using the alternative route, we can extend both f and g to maps F and G on cl(π(C)).
One can check that the closure of C is C ∪Γ(F )∪Γ(G)∪ (F,G)cl(π(C))\π(C). This will depend
on the amount of time F and G are equal. Calculating the Euler characteristic will yield a
one.

Points:
1 for the induction basis
2 for the induction step in case that C is a (..., 0)-cell.
2 for the induction step in case that C is a (..., 1)-cell.

The 2 points in the cases are distributed differently for different proofs:
In the model proof it will be: 1 for π(cl(C)) = cl(π(C)), 1 for fiber has characteristic 1.
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