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We take an o-minimal structure (R, <, S).

1 Cell decomposition (5 points)

Take a cell ¢ C R™. This exercise tackles the similarity between the definition of a cell
decomposition of R™ and the definition of a decomposition of a cell. The definition of a
decomposition of a cell is given on page 70.

a. (2 points) Prove that that if D is a cell decomposition of R™ that partitions C, than
D|C ={E: EeD,E C C} is a decomposition of C.

We use induction on m. For m = 1 the result follows from the definitions.

Assume that the statement is correct for all dimensions below m > 1. Take C' a cell in R™
and D a decomposition of R™ partitioning C'. Take 7 to be the projection of R™ to it’s first
m — 1 coordinates. Note that by the definition of decompositions, 7(D) is a decomposition
of R™~!, which by definition means it partitions R™~!. So m(D|C') is precisely the elements
in the partition 7(D) that originate form D|C. So it is a partition of 7 (C).

Now 7(D|C) = 7({AeD : A C C}) = {n(A) : AeD&A C C} = {A : 7(A)en(D)&A C
7(C)} = n(D)|r(C). Hence, we have that (D) is a decomposition of R™~! which parti-
tions 7(C'). So by the induction hypothesis, 7(D)|r(C) is a decomposition of w(C'). Hence
by the inductive definition of decompositions of cells we get that D|C' is a decomposition of C.

b. (3 points) Prove that for any decomposition D of C| there is a cell decomposition
of R™ that restricts to D on C.

We use induction on m.

For m =1, take a cell C' in R with a decomposition D.

If C'is a point C' = {c}, then it’s decomposition must be D = {{c}}. So we can use the
E := {(—o00,¢),{c}, (¢,0)}, which is a decomposition of R that restricts to D on C'

If C is an interval C' = («, ) with «, feR,, we can use the decomposition of R given by
E :=DU{(—o0,a),{a}} U{{B}, (B,00)}. The second part should be empty if &« = —oc and
the third part if 8 = co. Either way, E is the desired decomposition.



Now assume for m > 1 we have that the statement is correct in all dimensions lower than m.
Take C a cell in R™ and D a decomposition of C. Take 7 the projection of R™ to the first
m — 1 coordinates. (D) is a decomposition of 7(C). So we can use the induction hypothesis
to find E a decomposition of R™~! which partitions 7(C').

Case 1: C'is a (i1, ..., im—1,0)-cell. So there is a continuous definable function f: 7(C) — R
such that C' =T'(f). Now define F := D U {(—o0, f)|F : Fer(D)} U{(f,00)|F : Fer(D)} U
{F x R: FEE&F C R™\w(C)}. A quick check yields 7(F) = E, and that it partitions C.
Case 2: C'isa (i1, ..., im_1,0)-cell. So there is are continuous definable functions f, g : 7(C) —
Rst C=(f,9)rc) f <g. Now we define F := D U {(—oo, [)|F,T'(f)|F,T'(g)|F, (g,00)|F :
Fer(D)} U{F x R : FEE&F C R™\w(C)}. If f is the constant —oo map, all parts with f
must be removed. Same for ¢ = co. A quick check yields that this partition is a decomposi-
tion of R™ which partitions C' and restricts to D on C.

Points:

1 for the induction basis

1 for the induction step in case that C'is a (..., 0)-cell.
1 for the induction step in case that C'is a (..., 1)-cell.

2 Closure (5 points)

Prove that the Euler characteristic of the closure of a bounded cell C' C R™ is always 1.
Bounded means there is a box B = [ag, by] X [a1, b1] X ... X [am, by] With a;, bieR for all i, such
that C' C B.

Hint: Use induction and consider the cases ¢,, = 0 and 7,, = 1 separately. Use proposi-
tion 2.4.

We use induction on m. Let B = [ag,bo] X [a1,b1] X ... X [am,by] be the bounding box
of C.

If m =1, C is either a point {c} or an interval (c¢;, ) where ¢; and ¢y are in R since C' is
bounded. So its closure is either a point {c} or a closed interval [cy, ca] = {c1}U(c1, c2) U{ca}.
In both cases, the Euler Characteristic is 1.

Now take m > 1 and assume that for all dimension lower than an m, we have that all
bounded cells have a closure with Euler Characteristic 1. Take 7 : R™ — R™!, the projec-
tion to the first m — 1 coordinates. First we prove that 7(cl(C)) C ¢l(m(C)). The converse
will be proven in the separate cases.



If zem(cl(C)), then there is a yeR such that (z,y)ecl(C), hence for any open box in R™ con-
taining (x,y) we have that it’s intersection with C' is non-empty. So for any open box U in
R™ ! containing x, we have that U x R has a non-empty intersection with C', so U = 7(U X R)
has a non-empty intersection with 7(C'). So zecl(n(C)).

If C is an (i1, ..., 4m-1,0)-cell, then there is a continuous definable function f : 7(C) — R
st. C =T(f). So cl(C) =T(f). Take x = (z1, 22, ..., Tpm—1)ecl(m(L(f))), we want to de-
fine the fiber ¢l(I'(f)), by using a limit of f to x using boxes around x. The limit of f
to x is the limit of the images of increasingly smaller boxes, both the supremum and the
infimum of those increasingly smaller boxes go to that limit. Define b, : B, = (—00,z1) X
o X (=00, Zyp_1) X (1,00) X oo X (Tp_1,00) = P(R™ 1) by b(dy, ..., dm_1,€1, s €m_1) =
(dy,e1) X ... X (dp—1,€m—1). So the image of b, is all open boxes containing . Now de-
fine s(x) = inf(sup(f(bz(Bz) N 7(C))), so the infimum of the supremum of the images
of all open boxes containing x. This element is definable by construction. We also define
i(2) = sup(inf (£ (b,(B,) N 7(C)).

For yeR, if (x,y)ecl(T'(f)), then any open box U around (x,y) has non-empty intersection
with C. 7(U)eby(B,). If y > s(x), we can find an open box containing (z,y) disjoint from

c(I(f)), same for y < i(z). Hence yeli(x), s(x)].
If yeli(z), s(z)], then y is in any image of a box containing =, so (z,y)ecl(I'(f)). Hence
AT (F). = [i(2), 5(2)].

So, for all zecl(m(I'(f))), we have that the fiber I'(f), is a closed interval (or a point if
S(m) = i(x)) and hence has Euler characteristic 1. Also note that we also have cl(7(C)) C
w(cl(C)). So cl(mw(C)) = w(cl(C)). Hence we can use Corollary 2.11 to conclude that with
E(c(C),) = 1 we get that E(cl(C)) = E(rw(cl(C))) * 1 = E(cl(n(C))) = 1, where the last
step follows from the induction hypothesis.

A different way to proof this case is to try and extend the map f to a map defined on
the entirety of cl(n(C)), mapping it bijectively into cl(C). This can be done by either using
properties of the map © and using an inverse, or by calculating limits the same way as is done
in the proof of proposition 2.13: Using monotonicity and coordinate permutation to study the
behaviour of f near the edge and then defining the limit on the edge as either the supremum
or infimum.

Once the map F has been constructed, one can use Proposition 2.4 to conclude that 1 =

E(c(n(C))) = E(T(F)) = E(cl(C))

If Cis an (i1, ...,%m_1, 1)-cell, then there are continuous definable functios f,g : 7(C) — R
with f < g st. C = (f,9)=c). Note that [f, g]rc) C cl(C), hence I'(f) C cl(C) and
['(g) C cl(C). Also note that taking the closure of the closure does not change anything, so
we get that cl(I'(f)) C ¢l(C) and cl(I'(g)) C cl(C). Now take xecl(m(C)). The same way



as before, define s(z) := inf(sup(g(b.(B,) N7(C))) and i(z) := sup(inf(f(b.(B:) N7(C))).
These exist, so we at least get cl(7(C)) C w(cl(C)) hence cl(w(C)) = w(cl(C)).

More importantly, cl(C), = [i(x), s(z)]. Proof:

If yecl(C),, then (x,y)ecl(C). So any open box U containing (z,y) has non-empty inter-
section with C'. So U contains a point (x1,y;) which is in C. So g(z1) < 11 < f(x1). So
y < sup(UNC) <= sup(g(m(U) N7(C)) and the same way y > if(f(7m(U) N7(C)). This is
for all Ueb,(B;), so i(zx) <y < s(x).

If yeli(x), s(x)], then any box Ueb,(B,) has ye[f, glu, so yecl(C),.

So cl(C)y = [i(x), s(x)].

We can conclude again that the fiber ¢l(C), is a closed interval or a point, hence it has Euler
characteristic 1. So the same way as before we can conclude that E(cl(C)) = E(n(cl(C))) *
1=E(d(n(C))) = 1.

Using the alternative route, we can extend both f and g to maps F and G on cl(n(C)).
One can check that the closure of C is CUL(F)UI'(G) U (F, G)am(cy\~c)- This will depend
on the amount of time F' and G are equal. Calculating the Euler characteristic will yield a
one.

Points:

1 for the induction basis

2 for the induction step in case that C' is a (..., 0)-cell.
2 for the induction step in case that C' is a (..., 1)-cell.

The 2 points in the cases are distributed differently for different proofs:
In the model proof it will be: 1 for 7(cl(C)) = cl(w(C)), 1 for fiber has characteristic 1.



