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a. Define S = { (x1, . . . , xd−1, y) | y = x1 ∨ . . . ∨ y = xd−1 }. Now let n be
arbitrary. Next we pick distinct y1, . . . , yn ∈ R and let F = {y1, . . . , yn}. We
can easily verify that C = { Sx | x ∈ Rd−1 } cuts out precisely the subsets F with
strictly less than d elements. Hence |C∩F | = pd(n) and therefore fC(n) ≥ pd(n).
On the other hand, we have fC(d) < 2d, because every fiber Sx with x ∈ Rd−1

has cardinality < d, which implies that for a d-element set F ⊆ R the entire set
F itself is not cut out by C. Hence we also have fC(n) ≤ pd(n) for every n.
b.1 We assume (R,<,S) expands an ordered abelian group (R,<,+, 0). For
notational convenience we pick some r > 0 and identify the subgroup of R
generated by r with a copy of the ordered group of integers Z. Define a sequence
of “triangular” subsets of R×R as follows:

T (n) = { (x, y) | y < n, x <

n∑
i=1

i, x+ y >

n∑
i=1

}i

Define furthermore for every n the set S(n) = T (1) ∪ · · · ∪ T (n), and lastly
D(n) = { T (n)

x | x ∈ R } and C(n) = { S(n)
x | x ∈ R }.

First note that for every n, the sets T (n) and S(n) are definable and every non-
empty fiber S(n)

x with x ∈ R coincides with T
(k)
x where 0 < k ≤ n is the unique

integer such that
∑k−1

i=1 i < x <
∑k

i=1 i. So C(n) = D(1) ∪ · · · ∪ D(n).
Second, for every k ∈ N, if we have 0 < y1 < . . . < ym < k and we put
F = {y1, . . . , ym}, then the nonempty subsets in D(k) ∩ F are precisely the sets
of the form {yi, yi+1, . . . , ym} with 1 ≤ i < m.
Now consider S(m), and let n ≥ m be arbitrary. Let y1, . . . , yn such that
m > y1 > m − 1 > y2 > m − 2 > . . . > ym−1 > 1 > ym > ym+1 . . . > yn
and let F = {y1, . . . , yn}. Then using the previous remarks it is straightforward
to show that the nonempty subsets in C(m) ∩ F are precisely the sets of the
form {yi, yi+1, . . . , yn−m+j} with 1 ≤ i ≤ n−m+ j and 1 ≤ j ≤ m. The total
number of such sets is n+ (n− 1) + · · ·+ (n−m+ 1) = mn−

∑m−1
i=0 i. Hence

fC(m)(n) ≥ mn+ 1−
∑m−1

i=0 i for every n ≥ m.
Finally, given an arbitrary positive number c we can find m > c and N ≥ m
such that for every n ≥ N we get cn < mn + 1 −

∑m−1
i=0 i. Then for S = S(m)

and C = C(m) we get fC(n) > cn for every n ≥ N .

2
a. Since every decomposition of R into distinct cells E1, . . . , Ek is in particular
a partition of R, every intersection

⋂
1≤i≤k E

ε(i)
i is nonempty precisely when

there is exactly one i for which ε(i) = 1, in which case the intersection equals
Ei. Hence the atoms are precisely E1, . . . , Ek.
b. A definably connected subsets of R consists of an interval possibly together
with either or both of its endpoints. Given definably connected S1, . . . , Sk ⊆

1I personally think Martijn’s example was the simplest and easier to understand.
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R, let x1, . . . , x` list their endpoints in R in ascending order. Each Si con-
tributes at most two endpoints to this list, so ` ≤ 2k. The decomposition
{ (−∞, x1), {x1}, (x1, x2), {x2}, . . . , {x`}, (x`,+∞) } clearly partitions each of
the Si, and has 2`+ 1 ≤ 4k + 1 elements.
c. It is sufficient to show that there are c and N such that fG(n) ≤ cn for
n ≥ N . By the finiteness theorem there exists a natural number e such that
each cofiber Sy has at most e definably connected components. Let n be arbi-
trary and suppose y1, . . . , yn ∈ Rq are distinct. Let I1, . . . , Ik list all the distinct
definably connected components of all the Syi , and note that k ≤ en. Apply (b)
to obtain a decomposition of R into cells E1, . . . , Em partitioning each Ii with
m ≤ 4k+1. Since every Syi is a union of some Ij ’s, and therefore, of some Ej ’s,
the boolean algebra B(Sy1 , . . . , syn) is contained in B(E1, . . . , Em). Hence the
number of atoms of the former is bounded by the number of atoms of the latter,
which because of (a) is precisely m. Finally, m ≤ 4k+1 ≤ 4en+1, and since n
and the yi were arbitrary, we see that fG(n) ≤ 4en+ 1. We conclude by taking
some c > 4e and finding a suitably large N such that 4en+ 1 ≤ cn for n ≥ N .
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