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1 Exercises

Exercise 1 (To be handed in October 1) This is Exercise 3 of Chapter 1
of Johnstone’s Topos Theory.

Let Ω be a subobject classifier in a topos, and α : Ω→ Ω a monomorphism.
By considering the subobject m : U → Ω classified by α, and then the subobject
V of U classified by m, prove that the composition αα : Ω→ Ω is equal to the
identity on Ω.

Exercise 2 (To be handed in October 22. Deadline extended to October 29.)
In this exercise we prove Corollary 1.37 of Topos Theory: if we have a logical
functor between toposes and this functor has a left adjoint, then it also has a
right adjoint.

a) Let T be a monad on a category C and let CT the category of algebras for
T ; let FT : C → CT be the free algebra functor (i.e. the left adjoint to the
forgetful functor). Show that for every T -algebra h : TX → X there is a
reflexive pair of arrows

FT (Y )
//

// F
T (Z)oo

with coequalizer FT (Z) → h. Formulate in what sense this construction
is functorial in h.

b) Let T and S be monads on categories C and D respectively. Suppose we
have a commutative diagram of functors

CT

UT

��

F̄ // DS

US

��

C
F
// D

where UT , US are the forgetful functors. Suppose F has a left adjoint L.
Moreover, assume that the category CT has coequalizers of reflexive pairs.
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Show that F̄ also has a left adjoint. [Hint: consider that, if L̄ : DS → CT
is to be a left adjoint to F̄ , then we must have that the functors FT ◦L and
L̄◦FS are naturally isomorphic. Moreover, L̄ should preserve colimits.]

c) Prove Corollary 1.37, using part b). [Hint: apply the Monadicity Theo-
rem.]

Exercise 3 (To be handed in November 12) Let G be a group, and Ĝ the

topos of right G-sets (presheaves on G). Characterize the points of Ĝ, i.e. the

geometric morphisms Set → Ĝ. Give the inverse and direct image functors
explicitly.

Exercise 4 (To be handed in November 26) Let j be a Lawvere-Tierney
topology in a topos E , and let X be an object of E . By cX×X(δ) we denote the
j-closure of the diagonal δ : X ×X → X as subobject of X ×X.

a) Prove that, for a pair of maps f, g : Z → X, the morphism 〈f, g〉 : Z →
X × X factors through cX×X(δ) if and only if the equalizer of f, g is a
j-dense subobject of Z.

b) Deduce that cX×X(δ) is an equivalence relation on X.

c) Let MX be the coequalizer of cX×X(δ) //
// X . Show that every map

X → L, where L is j-separated, factors uniquely through MX; and hence,
that M(−) is the object part of a functor which is left adjoint to the
inclusion Sepj(E)→ E , where Sepj(E) is the full subcategory of E on the
j-separated objects.

Exercise 5 (To be handed in December 10) Let F : C → D be a functor

between small categories and denote the induced geometric morphism Ĉ → D̂
also by F . Find (and prove) the factorization of F as a surjection followed by
an embedding.

Exercise 6 (To be handed in (digitally) January 14, 2019) This is an open-
ended exercise. That is: it is not altogether clear beforehand what the best
answer is, and indeed I don’t know the answer yet:

Give a presentation of a classifying topos for posets, as simple and concrete
as possible.

2 Solutions

Exercise 1 We follow the hint. Let m : U → Ω be the subobject classified by
α, and let n : V → U be the subobject classified by m. We have that U → 1 is
mono, V → U is mono and the arrow V → 1 factors through U → 1. Consider

2



the diagram

V
id //

n

��

V

��

n // U

m

��

// 1

t

��

U
!U

// 1
t
// Ω

α
// Ω

The left hand square is a pullback because V → 1 factors through U → 1; the
other two are pullbacks by definition. We conclude that the composite αt!U
classifies the mono V → U , and hence that αt!U = m.

Next, consider the grid of pullbacks:

U

id
��

id // U

��

id // U

!U
��

U

m

��

// 1
id //

t

��

1

t

��

Ω
α //

id
��

Ω

id
��

id // Ω

α

��

Ω
α
// Ω

α
// Ω

Note that these are all pullbacks; for example, the one in the lower right-hand
corner is a pullback because α is mono.

Taking the outer square of this grid, and using that αt!U = m, we get a
pullback

U
id //

m

��

U

m

��

Ω
α2
// Ω

Composing this with the pullback defining m, we see that α3 classifies m. It
follows that α(α2) = α3 = α = αidΩ. Since α is mono, we obtain α2 = idΩ, as
desired.

Exercise 2. This exercise (in particular part b)) was a bit too hard for a normal
hand-in exercise. I have been very lenient in the grading of part b), and there
were two bonus points to be earned if you managed to come up with substantial
parts of the solution.

a): For a T -algebra TX
h→ X, consider the parallel pair

T 2X
Th //

µX
// TX

where µ is the multiplication of the monad T . This is a diagram of algebra
maps FT (TX)→ FT (X): µXT

2h = ThµTX by naturality of µ, and µXµTX =
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µXT (µX) by associativity of µ. The two arrows have a common splitting T (ηX)
(η being the unit of the monad T ) which is also an algebra map since it is
FT (ηX). That is: we have a reflexive pair in T -Alg. It is easy to see that
h : TX → X coequalizes this pair: this is the associativity of h as an algebra.
If a : FT (X)→ (ξ : TY → Y ) is an algebra map which coequalizes our reflexive

pair then a factors through h : FT (X) → (h : TX → X) by aηX : (TX
h→

X)→(TY
ξ→ Y )) and the factorization is unique because the arrow h is split epi

in C.
This construction is functorial. Given a T -algebra map f : (TX

h→ X) →
(TY

k→ Y ) the diagram

T 2X
µX //

Th
//

T 2f

��

TX

Tf

��

T 2Y
µY //

Tk
// TY

commutes serially (i.e., TfµX = µY T
2f and TfTh = TkT 2f). So, we have a

functor R from T -Alg to the category of diagrams of shape ◦ //
// ◦ in T -Alg,

with the properties:

i) The vertices of R(h) are free algebras.

ii) R(h) is always a reflexive pair.

iii) The colimit of R(h) is h.

b) Since F̄ is a lifting of F (USF̄ = FUT ) there is a natural transformation
λ : SF → FT constructed as follows. Consider F (η) : F → FT = FUTFT =
USF̄FT and let λ̃ : FSF → F̄FT be its transpose along FS a US . Define λ as
the composite

SF = USFSF
US λ̃−→ USF̄FT = FUTFT = FT.

Claim: The natural transformation λ makes the following diagram commute,
where ι and ν are, respectively, the unit and multiplication of the monad S:

F
ιF //

F (η !!B
BB

BB
BB

B SF

λ

��

S2F
νFoo

Sλ

��

FT SFT

λT
��

FT 2

Fµ

ccFFFFFFFF

Definition of L̄ on objects: if L̄ is going to be left adjoint to F̄ then, by unique-
ness of adjoints and the fact that adjoints compose, L̄FS = FTL, so we know
what L̄ should do on free S-algebras FSY . Now by part a), every S-algebra
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ξ : SY → Y is coequalizer of a reflexive pair of arrows between free S-algebras,
and as a left adjoint, L̄ should preserve coequalizers. Therefore we expect L̄(ξ)
to be coequalizer of a reflexive pair

FTLSY = L̄FS(SY )
fξ
//

gξ
// L̄FS(Y ) = FTLY

between free T -algebras. It is now our task to determine fξ and gξ.
By a) we have a coequalizer

FS(SY )
Sξ

//

νY
// FSY

ξ
// (ξ)

and the topmost arrow of the reflexive pair is in the image of the functor FS ,
so we can take FTL(ξ) for fξ. The other map – ν – is not in the image of
FS and needs a bit of doctoring using the adjunction L a F and the natural
transformation λ we constructed. Let α be the unit of the adjunction L a F .
Consider the arrow

SY
S(αY−→ SFL(Y )

λL(Y )−→ FTL(Y )

This transposes under L a F to a map LS(Y ) → TL(Y ) = UTFTL(Y ), and
this in turn transposes under FT a UT to a map

FTLS(Y )→ FTL(Y )

which we take as our gξ.
Note that the construction is natural in ξ, so if k : ξ → ζ is a map of

S-algebras, we obtain a natural transformation from the diagram of parallel
arrows fξ, gξ to the diagram with parallel arrows fζ , gζ . Hence we also get a
map from the coequalizer of the first diagram, which is L̄(ξ), to the coequalizer
of the second one, which is L̄(ζ).

There is still a lot to check. This is meticulously done in Volume 2 of
Borceux’s Handbook of Categorical Algebra, section 4.5. There the proof takes
10 pages!

c) Let F : F → E be a logical functor between toposes, which has a left
adjoint. We apply part b) to the diagram

Fop

P
��

F op
// Eop

P
��

F
F

// E

The diagram commutes because F is logical, and Fop has coequalizers of reflex-
ive pairs. By part b) we conclude that F op has a left adjoint; but this means
that F has a right adjoint.
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Remark. There is a better theorem than the one we just partially proved: the

Adjoint Triangle Theorem. It says that whenever we have functors B R→ C U→ D
such that B has reflexive coequalizers and U is of descent type (that is: U has a
left adjoint J and the comparison functor K : C → UJ−Alg is full and faithful),
then UR has a left adjoint if and only if R has one.

Note, that given the diagram of the exercise, the diagram

CT F̄→ DS US→ D

satisfies the conditions of the Adjoint Triangle Theorem. Since the composition
USF̄ , which is FTL, has a left adjoint, we conclude that F̄ has a left adjoint.
Note in particular that we do not use that CT is monadic.

Exercise 3. If p is a point of Ĝ then p∗ : Ĝ → Set is given by (−) ⊗G A, for a
flat functor A : G → Set. Such a functor A can be seen as a left G-set, which we
also denote by A; the category Elts(A) has as objects the elements of A, and
an arrow x→ y is an element g ∈ G such that gx = y. Now A is flat if and only
if the category Elts(A) is filtering. Spelling out the definition, we obtain:

i) A is nonempty.

ii) For x, y ∈ A, there exist an element z ∈ A and elements g, h ∈ G satisfying
gz = x and hz = y. Since G is a group, we conclude from this that for
x, y in A there is some element g ∈ G such that gx = y: the action of G is
transitive.

iii) For x ∈ A, g, h ∈ G satisfying gx = hx, there is an element k ∈ G and an
element y ∈ A such that ky = x and gk = hk. Again using that G is a
group, we get that whenever gx = hx, then g = h: the action of G is free.

There is, up to isomorphism, only one left G-set which is transitive and free:
the set G itself. We see that there is at most one point of the topos Ĝ.

Now for an object X of Ĝ, it is not hard to calculate that X⊗GG is in natural
bijective correspondence with the underlying set X; the functor (−) ⊗G G is
isomorphic to the functor which takes the underlying set and forgets the G-
action. Clearly, this functor preserves finite limits. It also has a right adjoint:
this is the functor which sends a set Y to the right G-set Y G , with G-action
φg(x) = φ(xg). This describes inverse and direct image functors of the (up to

isomorphism) unique point of Ĝ explicitly.
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Exercise 4. a) Let Efg → Z denote the equalizer of f, g. Consider the diagram:

E′

��

##G
GG

GG
GG

GG
G

Efg

��

//

=={{{{{{{{
Z

〈f,g〉

��

δ

##G
GG

GG
GG

GG

X

=={{{{{{{{{

δ
// X ×X

where all the squares are pullbacks. We see that E′ is the closure of Efg,
and we see that the map 〈f, g〉 factors through δ if and only if E′ → Z is an
isomorphism, which holds if and only if Efg is a dense subobject of Z.

b) We prove that for an arbitrary object Z of E , the set of ordered pairs

{(f, g) ∈ E(Z,X)2 | 〈f, g〉 factors through δ}

is an equivalence relation on E(Z,X). Now reflexivity and symmetry are obvi-
ous, and using the notation above for equalizers we easily see that Efg ∧Egh ≤
Efh. Since the meet of two dense subobjects is dense, we see that the relation
is transitive.

c) We have to prove that any map f : X → L with L separated, coequalizes
the parallel pair r0, r1 : δ → X which is the equivalence relation from part
b). Now clearly for f × f : X × X → L × L, the composite (f × f)◦δ factors

through the diagonal subobject L
δL→ L × L, so the composite (f × f)◦〈r0, r1〉

factors through the closure of δL. But δL is closed, so fr0 = fr1 and f factors
uniquely through X → MX. The adjointness is also clear, provided we can
show that MX is separated. Now δ is classified by ∆ : X × X → Ω, which
has as exponential transpose the map {·} : X → ΩX . So, δ is the kernel
pair of {·}. Now δ is classified by j◦∆, the exponential transpose of which is
jX◦{·} : X → ΩXj . And δ is the kernel pair of jX◦{·}. We see that, by the

construction of epi-mono factorizations in a regular category, X →MX → ΩXj
is an epi-mono factorization. So MX is a subobject of a sheaf, and therefore
separated.

Exercise 5. The exercise wasn’t too crisply formulated, so if you just rehashed
the theory (“we have F ∗ a

∏
F , so F factors through the category of F ∗

∏
F -

coalgebras. . . ”) this gave you 6 points. What I had in mind was a concrete
presentation of the factorization.

Abandoning the notation of the exercise, given a functor F : C → D between
small categories, let us denote the induced geometric morphism Ĉ → D̂ by F̂ .
Lemma 1. If the functor F is surjective on objects, then F̂ is a surjection.
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Proof : the inverse image of F̂ is the functor F ∗ which is given by F ∗(Y )(C) =
Y (FC). On morphisms: for µ : Y → Y ′, F ∗(µ)C = µFC . Clearly, if F is
surjective on objects and F ∗(µ) = F ∗(ν) then µFC = νFC for all objects C,

hence µD = νD for all objects D, so µ = ν. Hence F ∗ is faithful, and F̂ is a
surjection.

Lemma 2. If the functor F is full and faithful, then F̂ is an embedding.
Proof : Now we consider also the direct image of F̂ , which is the functor

∏
F

given by: ∏
F

(X)(D) = Ĉ(F ∗(yD), X)

We calculate the composite F ∗
∏
F . First, we observe that

F ∗(yFC)C ′ = yFC(FC ′) = D(FC ′, FC) ' C(C ′, C)

the last isomorphism because F is assumed full and faithful. We conclude that
F ∗(yFC) ' yC naturally. Now we calculate F ∗

∏
F :

F ∗(
∏
F

(Y ))(C) =
∏
F

(Y )(FC) = Ĉ(F ∗(yFC), Y ) ' Ĉ(yC , Y ) ' Y (C)

so we conclude that F ∗
∏
F is isomorphic to the identity on Ĉ. Therefore the

counit is an isomorphism, and F̂ is an embedding.
Turning now to the exercise: given arbitrary F : C → D, consider the

factorization
C P→ E Q→ D

where E is the full subcategory of D on objects of the form FC. Then P is
surjective on objects and Q is full and faithful. Clearly, F̂ = Q̂P̂ , so we have a
factorization of the desired kind.

Exercise 6. Of course one can define the syntactic category of the theory of
posets, with an appropriate Grothendieck topology. This is not a very concrete
presentation; what I had in mind was a solution similar to the example of rings.
And this is possible. Many of you had (from the literature) correctly guessed
that the classifying topos would be SetPosf , where Posf is the category of finite
posets and order-preserving maps.

Let us look at both a poset object in a category with finite limits and the
dual notion, a co-poset object in a category with finite colimits.

A poset object in a category with finite limits consists of an object P and a
monomorphism 〈r0, r1〉 : R→ P × P , satisfying the conditions:

(R) Reflexifity: the diagonal P → P × P factors through R.

(A) Antisymmetry: let Rop be the subobject 〈r1, r0〉 : R→ X ×X. Then the
intersection of R and Rop is the diagonal P → P × P .
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(T) Transitivity: let

R1
s //

q

��

R

r0

��

R
r1
// P

be a pullback. Then the map 〈r0q, r1s〉 : R1 → P × P factors through R.

Dually, a co-poset object in a category with finite colimits consists of an object

P and an epimorphism

[
s0

s1

]
: P + P → S, satisfying the conditions:

(co-R) Co-reflexivity: the codiagonal

[
id
id

]
: P+P → P factors through P+P →

S.

(co-A) Co-antisymmetry: there is a pushout diagram

P + P

 s0

s1


// s1

s0


��

S

��

S // P

where the composite P + P → P is the codiagonal.

(co-T) Co-transitivity: given a pushout diagram

P
s0 //

s1

��

S

σ

��

S
τ
// S1

the map

[
τs0

σs1

]
: P +P → S1 factors through the map

[
s0

s1

]
: P +P → S.

Now consider the category Posf of finite posets; this is a category with finite
colimits. We have the posets 1 = {∗} and 2 = {a, b} with a < b. We have
the maps s0, s1 : 1 → 2 given by s0(∗) = a, s1(∗) = b. Clearly, the map[
s0

s1

]
: 1 + 1 → 2 is an epimorphism; we claim that this defines a co-poset

structure on 1.
Clearly, co-reflexivity holds since 1 is terminal in Posf .
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For co-antisymmetry, suppose the diagram

1 + 1

 s0

s1


// s1

s0


��

2

f

��

2
g
// X

commutes. Let 1 + 1 = {x, y} with

[
s0

s1

]
(x) = a and

[
s0

s1

]
(y) = b.

Then we have the equations:

f(a) = f

[
s0

s1

]
(x) = g

[
s1

s0

]
(x) = g(b)

f(b) = f

[
s0

s1

]
(y) = g

[
s1

s0

]
(y) = g(a)

We conclude, by the monotonicity of f and g, that f(a) ≤ f(b) = g(a) ≤ g(b) =
f(a), so the diagram

1 + 1

 s0

s1


// s1

s0


��

2

��

2 // 1

is a pushout, and co-antisymmetry holds.
For co-transitivity, we see that in Posf the diagram

1
s0 //

s1

��

2

σ

��

2
τ
// 3

is a pushout, where 3 is the poset u < v < w and

[
τs0

σs1

]
: 1 + 1 → 3 satisfies[

τs0

σs1

]
(x) = u and

[
τs0

σs1

]
(y) = w. By transitivity in 3 we have a map 2 → 3

(sending a to u and b to w), so that we have a factorization 1 + 1→ 2→ 3, as
required.

We conclude that we have a co-poset object in Posf . Moreover, every object
of Posf is a finite colimit of a diagram of copies of 1 and 2. Therefore, we have:

The category Posf with the co-poset object

[
s0

s1

]
: 1 + 1 → 2 is the free

category with finite colimits and a co-poset object.
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This means: for any category C with finite colimits and a co-poset object P +
P → S there is an essentially unique functor Posf → C which preserves finite
colimits and sends 1 + 1→ 2 to P + P → S.

Dually then, for every category E (in particular, a topos) with finite limits
and a poset object R→ P ×P we have an essentially unique functor from Posop

f

to E which preserves finite limits (hence is flat) and sends the poiset object
2→ 1× 1 (product in Posop

f !) to R→ P ×P . Therefore, if E s a Grothendieck
topos with poset object, we have an essentially unique geometric morphism

E f→ SetPosf , such that f∗ sends the generic poset in SetPosf to the given one
in E . So SetPosf is the classifying topos for posets.
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