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1 Exercises

Exercise 1 (Deadline: March 7) Let C be a small category. Suppose R is
an operation that assigns, to each object C of C, a family R(C') of sieves on C.

Given a presheaf X on C and a subobject A of X with classifying map
xa: X — Q, we define a subobject A of X by putting

A(C) = {z € X(CO)[xalz) e R(C)}

Prove that the operation A — A is a universal closure operation on C if and
only if R is a Grothendieck topology on C.

Exercise 2 (Deadline: March 21) Let £ be a topos, X an object of £ and
(A% X) an object of the slice category £/X.

a) Show that there is a bijection between subobjects of (4 % X) in £/X,
and subobjects of A in €.

b) Show that the forgetful functor £/X — &£, which sends (4 % X) to A,
preserves and reflects monomorphisms.

¢) Show that the diagram

tldx

A

(where p; is the projection on the second coordinate, and ¢ is the compo-

sition X 1 5% 1) is a subobject classifier in £/X.

Exercise 3 (Deadline: April 4) Give the details of the proof of Proposition
1.44, which says that there is a 1-1 correspondence between universal closure
operations and Lawvere-Tierney topologies in a topos.



Exercise 4 (Deadline: April 18) Suppose £ is a topos, and (-) is a universal
closure operation on £.

For a morphism f : X — Y in & we let V; : Sub(X) — Sub(Y) be the
restriction of the functor [[, : £/X — £/Y to the subcategories Mon/X and
Mon/Y of monos into X, Y respectively. We have f* : Sub(Y) — Sub(X) by
pullback, and f* is left adjoint to V.

a) Prove: if A € Sub(X) is closed in X, then V;(A) is closed in Y.

b) Prove that for every pair A, B of subobjects of X there exists a subobject
A = B of X which satisfies, for each C' € Sub(X):

C<(A=DB) ifandonlyif CNA<B

Hint: if A is given by the mono a : A — X, consider the subobject
Vo (a*(B)).

¢) Show that for the subobject A = B of X of part b), we always have: if
B is closed, then A = B is closed.

Exercise 5 (Deadline: May 9) We consider the presheaf topos C for a small
category C; let C be a fixed object of C. Let eve : C — Set denote the functor
which sends a presheaf X to X(C).

a) Show that eve preserves all small limits and colimits.

b) Let A:C — Set be the representable functor on C, i.e. the functor which
sends an object D to the set C(C, D). Prove that A is flat.

c¢) Give a concrete description of the functor G : Set — C which is right
adjoint to eve.

d) Show that the geometric morphism Set — C determined by the adjunction
eve 1 G is essential.

Exercise 6 (Deadline: May 30) Let C be a poset and X a presheaf on C
with the property that for every inequality ¥’ < k in C, the map X (k) — X (k')
is an inclusion of sets. We consider interpretations of a 1-sorted language where
X is the interpretation of the unique sort. We study formulas of the form

(D) Va(A(z) V B) = (VxA(z) vV B)

where A and B are arbitrary formulas, but the formula B does not contain the
variable x free.

Prove that all formulas of the form (D) are always true in X, precisely when
X is a constant presheaf.



2 Solutions

Exercise 1 Some notations, which occur also in the lecture notes: for a presheaf
X on a category C, an arrow f : C' — C and an element x € X (C') we write x f
or X(f)(x) for the action of X on f and z. If R is a sieve on C' we write f*R
for the set {g € C1|cod(g) = C’, fg € R}. So if we regard R as element of Q(C')
then f*R = Rf = Q(f)(R). We write max(C') for the maximal sieve on C.

We start with some simple remarks:
1. For a sieve R on C, we have R = max(C) if and only if id¢ € R.
2. For a sieve R on C and f : ¢/ — C, we have f*R = max(C’) if and only if
feR.
3. Let T be the subobject of ) which is represented by the mono 1 % Q. Then
T is classified by the identity on Q: xr = idg.
First, let us assume that the operation A — A is a universal closure opera-
tion. For the subobject T' of Q defined in remark 3., we have T(C) = {R €
QO) | (xr)c(R) € R(C)} = R(C) (by remark 2.). Since T is a presheaf, we
must have that if R € R(C) and f : C' — C then f*R € R(C"), which is the
second requirement (“stability”) for R to be a Grothendieck topology.

Since T' C T we must have max(C) € R(C), which is the second requirement.

Now let us consider a sieve S on C' as subobject of the representable presheaf
yo. It is classified by the map xs : yo — £ which sends f : C' — C to f*S.
Now for the closure S C yc we have

S(C) = {f:0 = Clxs)er(f) € R(C)}
= {f:C"=C|[*SeR(C)}

From this, using remarks 1. and 3., we deduce that S € R(C) if and only if
S = yc. Now we see that if R and S are sieves on C' and R € R(C), then also
S € R(C); for, we have yo = R C S. It remains to prove local character for R.
So suppose R is a sieve on C, S € R(C) and for all g : C' — C in S we have
g*R € R(C"). We need to see that R € R(C).

The classifying map xr for R as subobject of Q2 sends R € Q(C) to the sieve
{g:C"—= Clg*R € R(C")}. So,

R(C) = {ReQ(O)](xr)c(R) € R(O)}
— {ReQ(0)|{g:C" = C|g"R e R(C")} € R(C)}

Hence, our assumptions on R and S imply that S C (xg)c(R). Since S € R(C),
we have (Y )c(R) € R(C), which means that R € R(C). NowR =T =T =R,

so R € R(C), as desired. We conclude that R is a Grothendieck topology.

Conversely, assume that R is a Grothendieck topology, so it satisfies conditions
i), ii) (“stability”) and iii) (“local character”) of Definition 0.16. We define the
operation A — A as in the exercise, and prove that this is a universal closure
operation. We check the conditions of Definition 0.18.

First we see that if R, S are sieves on C, with R C S and R € R(C), then
S € R(C). This follows from i) and iii) of 0.16, since for each f: C’ — C in R,

£*S = max(C").



Since max(C) € R(C), we see at once that A C A, which is requirement i)
of 0.18.

If A C B for subobjects A, B of X, then (ya)c(x) C (xB)c(z) always, and
hence A(C) C B(C), which is iii) of 0.18.

Condition iv) of 0.18 follows from stability of R.

Finally, in order to prove condition ii), we calculate:

AC) = {zeX(O)|(xx)e(x) € R(C)}
= {z2eX(O){g:C" = Cl(xa)er(zg) € R(C')} € R(C)}
Suppose = € j(C’) Then (x7)c(x) € R(C), and for any element g of this

sieve we have: g*((xa)c(x)) = (xa)cs(zg), which is an element of R(C"). By
local character of R we conclude (ya)c(x) € R(C), which means = € A(C). So

A = A and we are done.

Exercise 2. It seems best to start with part b). Let >, : £/X — £ denote

the forgetful functor. Let f : (B 2 X) - (A% X be an arrow in £/X.
Suppose >y (f), which is f : B — A, is mono in £ and suppose g, h are arrows
(CS5X)— (B N X) sauch that fg = fh. Then since f is mono in £ we have
g =hin &, but then also g = h in £/X. So )y reflects monos. Now if f is
mono in £/X and fg = fhin &, for a parallel pair g,h : C — B, then we have
bg=afg=afh=>bh:C — X, so for c = bg = bh we have that g, h are arrows
(C 5 X) - (B 5 X), so since f is mono in /X, g = h. So f is mono in &
and )y preserves monos, as claimed.

For a), we define a bijection between monos to A % X in £/X and monos

to Ain £ For amono f: (B> X) = (A% X) let ¢(f) = f : B — A. For
amonog:B— Ain&, let x(g) =g: (B8 X)— (A3 X). It is immediate
that ¢x(g) = g and x¢(f) = f. Moreover, ¢(f) in mono since ), preserves
monos, and x(g) is mono since ) - reflects monos.

Then, we should show that for monos f : B —+ A and f': B® — Ain &
we have: f factors through f’ (in which case the subobject represented by f is
< the subobject represented by f’) if and only if x(f) factors through x(f’) in
E/X. This is evident.
¢) Given a mono g : (B LA X) = (A5 X) is mono in £/X, by b) we know that
g is mono in &; let x4 : A — Q its classifying map. We have a pullback diagram

|

S

g
—

Xg

D——

t



in £. It is left to you to show that the diagram

B—7Y Ala, xg)

1

X—OxX
(t,id}
is also a pullback diagram in &, and this is a diagram in £/X. So the map
(a, xg) classifies the mono g in £/X. Uniqueness is left to you.

Exercise 3. Let UCI be the set of universal closure operations on &, and
let LT be the set of Lawvere-Tierney topologies on £. We define operations
®:UCl — LT and ¥ : LT — UCI as follows:

for a universal closure operation c(.), ®(c(.y) = j, where j classifies co(1 BN
for a Lawvere-Tierney topology j we define W(j) = c(.), where, if M €
Sub(X) is classified by x : X — Q, cx (M) is classified by jx.
I show first that the pair ®, ¥ gives a 1-1 correspondence. So, let c(.) be a
universal closure operation. For M € Sub(X) classified by x : X — Q, we have

that M = x*(1 4 Q) and therefore, by stability of c(.), cx (M) = x*(ca(1 4
Q)). If we denote the latter by J % €, then inspecting the diagram

||

Cx(M)g)X
J—Q
J

1 t

|

—Q
we see that cx (M) is classified by jx. This shows that U®(c(.y = c().

In the other direction, if j is a Lawvere-Tierney topology and c(.y = ¥(j)
then cx (M) is classified by jx (if y classifies M), and therefore cq(1 - ) is
classified by j. Hence ®¥(j) = j.

Of course, we must show that ® and W are well-defined: ®(c.)) is a Lawvere-
Tierney topology if c(.) is a universal closure operation, and W¥(j) is a universal
closure operation if j is a Lawvere-Tierney topology.

So, assume that c(.) is a universal closure operation, and let j classify cq(1 4

Q), which we write as J % €. We check i)-iii) of Definition 1.42.

i) By i) of definition 1.43, (1 % Q) < (J <% ©, so we have a map = : 1 — J
such that ax = t. Since 1 is terminal, !* = id;. Then jt = t!x = ¢, as
desired.

ii) Since j classifies cq(1 = Q), jj classifies cq(co(1 - Q). By iii) of Defini-
tion 1.43, jj = J.



iii) Let M, N be subobjects of X, classified by ¢, x respectively. Then jo A
o(¢, x) classifies cx (M NN); and Ao(j x 5)(p, 1) classifies cx (M)Nex (N).
By Exercise 28, these two are equal. So joA = Ao(j X j), which is require-
ment iii) of Definition 1.42.

Finally, assume that j is a Lawvere-Tierney topology, and ¢y = ¥(j). So,
cx (M) is classified by jy, if M is classified by x. Again, we write J % Q for
ca(l 5 Q). We check i)-iv) of Definition 1.43.

i)  'We have a pullback

Since jt = ¢ (requirement i) of Definition 1.42) we see that ¢ factors
through 7, ie. (1 5 Q) < co(l 5 Q) in Sub(€). It follows that the in-
equality M < ¢x (M) always holds, since pullback functors f* : Sub(Q2) —
Sub(X) are order-preserving.

i) Using iii) of Definition 1.42 we deduce that cx (M NN) = cx(M)Nex (N):
let ¢ and x classify M and N, respectively. Then Ao{¢p, ) classifies M NN
so jo A o{ep, x) classifies cx (M N N), whereas Ao(j x j)o{p, 1) classifies
ex (M) Nex(N). So equality must hold.

Now M < N means M = M N N. This implies cx (M) = cx(M NN) =
ex(M)Nex(N). Soex(M) < ex(N), as desired.

iii) This follows straightforwardly from ii) of Definition 1.42.

~—

This is also straightforward, since if f : Y — X is any arrow and M €
Sub(X) is classified by ¢, then f*(M) is classified by ¢f. Hence cy (f*M)
is classified by j¢f; but this arrow also classifies f*(cx (M)).

iv

Exercise 4.a) Suppose A is closed as subobject of X. Then cx(A4) < A. By the
adjunction f* 4V, f*V(A) < A, so by monotonicity of the closure operation,
ex (f*Vf(A)) < A. Stability of the closure operation gives f*(cy (V¢(4))) < A.
Finally, applying the adjunction once again, we get cy (V¢(A)) < Vf(A) and we
conclude that Vy(A) is closed, as desired.

b) Defining A = B as V,(a*B) as in the hint (where a is a monomorphism into
X which represents A), we have, for an arbitrary subobject C' of A:

C<(A=B) <

a*(C) <a*(B) <

CNA<BNA &
CNA<B



c¢) This follows at once from the construction of A = B in the hint of part b),
and part a) of the exercise: if B is closed, so is a*(B) by stability of the closure
operation, and hence so is V,(a*(B)) by part a).

Exercise 5.a) This follows at once from the fact that limits and colimits in C

are calculated ‘point-wise’.

b) We have eve(yp) = yp(C) = C(C,D) = A(D), so the following diagram
commutes:

4
Y
eve
C 7} Set

Since, moreover, the functor eve preserves colimits by a), we have that eve is
equal to the functor (—) ®c¢ A. And this functor preserves finite limits by a), so
A is flat, as desired.

¢) Suppose G : Set — C is right adjoint to eve. Then by the Yoneda Lemma
we calculate:

~

C(yp, G(X))
Set(eve(yp), X)
Set(C(C, D), X)

G(X)(D)

1R R

Now it is easy to see that indeed the assignment X + (D — XC(©:DP)) defines
a functor Set — C, which is right adjoint to evc.

d) We need to show that the functor eve also has a left adjoint. I claim that
the functor F' : Set — C defined by

F(X)=) yo

zeX

(the functor which sends X to the coproduct of X many copies of y¢o) does the
job. Indeed, we calculate:

é\(ZxGX Yo, P)

~

[[oex Clye, P)
[Loex P(C)
Set(X,eve(P))

11 IR

Exercise 6 The sentence “all formulas of the form (D) are always true in
X" means that for every subpresheaf A of X (interpreting the relation symbol
A) and every subpresheaf B of 1 (interpreting the 0O-ary relation symbol, or
propositional constant B), we have that k IF (D).

First, suppose the presheaf X is constant, so every map X (k) — X (k') is
an identity (in Set). Suppose k € C. We need to prove that k IF (D), so assume
k' <k is such that &’ IF Vz(A(z) vV B). We need to prove that k' IF VzA(z) vV B.
The assumption on &’ tells us that for all ¥/ < k' and all a € X (k) = X (k"),
we have k" Ik A(a) V B. In particular, k' IF A(a) V B. If k¥’ I B then we are



done. If k¥’ I B, then we must have k' IF A(a) for all a € X (k), but then by
stability (downwards persistence) of I and the assumption that X is constant,
we have k" IF A(a) for all a € X(k"), for every k" < k’. But this means that
k' Ik Yz A(z) and hence k' IF VzA(z) V B, as required.

For the converse, we argue by contraposition so assume X is not constant. Fix
ko, k1 such that k1 < kg and X (ko) is a proper subset of X (k). Define the
subpresheaf A of X by: A(k) = X (ko) if k < ko (and A(k) = () elsewhere).

Define the subpresheaf B of 1 (so, B is a downwards closed subset of C) by:
k € B if and only if k < kg and X (k) # X (ko).

Now for any k < ko we have: if it is not the case that for every a € X (k)
we have k IF A(a), then X (k) cannot be equal to X (ko). But then k IF B. We
conclude that ko IF Va(A(x) vV B). However, ko I VxA(x) since k; I VaA(x),
and ko Iff B is evident. We conclude that ko Iff (D).



