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1 Exercises

Exercise 1 (Deadline: March 3) Let £ be a topos, X an object of £ and
A% X a subobject of X such that the classifying map x4 : X — € is monic.
a)

(
b) (3 pts) Suppose for a pair of maps f,g : ¥ — X there is a subobject
B — Y such that both squares

3 pts) Show that the unique map !: A — 1 is monic.

B——A B——A
l lm and l m

are pullbacks. Show that f = g.

c) (242 pts) We call a category well-powered if for every object, its collection
of subobjects is a set. As you know, a category is locally small if for every
pair Y, X of objects, the collection of arrows Y — X is a set.

Prove that a topos is well-powered if and only if it is locally small.

[Hint: use Exercise 1 of the lecture notes]

Exercise 2 (Deadline: March 17) Let £ be a category with finite limits.
For X € £ and a subobject U of X, we define a map from U to Y (where
Y € &) to be an equivalence class of diagrams x , ™  ~ U y where m is
a representative of U; two such diagrams (m, f) and (m/, f') sre equivalent if
there is an isomorphism o : Z — Z’ satisfying m’c = m and f'o = f.

Now, we define a partial map f: X — Y as a map from U to Y where U is
a subobject of X.

a) (3 pts) Show that there is a category &, with the same objects as &, but
with partial maps as arrows.



b) (3 pts) Show that there is a functor I : & — &, which is the identity on
objects.

¢) (4 pts) Show that in &, partial maps are representable if and only if the
functor I of part b) has a right adjoint.

Exercise 3 (Deadline: April 4) Call an object A of a locally small category
C connected if the representable functor C(A4,—) : C — Set preserves finite
coproducts. From now on, we work in a topos £ and we assume a geometric
morphism f = (f* 4 f,) : &€ — Set.

a) (3 pts) An object A is connected if and only if A is non-initial and A is
not a coproduct of two non-initial subobjects.

b) (2 pts) Suppose the inverse image functor f* : Set — £ has a left adjoint
fi. Prove that an object A of £ is connected precisely if fi(A) ~ 1.

X —=f"(4)
c) (2 pts) Let HJ lf"(m) be a pullback diagram in £. Prove that
Y —— f*(B)
the transposed diagram:

X)L

A
f!(n)J/ Jm

YY) —— B
is a pullback diagram in Set. [Hint: in Set, every object is a coproduct of
copies of 1]
d) (3 pts) We still assume the existence of the left adjoint fi. Prove that in
&, every object is a coproduct of connected objects. [Hint: for an object A

of £ and element s € fi(A), regarded as arrow 1 — fi(A) in Set, consider
the pullback diagram

U, —2— f*(1)

q Jf*(s)

A—Dpr [T 1 (A)
where 7 is the unit of the adjunction fi - f*]

Exercise 4 (Deadline: April 18) We are working in a topos £ with a Lawvere-
Tierney topology (and associated universal closure operation).



a) Suppose

m

M—X
| b
NT>Y

is a pullback square with m,n mono and g epi. Show: M is closed in X
if and only if N is closed in Y.

b) Suppose that R is an equivalence relation on X and R ——= X —— M
is a coequalizer diagram. Show that M is separated if and only if the
mono R — X x X is closed.

Exercise 5 (Deadline: May 19) a) (3 pts) Let F' : C — D be a functor
between cartesian closed categories; suppose F' has a left adjoint L. Show
that F is a cartesian closed functor (i.e., preserves finite products and
exponentials) if and only if the natural morphism

(Lmo,ealm) : L(Bx FA) = LB x A

is an isomorphism for all A € C, B € D (here, ¢ is the counit of L 4 F,
and 7,7, are projections).

b) (2 pts) Let F and L be as in a). Show that if F' is cartesian closed and L
preserves 1, then F is full and faithful.

c) (3 pts) Let again F' and L be as in a). Show: if F is full and faithful and
L preserves binary products, then F' is cartesian closed.

d) (2 pts) Let f: F — &£ be a geometric morphism between toposes. Show
that f is an inclusion if and only if f, is cartesian closed.

Exercise 6 (Deadline: June 2) Let C be the following preorder:
1
a b
0

a) (5 pts) Show that the presheaf category Set®” is a classifying topos for
“pairs of subobjects of 1”.

b) (5 pts) Give a Grothendieck topology J on C such that Sh(C, J) is a clas-
sifying topos for “complemented subobjects of 1”7 (recall that a subobject
A of an object X is complemented if there is a subobject B of X such
that AUB =X and AN B =0).



2 Solutions

Exercise 1. Part a): since x4 is monic, the composition x 4om = to! is monic;
so | is monic.
Part b): the subobject B — Y is classified by both x 40f and x 40g; by unique-
ness of classifying maps, x40f = x40g; since x4 is monic, f = g.
Part c¢): by Exercise 1 of the lecture notes, the map £(X,Y) — Sub(Y x X)
which sends an arrow f : X — Y in £ to the graph of f as subobject of Y x X
is injective. So if £ is well-powered, then Sub(Y x X) is a set, so £(X,Y) is a
set; so & is locally small.

For the converse, if £ is locally small then Sub(X), which is in bijective
correspondence with £(X, ), must be a set; so £ is well-powered.

Exercise 2. Part a): we have to show that there are identities and a well-defined
notion of composition on partial maps, which make £, a category.

Given representatives ( x ™ 7 _J (y)and (y " Ww_9 4 7)of
partial maps f: X =Y, g:Y — Z respectively, let

V—>Z
|
W——Y

n

be a pullback. Let the composition gf : X — Z berepresented by ( x ,mv_ 1, _9% , ).

It is easy to see that this is well-defined: if ( x- , ™" ! y)and (y .y g 7)
are other representatives of the same partial maps, then there are appropriate
isomorphisms o : Z — Z' and 7 : W — W’ which ensure that the pullback

diagrams defining the composition will be isomorphic.

For the identity id : X — X we take the diagram ( x .4y 1d 5 ) If
(x «® w2 .\ 7 ) represents a partial map g : X — Z then by the above

definition, goid is represented by ( x . vy _9% . ) where

V—sX

|

W——X

is a pullback. We see that ¢ is an isomorphism and that modulo this isomor-
phism, n = v; so goid = g as partial maps X — Z. The other identity law is, of
course, similar.

It remains to prove that composition is associative; I do this sketchily. We



have a diagram

n

—

w
|
Z

K——
|
L

and clearly, in order to define the compositions f(gh) and (fg)h, one needs to
“fill out” the upper left hand part of this by taking appropriate pullbacks:

N
[

K——7 K——Z7

o

Clearly, for both pullbacks there is an isomorphism between the vertices which
commutes with the vertical and horizontal “legs” of the diagram.

Part b): define I(X) = X; for f: X - Y in € let I(f) : X —= Y be represented
by the diagram ( y ,id  y f .y ). Now obviously, I preserves identities;
that I preserves composition is left to you.

Part c): if X represents partial maps into X (for X € &) then there is a natural

1-1 correspondence between partial maps ¥ — X and morphisms ¥ — X that
is, between &,(I(Y), X) and E(Y, X). So the adjunction is clear once we see

that (-) is a functor.
Given an arrow X — Y in &, represented by ( x . ™ f y ), let f

be the morphism X — Y which represents the partial map

71y

nx ml

Here, nx : X — X is the universal arrow which belongs to the partial map
classifier structure.

Exercise 3. Part a): If A is connected then £(A, 0) must be initial in Set (since
E(A, —) preserves the empty coproduct), so A is non-initial in £. If A= BUC



with B and C non-initial then £(A, A) ~ (A, B) UE(A, C), so the identity on
A factors through a proper subobject of A, which is impossible.

Conversely, suppose A is non-initial and not a coproduct of two non-initial
subobjects. Since 0 is strict in any topos, £(4,0) = (. Consider a map f :
A — BUC. If f does not factor through either B or C then f~'B and f~'C
are non-initial and A = f~!B U f~'C; contradicting the assumption on A. We
conclude that £(A, —) preserves finite coproducts.

Part b): first, let us remark that £(4,0) ~ E(A, f*(0) =~ Set(fiA,0), so A is
non-initial precisely when fiA is nonempty.

Suppose fiA = 1. Then A is non-initial by the remark; moreover, if A =
B U C with B and C non-initial, then 1 ~ fiB U fiC so 1 is a coproduct of two
nonempty sets; this contradiction shows that A is connected.

Conversely, suppose A is connected. Then fiA is nonempty by the remark.
Moreover, we have a chain of equalities (using, in turn, the adjunction fy 4 f*,
the fact that f* preserves 1 and coproducts, and the assumption that A is
connected):

Al = Set(fA,1+1)] = [E(Af(1+D)] =
EA1+1)] = [E(A D) +]EA1) = 2

so |fiA] =1 and hence fiA ~ 1.

Part c): consider the commutative diagram
X —25 A
(%) nl lf*m for a map of sets m: A — B

Yo 1B

By the hint, B is a coproduct | |,.51 so f*B = | |,cz1. Similarly, f*A =
|l,ca 1 and f*m sends the a-th summand of f*A into the f(a)-th summand of
f*B.

Since coproducts are preserved by pullback functors, we have that Y is iso-
morphic to a coproduct | |, 5 Y3 and likewise, X is a coproduct | |, 5 Xj. For
each b € B we have a pullback square

Xy — X

| [

Y, ——Y

Now the diagram (x) is a pullback precisely when for each b € B, the object
Xj is a coproduct of |[n~1(b)| many isomorphic copies of ;. But if this is the
case, then this is preserved by the functor f;. Hence the transposed diagram is
a pullback in Set.



Part d): we follow the hint. Let A € £, s € fiA, and
Uy — f*(1)
(Jl Jf*(S) be a pullback in £
A—— f"i(A)
By part c), the transposed diagram
AU L1
fg(q)l s is a pullback diagram in Set.
fi(A) —— hA
We see that p must be an isomorphism, so f1(Us) ~ 1. Since A is the coproduct

of the objects Uy, we see that A is a coproduct of connected objects, as desired.

Exercise 4. Part a): let M 53 X, N 2 Y be the closures of m in Sub(X),
n in Sub(Y') respectively. Then by stability of the closure operation we have a

pullback diagram
M ——
|
N ——

—

>

<;
@

i-<

and hence the diagram

22—z

M
|»
—— N

is also a pullback.
Moreover, h is an epimorphism. In any regular category, the pullback functor
along an epimorphism is faithful, and hence reflects monos and epis. Therefore
in a topos it reflects isomorphisms (since a topos is balanced). So we have

equivalences:
M is closed

M — M is an isomorphism

N — N is an isomorphism
N is closed

te0

Part b): we have a pullback diagram

R—— X xX

|

M—— M x M
On



We have: M is separated if and only if d5; is closed. Since the map X x X —
M x M is epi, by part a) this is equivalent to: R is closed as a subobject of
X x X, as required.

Exercise 5. Part a): suppose the natural map (Lmg,eaLm) : L(B x FA) —
LBxAis an isomorphism. Since F has a left adjoint, F' preserves finite products.
To see that F preserves exponentials, we have the following natural bijections
for an arbitrary object X of D:

D(X, F(B4))

1R R R
9YYYSY
=
S
X
!
=
e

(where the third bijection is by application of the assumption), so that F((B4)
is naturally isomorphic to FB¥4 by the Yoneda Lemma.

Conversely: if F is cartesian closed, we calculate for an arbitrary object X
of C:

C(L(Bx FA),X) DB x FA,FX)

D(B, FXF4)
D(B,F(X%))
C(LB,X*4)
C(LB x A, X)

IR R R

so we have an isomorphism L(B x FA) ~ LB x A, again by the Yoneda Lemma
(here the third bijection is by cartesian closedness of F'). That the given mor-
phism is an isomorphism is explicitly shown (by exhibiting an inverse) in the
Elephant, Lemma A1.5.8.

Part b): Assume F is cartesian closed and L preserves 1. We calculate:
C(A, B) C(1, B4)
C(L1, B#)
D(1, F(B4))
D(1, FBF4)
D(FA,FB)

1R 1RRR

so F'is full and faithful.

Part c): Assume F is full and faithful and L preserves binary products.
First, we show that for objects A and B of C, BXF4 is isomorphic to BA:
for U arbitrary, we calculate

C(U, BLF4) C(LFA,BY)
D(FA, F(BY))
C(A,BY)

(U, BA)

1R 1R



Next, we see that we have natural bijective correspondences

D(X, F(B4)) C(LX,B%) ~ C(LX,BEF4)
C(LX x LFA,B) ~ C(L(X x FA),B)

D(X x FA,FB) D(X, FBF4)

1R R

so F' is cartesian closed.

Part d): If f is an inclusion then f, is full and faithful. Since f* preserves finite
limits, we can apply part ¢) and conclude that f, is cartesian closed. Conversely,
if f, is cartesian closed then since f* preserves 1 always, by part b) we see that
f+ is full and faithful, so f is an inclusion.

Exercise 6. Part a): we must show that for an arbitrary cocomplete topos
&, we have a natural bijection between geometric morphisms from &£ to Set¢””
and pairs of subobjects of 1 in £&. Now we know that geometric morphisms
& — Set®” correspond to flat functors C — &£. Since C is finitely complete,
flat functors coincide with finite-limit preserving functors C — £. In C we have
the following finite limit structure: 1 is the terminal object, 0 = a A b, and all
arrows are monic. Hence a flat functor C — £ sends a and b to objects A and
B for which the unique morphism to 1 is monic, and is completely determined
by this.

Part b): since C is a poset, we may identify a sieve on some object X of C
with a downwards closed subset of {Y € C|Y < X}. Consider the following
Grothendieck topology on C: for a sieve Ron 1, R € J(1) if and only if {a,b} C
R; for a sieve R on a, R € J(a) if and only if @ € R and for a sieve R on b,
R € J(b) if and only if b € R; finally, every sieve on 0 (including the empty
sieve) is in J(0).

Now we know that a geometric morphism & — Sh(C, J) correspond with flat
(i.e., finite-limit preserving as we saw in part a)) and continuous functors C — &.
The continuity now means (for such a functor F) that F(1) = F(a) U F(b)
and that F(0) = 0. So we get that F(a) and F(b) are subobjects of 1, that
F(a)NF(b) =0 and F(a)UF(b) = 1. This means that F' is (up to isomorphism)
completely determined by F'(a), which is a complemented subobject of 1.



