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February–May 2023

1 Exercises

Exercise 1 (To be handed in March 2, 2023) We consider the poset N of

natural numbers 0 < 1 < 2 < · · · , and the category N̂ of presheaves on N.

a) Show that in N̂, the terminal object is not projective.

b) Show that in N̂, if an object F is projective then every restriction map
F (n+ 1)→ F (n) is injective.

c) Show: an object of N̂ is projective if and only if it is a coproduct of
representables.

Exercise 2 (To be handed in March 23, 2023) Given a monomorphism g :
X → Y in E , consider the map g∗ : Sub(Y )→ Sub(X) on subobjects, given by
pullback along g.

a) Show that g∗ has a left adjoint Lg given as follows: if B ∈ Sub(X) is
represented by a mono n : B → X then Lg(B) ∈ Sub(Y ) is represented
by the mono gn : B → Y .

b) Show that the map Lg can also be constructed as the composite

Sub(X) ' E(1,ΩX)
E(1,∃g)−→ E(1,ΩY ) ' Sub(Y )

where the map ∃g : ΩX → ΩY is as defined in the lecture notes, just before
Proposition 1.12.

c) In the notation of the pullback diagram in Lemma 1.13, show that the
Lemma implies: for any subobject A of Y we have Lg(f

∗A) = k∗(Lh(A)).

Exercise 3 (To be handed in April 6, 2023) As usual, E is a topos.

a) Deduce from Proposition 1.28 that every arrow 0→ X in E is monic.
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b) Use propositions 1.28 and 1.29 to show that if Eop is also a topos, then E
is trivial (i.e., equivalent to the one-arrow category).

c) Let B ∈ E . The coslice B/E has as objects arrows B
f→ X in E , and as

arrows

(B
f→ X)→ (B

g→ Y )

morphisms α : X → Y in E such that αf = g.

Prove that such a map α is monic in B/E if and only if α is monic in E .

d) Use parts a) and c) to conclude that if the unique map B → 1 is not
monic, then the coslice B/E is not a topos.

Exercise 4 (To be handed in April 16, 2023) Let E be a topos with Lawvere-
Tierney topology j. Let X ∈ E .

a) Show that the diagram

Ω×X
j×idX //

p1
##G

GG
GG

GG
GG

Ω×X

p1
{{ww
ww
ww
ww
w

X

is a Lawvere-Tierney topology in E/X. Call this topology jX .

b) Let

M
f

//

m
  A

AA
AA

AA
A A

a
~~~~
~~
~~
~

X

a mono in E/X. Show that this mono is closed for jX if and only if the
map φ factors through Ωj , where Ωj is as defined in the proof of Lemma
1.48, and φ : A→ Ω is such that the square

M

m

��

f
// A

〈φ,a〉
��

X
〈t,id〉

// Ω×X

is a pullback.

c) Let α : X → Y be an arrow in E . Show that if B
g→ X is a sheaf for jX ,

then
∏
α(g) is a sheaf for jY .

Exercise 5 (To be handed in May 4, 2023) Call a functor F : A → B flat
if for each object B of B the functor B(B,F (−)) : A → Set is flat in the sense
of the lecture notes.

2



a) Prove: if F : A → B and G : B → C are flat, then the composition
GF : A → C is flat as well.

b) For every categoryA and objectA ∈ A, the representable functorA(A,−) :
A → Set is flat.

c) Suppose G : A → B has a left adjoint. Then G is flat.

Exercise 6 (To be handed in June1, 2023) In this exercise we discuss Gro-

thendieck topologies on a small category C; if Cov is such, we denote by L : Ĉ →
Sh(C,Cov) the sheafification functor induced by Cov. We order Grothendieck
topologies by saying that Cov ≤ Cov′ if Cov(C) ⊆ Cov′(C) for all C ∈ C.

a) Let R be a subpresheaf of a presheaf F . Show that there is a least Gro-
thendieck topology Cov on C with the property that the L-image of the
inclusion R→ F is an isomorphism.

b) Deduce from part a): for every arrow f : X → Y there is a least Grothen-
dieck topology Cov on C with the property that L(f) is an epimorphism.

c) Similar as b), but now with monomorphism instead of epimorphism.

d) Similar as b), but now with isomorphism instead of epimorphism.

2 Solutions

Exercise 1. Let us agree on some notation: for a presheaf X on N and m ≤ n in
N, write Xmn for the restriction map X(n)→ X(m). Note that since coproducts
are calculated pointwise, we have (X + Y )(0) = X(0) + Y (0) (disjoint sum in
Set), and so, X is indecomposable if and only if X(0) is a one-element set.
a): Suppose 1 is projective. Just as any presheaf, 1 is covered by a sum of
representables: we have an epi

∑
iXi → 1, where each Xi is representable.

This map must have a section, and since 1 is indecomposable, the section must
map 1 into one representable Xi. But if Xi is the representable yn then Xi(n+1)
is the empty set whereas 1(n + 1) is a singleton. We obtain a contradiction (a
function from a nonempty set to the empty set), so 1 is not projective.
b): Suppose we have distinct elements a, b ∈ X(n+ 1) such that Xn(n+1)(a) =
Xn(n+1)(b). Split X(n + 1) into two disjoint sets A,B such that a ∈ A and
b ∈ B. Define subpresheaves XA and XB of X: if n + 1 ≤ m, then XA(m)
consists of all elements of X(m) such that X(n+1)m(x) ∈ A; if m < n+ 1, then
XA(m) = Xm(n+1)[A]. The presheaf XB is defined similarly, with B in the role
of A.

Now the two inclusions of XA and XB into X give a map from XA +XB to
X, which is readily seen to be epimorphic. Now for a section s we must have
sn+1(a) ∈ XA(n+1) and sn+1(b) ∈ XB(n+1), but for their common restriction
in X(n) we can not find a consistent mapping.
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c) A coproduct of projective objects is projective, as is easily seen. Moreover,
a sum of objects is projective iff each of these objects is. Therefore, the projec-
tive objects are sums of indecomposable projectives; that is (by Proposition 0.7
of the notes) sums of retracts of representable presheaves. I leave it to you to
establish that in our case, every retract of a representable is itself representable.
So, projective = sum of representables, as claimed.

Exercise 2. a) We have to show, for monos m : A → Y and n : B → X,
that B ≤ g∗(A) if and only if Lg(B) ≤ A, where Lg is as described in the
exercise. Recall that if A is classified by φA : Y → Ω, then g∗(A) is classified
by φA◦g : X → Ω. We therefore have equivalences:

B ≤ g∗(A) ⇔ φA◦g◦n factors through t
⇔ g◦n factors through A
⇔ Lg(B) ≤ A

which prove the adjunction.
b) The operation Lg : Sub(X) → Sub(Y ) sends a subobject n : B → X to te

composition B
n→ X

g→ Y .
We also have the operation

Sub(X) ' E(1,ΩX)
E(1,∃g)−→ E(1,ΩY ) ' Sub(Y )

and we wish to prove that these two operations coincide.
The first operation sends (B

n→ X) to a the subobject of Y corresponding to a

map (1
ψ→ ΩY ) where the transpose of ψ classifies the composition B

n→ X
g→ Y .

The second operation sends (B
n→ X) to the composition

1
pφnq−→ ΩX

∃g→ ΩY

(where φn : X → Ω classifies B) which transposes to

Y
pφnq×id−→ ΩX × Y ∃̃g→ Ω

and it is easily seen that this composition classifies the composition

B
n→ X

g→ Y.

So indeed the two operations are the same.
c) The lemma asserts that the following diagram commutes:

ΩY

∃h
��

Pf
// ΩX

∃g
��

ΩT
Pk
// ΩZ
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So it will also commute if we apply the functor E(1,−) to it, and observe that
E(1,ΩY ) ' Sub(Y ), E(1, Pf) ' f∗ and E(1,∃h) ' Lh.

Exercise 3. a) Suppose we have a diagram Y
a //

b
// 0

i // X with ia = ib.

By 1.28, a is an isomorphism. Therefore, Y is initial in E ; hence a = b. So i is
monic.
b) Suppose E and Eop are toposes. From 1.28 for Eop we have that in Eop, every
arrow X → 0 is an isomorphism, where 0 is the initial object of Eop. This means
that in E , every arrow 1 → X is an isomorphism. In particular, t : 1 → Ω is
an isomorphism, whence every mono is an isomorphism. Since, by a), every
morphism 0 → X is monic, we obtain that every object is initial in E . So E is
trivial.
c) If α is mono in E and

B

h

~~~~
~~
~~
~~ f

  
@@

@@
@@

@@

Y
β

//

γ
// X

is a parallel pair with αβ = αγ then clearly β = γ, so α is mono in B/E .

Conversely, if α is not mono in E , let Y
β
//

γ
// X be a parallel pair with

αβ = αγ and β 6= γ. We then have a parallel pair

B
µ

{{xx
xx
xx
xx
x

f
  
@@

@@
@@

@@
g

''PP
PPP

PPP
PPP

PPP

B + Y
β′

//

γ′
// X

α
// Y

in B/E , showing that α is not mono in B/E .
d) The initial object of B/E is the identity arrow on B. For b : B → 1 in E we
have the arrow

B

id

~~~~
~~
~~
~~ b

��
??

??
??

??

B
b

// 1

in B/E which is, by assumption on B and part c), not mono in E . So not every
arrow from the initial object is mono in B/E , which therefore is not a topos.

Exercise 4. a) Let us denote by X
tX→ ΩX the subobject classifier in E/X. So

ΩX is the projection Ω×X p1→ X, which is X∗(Ω); and tX is the map 〈t, idX〉 :
X → Ω×X. Now X∗ is a logical functor, and it follows that X∗(t) = tX , that
X∗(∧) is the map ∧X : ΩX × ΩX → ΩX in E/X. All equalities are preserved
by X∗, so jX is a Lawvere-Tierney topology in E/X.
b) Pullbacks in E/X are pullbacks in E , so the given square means that the map
〈φ, a〉 : A → ΩX classifies the mono f in E/X. Again since X∗ is logical, we
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have that (ΩX)jX , which is the image of jX , classifies jX -closed monos in E/X.
So f is closed if and only if 〈φ, a〉 factors through (ΩX)jX .

c) Suppose B
g→ X is a sheaf for jX . Recall that we have an adjunction

E/X ∏
α

// E/Y
α∗oo

, α∗ a
∏
α

Given a diagram

W
u //

f

��

Z

∏
α(g)

in E/Y with u a jY -dense mono, we consider its transpose along the adjunction,
to get

α∗W
α∗u //

f̄

��

α∗Z

g

in E/X. Since the functor α∗ is logical, α∗u is jX -dense. And because g is a
jX -sheaf, we have a unique filler. Transposing back, we find the unique filler for
the original diagram, showing that

∏
α(g) is a jY -sheaf.

Exercise 5. a) We need to show that for each object C of C, the functor
C(C,GF (−)) is filtered, that is: the category of elements of this functor is a
filtered category. We check the conditions of Definition 2.6.

i) We have to show that for some A ∈ A, C(C,GFA) is nonempty. Since G
is flat, there is a B ∈ B and an arrow f : C → GB. Since F is flat, there
is an A ∈ A and an arrow g : B → FA. Then G(g)f : C → GFA is an
element of C(C,GFA).

ii) Suppose (f,A), (f ′, A′) are objects of Elts(C(C,GF (−))), so f : C → GFA
and f ′ : C → GFA′. This gives that (f, FA) and (f ′, GFA′) are objects
of Elts(C(C,G(−))). Since this category is filtered, we find (g,B) with
g : C → GB and arrows u : B → FA, v : B → FA′ such that (Gu)g :
C → GFA and (Gv)g : C → GFA′ satisfy (Gu)g = f and (Gv)g = f ′.

The u and v determine objects (u,A) and (v,A′) of Elts(B(B,F (−))). By
filteredness of this category, we find (w,A′′) and morphisms x : (w,A′′)→
(u,A) and y : (w,A”) → (v,A′) satisfying (Fx)w = u and (Fy)w = v.
Finally, the pair ((Gw)g,A′′) ∈ Elts(C(C,GF (−))) satisfies:

(f,A) ((Gw)g,A′′)
xoo

y
// (f ′, A′)

as desired.
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iii) Consider a parallel pair (x, y) : (f,A) → (f ′, A′) in Elts(C(C,GF (−))),
so x and y are arrows A → A′ satisfying (GFx)f = f ′ = (GFy)f . This
gives morphisms Fx, Fy in Elts(C(C,G(−)) which form a parallel pair of
arrows (f, FA) → (f ′, FA′). Since Elts(C(C,G(−))) is filtered we get an
arrow u : (g,B)→ (f, FA) which equalizes Fx, Fy:

(g,B)
u // (f, FA)

Fx //

Fy
// (f ′, FA′)

Also note that (Gu)g = f .

Let v = (Fx)u = (Fy)u; we have a parallel pair x, y : (u,A) → (v,A′)
in Elts(B(B,F (−))). Finally, again exploiting the filteredness of this cat-
egory we obtain an arrow z : (w,A′′) → (v,A) such that xz = yz and
(Fz)w = u. Since (GFz)(Gw)g = (Gu)g = f , the morphism z is an arrow
((Gw)g,A′′)→ (f,A) which equalizes the given parallel pair, as desired.

b) We have to show that for an object A of a category A, the representable
functor A(A,−) : A → Set is flat; in other word that the category Elts(A(A,−))
is filtered. But this category has an initial object (idA, A) and every category
with an initial object is trivially filtered.
[An alternative proof notices that the left Kan extension: Â → Set of the given
representable is the functor which sends a presheaf X to X(A); and this functor
preserves finite limits]
c) By the adjunction, the functor B(B,G(−)) is isomorphic to the functor
A(FB,−) which is representable, hence flat by part b).

Exercise 6. We start by making two remarks which, easy in themselves, might
have merited more explicit mention in the notes.
Remark 1. The pointwise intersection of any set of Grothendieck topologies is
again a Grothendieck topology. This is immediate from the definition.
Remark 2. Let m : R → F be a monomorphism, and L the sheafification
functor. Then m is dense if and only if L(m) is an isomorphism.
Proof of remark 2: Let i be the inclusion of the category of sheaves, i.e. the
right adjoint to L. We also write L for the composite iL.

From the proof of the factorization theorem (Theorem 2.20) we know that,
if we write cF (R) for the closure of R as subobject of F , the following square is
a pullback:

cF (R)

��

// L(R)

��

F
η
// L(F )

where η is the unit of the adjunction L a i. From this it follows that the L-image
of the inclusion cF (R) → F is (isomorphic to) L(R) → L(F ) (use that L(η) is
an isomorphism, and that L preserves pullbacks). We now see: if R is dense in
F then cF (R)→ F is an isomorphism, hence L(R)→ L(F ) is an isomorphism;
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conversely, if L(R) → L(F ) is iso then so is cF (R) → F , which is to say that
R→ F is dense.

Now for the exercise: a) For each C ∈ C and each x ∈ F (C), we have the sieve

SCx = {f : C ′ → C |F (f)(x) ∈ R(C ′)}

on C. Clearly, R is dense in F if and only if every SCx is in Cov(C).
So the least Grothendieck topology for which R → F is dense, is the inter-

section of all Grothendieck topologies which contain all sieves SCx for C ∈ C, x ∈
F (C) (Remark 1).

b) Given f : X → Y let X
e→ E

m→ Y be the epi-mono factorization of f . We
know that L preserves both monos and epis, hence also such factorizations; and
L(f) is epi if and only if L(m) is an isomorphism. By Remark 2, this is the case

if and only if E
m→ Y is dense. So the required Grothendieck topology is the

one we get from part a), applied to the mono m : E → Y .

c) Given f : X → Y , let Kf → X ×X be the kernel pair of f and ∆→ Kf the
factorization of the diagonal δ : X → X ×X through Kf .

Now f is mono if and only if ∆→ Kf is epi, so the least topology for which
L(f) is mono is the least one for which L(∆→ Kf ) is epi; apply part b).

d) L(f) is an isomorphism if and only if L(f) is both epi and mono. If Cove
and Covm are, respectively, the least Grothendieck topologies for which L(f) is
epi (mono), then we want the least topology which contains Cove ∪ Covm.
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