
Topological Models of Computability

Jaap van Oosten

Department of Mathematics, Utrecht University

Nederlands Mathematisch Congres 53, 11/4/2017
Joint work with Niels Voorneveld



Turing (1936): what is a computation (on natural numbers)?
A human (or a device), after reading a symbol, may perform one of
a very limited number of actions:

- he/she may erase the symbol, or replace it with another, and
move to the next (or previous) symbol;

- he/she may do nothing, and move to the next (previous)
symbol;

- he/she may decide to terminate (halt) the computation.

The computer is guided by the “state of mind” he/she finds
himself/herself in.
Turing argued that there can be only finitely many symbols and
finitely many states of mind.



A formalisation: the Turing machine, a finite automaton.
At the start of the computation there is ‘input’, written on a tape
(the ‘input’ is a natural number, or a sequence of natural
numbers); when the computation is halted, what is on the tape is
regarded as ‘output’ (a natural number).
A partial function F : Nk → N is partial (Turing) computable if
there is a Turing machine Q such that for all k-tuples
a1, . . . , ak ∈ N the following holds:
if F (a1, . . . , ak) is defined then computation with Q and input
a1, . . . , ak terminates, and yields output F (a1, . . . , ak).



The Church-Turing Thesis states that any partial function that is
algorithmically computable (by whatever kind of algorithm) is
Turing computable.
This thesis has stood the test of time.
For computation on natural numbers, therefore, Turing machines
are the definitive answer to the question: what is computability?
However, for computations on higher-type objects (functions of
integers, sets of integers), there are various reasonable answers.



Fix a ‘reasonable’ numbering of all Turing machines: Q0,Q1, . . .
Define a partial function n,m 7→ nm on N:
nm, if defined, is the output of the computation of Turing machine
Qn with input m (if that computation halts).
We can now consider expressions built up from variables,
juxtaposition, and brackets: e.g., (xy)z , (xz)(yz).
Reasonable convention: abbreviate (xy)z to xyz (so: (xz)(yz) to
xz(yz)).
Every expression E (x1, . . . , xn) in variables x1, . . . , xn defines a
partial function on Nk : a1, . . . , ak 7→ E (a1, . . . , ak).



Basic Fact: for any expression E (x1, . . . , xn) there is a number m
such that for all n-tuples a1, . . . , an we have:

i) ma1 · · · an−1 is defined;

ii) If E (a1, . . . , an) is defined, then ma1 · · · an = E (a1, . . . , an)

Note: not every variable xi has to occur in E .
In particular there is some m such that:

i) ma is defined.

ii) mab = a.



Models of Computability
A Model of Computability (MoC) is a set X together with a partial
binary operation on X , x , y 7→ xy , for which the Basic Fact holds.
Some facts: in every MoC X there are elements (Booleans and
Definition by Cases) T, F, C such that

CTab = a
CFab = b

In every MoC there are elements p, p1, p2 satisfying

p1(pab) = a p2(pab) = b

Think of pab as a coded pair; we denote pab by [a, b].
In every MoC there is a choice of elements n̄ (for every natural
number n), which system satisfies the following: for every Turing
computable function f of k variables, there is some af ∈ X such
that whenever f (a1, . . . , ak) is defined, then

af ā1 · · · āk = f (a1, . . . , ak)



MoC’s are structured in a category (in fact, a 2-category):
For MoC’s X ,Y , a morphism γ : X → Y assigns to every x ∈ X a
nonempty subset γ(x) of Y , in such a way that for some element
r ∈ Y we have:
whenever ab is defined in X and u ∈ γ(a), v ∈ γ(b), then ruv is
defined in Y , and ruv ∈ γ(ab).
So, ru simulates the action of a in Y .
We also require that there is some d ∈ Y which satisfies:
u ∈ γ(T)⇒ du = T and v ∈ γ(F)⇒ dv = F.

There is always a morphism N→ X : n 7→ n̄.



Example 1

P(N)
Fix a bijection n,m 7→ [n,m] : N× N→ N.
Fix an enumeration (en)n∈N of the finite subsets of N.
Define, for X ,Y ⊆ N:

XY = {n | ∃m([n,m] ∈ X and em ⊆ Y )}

Theorem (Scott) P(N), equipped with this map, is an MoC.
The Scott topology on P(N) has as basic open sets, sets of the
form

Up = {X ⊆ N | p ⊂ X}

for some finite p ⊂ N.
Every map of form X (−) : P(N)→ P(N) is Scott-continuous;
conversely, every Scott-continuous map is of this form.



Example 2

NN (This is the set of all total functions from N to N!)
Fix a bijection

⋃
n≥0Nn → N: (a0, . . . , an−1) 7→ [a0, . . . , an−1]

Let α, β : N→ N. Say (αβ)n is defined, and equal to k , if for
some number l we have:

α([n, β(0), . . . , β(u − 1)]) = 0 for all u < l
α([n, β(0), . . . , β(l − 1)]) = k + 1

We now say αβ is defined, and αβ = γ, if for all n, (αβ)n is
defined, and γ(n) = (αβ)n
Theorem (Kleene) NN, equipped with this operation, is an MoC.
The Baire space topology on NN has as basic open sets, sets of the
form

Us = {α |α(0) = s0, . . . α(n) = sn}

for some finite sequence s = s0, . . . , sn of natural numbers.
Every map of form α(−) : NN → NN is Baire continuous, and
conversely.



Oracles

Turing thought about the question: given a (possibly
non-computable) function f , what can one compute if an “oracle”
gives the value of f at specific arguments?
Computations remain finite, so the oracle can, in one computation,
only be consulted a finite number of times.
One gets a preorder on functions: g ≤T f if g is computable using
an oracle for f .



There is a similar preorder on endofunctions on an MoC.
Let X be an MoC and f : X → X be an arbitrary function.
Define a partial map on X × X , (a, b) 7→ a◦f b:
a◦f b = c if there is a sequence u0, . . . , ui−1 of elements of X
satisfying:

I either i = 0 and ab = [T, c]

I or i > 0, and for all j ≤ i − 1 we have for some dj ∈ X :

abu0 · · · uj−1 = [F, dj ] and uj = f (dj)

and abu0 · · · ui−1 = [T, c].



Now X , with the operation ◦f , is an MoC.
The identity map x 7→ {x} is a morphism from X to (X , ◦f ), and
it has a universal property.
We write X [f ] for (X , ◦f ).
In X [f ], there is an element af such that af b = f (b) for all b ∈ X
(the function f is “computable in X [f ]”)
We can now define, for endofunctions f , g on X :
f ≤T g if f is computable in X [g ].



A calculation on P(N)
The complement function C : X 7→ N− X is certainly not Scott
continuous, hence not computable in P(N).
What happens in P(N)[C ]?
The Cantor topology on P(N) has as basic open sets

Uq
p = {A ⊆ N | p ⊆ A,A ∩ q = ∅}

for p, q finite.
Proposition. Every endofunction on P(N) which is Cantor
continuous, is computable in P(N)[C ].

Proposition The function Eq of two variables:

X ,Y 7→
{

T if X = Y
F otherwise

is computable in P(N)[C ].

So, Eq ≤ C . What about the converse?



Lemma There is no partition {U0,U1, . . .} of P(N) into countably
many sets, such that the complement function C is Scott
continuous on each Ui .

Corollary The complement function is not computable in P(N)[f ],
for any function f with countable image; in particular, for a
characteristic function such as Eq.



Sources

Jaap van Oosten and Niels Voorneveld, Extensions of Scott’s
Graph Model and Kleene’s Second Algebra, arXiv:1610.0405Ov1

For background:
John Longley and Dag Normann, Higher Order Computability,
Springer 2015


