
Exam Topos Theory, June 10, 2021
with model solutions

This exam consists of 4 exercises. Every exercise is worth 10 points; if an
exercise consists of more than one part, it is indicated what each part is worth.
The grade W for the written exam is your total number of points divided by 4.
You final grade is the maximum of W and 7W+3H

10 where H is your result from
the homework exercises.

Advice: first do those exercises for which you see a solution right away. Then
start thinking about the harder ones. Good luck!

Exercise 1 We consider a topological space X and a point x ∈ X; we shall
also write x for the induced geometric morphism Set→ Sh(X).

Recall the construction, for a sheaf F on X, of the stalk Fx of F at x: Fx
consists of equivalence classes of elements s ∈ F (U) for open neighborhoods U
of x; given two such, s ∈ F (U) and t ∈ F (V ), s and t are equivalent if there is
an open neighborhood W of x such that W ⊂ U ∩V and s�W = t�W in F (W ).

a) (4pts) Show that, up to isomorphism, the inverse image functor x∗ of the
geometric morphism x sends a sheaf F to Fx.

b) (3pts) Give a concrete description of the direct image functor x∗ : Set →
Sh(X)

c) (3pts) The specialization order on the space X is defined as follows: x ≤
y if every open neighborhood of x also contains y. Show, that every
inequality x ≤ y induces a natural transformation x∗ ⇒ y∗.

Solution: a) The category Sh(X) is equivalent to the category of étale maps
into X (see section 0.3 of the lecture notes). Under this equivalence, a sheaf F
on X corresponds to the space of pairs (x, sx) with x ∈ X and sx a germ of F
at x. The étale map to X is the first projection.

For a continuous function f : Y → X of spaces, we have a geometric mor-
phism f : Sh(Y ) → Sh(X), the inverse image of which, f∗ : Sh(X) → Sh(Y )
sends an étale space E → X to the étale space over Y given by the pullback

f∗(E)

��

// E

��
Y

f
// X

Now if Y is a single point space {∗} and f sends ∗ to x ∈ X, then the recipy
above gives that f∗(F ) is the set of germs of F at x, that is: the stalk of F at
x.
b) For the geometric morphism f : Sh(Y )→ Sh(X) induced by the continuous
function f discussed in a), the direct image is given by

f∗(F )(U) = F (f−1(U))
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for a sheaf F on Y and open set U ⊂ X.
Now if Y is a one-point space {∗} then Sh(Y ) is equivalent to Set by an

equivalence which sends a set A to the sheaf Â on {∗} given by

Â(∅) = 1

Â({∗}) = A

Hence, if we now denote the continuous map {∗} → X which sends ∗ to x also
by x, then we have

x∗(A)(U) = Â(x−1(U)) =

{
A if x ∈ U
1 else

c) If x ≤ y for the specialization order, then for any sheaf F on X we have a
natural map Fx → Fy: every representative s ∈ F (U) of a germ of F at x is
also a representative of a germ at y, and if two such representatives, s ∈ F (U),
t ∈ F (V ) represent the same germ at x, then for some open neighbourhood W
of x with W ⊂ U ∩ V we have s�W = t�W ; since W is also a neighbourhood of
y, s and t represent the same germ at y.

This natural map determines a natural transformation x∗ ⇒ y∗.

Exercise 2 In this exercise we work in the category Ĉ of presheaves on a small
category C.

Let P be an arbitrary presheaf on C. We construct the presheaf P̃ as follows:
for an object C of C, P̃ (C) consists of all pairs.(R, f) where R is a sieve on C
(considered as a subobject of the representable presheaf yC) and f : R → P is

an arrow in Ĉ. If α : C ′ → C is a morphism in C then P̃ (α) sends (R, f) ∈ P̃ (C)
to (α∗(R), f◦v) where

α∗(R)

��

v // R

��
yC′

yα
// yC

is a pullback.

a) (4pts) Show that P̃ is indeed a well-defined presheaf on C.

b) (6pts) Show that there is a map of presheaves η : P → P̃ which is a partial
map classifier on P .

Solution: a) We shall take a sieve R on an object C of C as a sub-presheaf of
the representable presheaf yC (so R(D) is a subset of C(D,C)). So if α : C ′ → C
is an arrow in C and R is a sieve on C, then α∗(R) is the subpresheaf of yC′

defined by
α∗(R)(D) = {g : D → C ′ |αg ∈ R(D)}

This implies that id∗(R) = R and for C ′′
β→ C ′

α→ C that β∗(α∗(R)) =

(αβ)∗(R), and using this it is not hard to show that P̃ is a well-defined presheaf.
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b) Define η : P → P̃ by: ηC(x) = (max(C), x̂), where max(C) denotes the
maximal sieve on C (that is, the object yC) and x̂ is the map yC → P which
sends the identity map on C to x ∈ P (C) (i.e., it is the map which corresponds
to x ∈ P (C) under the Yoneda Lemma).

Now suppose U → Y is a subobject in Ĉ (we assume that U is a subpresheaf

of Y ); and suppose we have an arrow φ : U → P . We define a map φ̃ : Y → P̃
as follows: for y ∈ Y (C), φ̃C(y) = (Ry, fy) where: R(y) is the sieve on C
consisting of those arrows α : C ′ → C which satisfy Y (α)(y) ∈ U(C ′), and

for (C ′
α→ C) ∈ R(y) we put (fy)C(α) = Y (α)(y). This gives a well-defined

morphism of presheaves fy : Ry → P .

It is left to you to verify that this completes the definition of a map φ̃ : Y →
P̃ , and that this map has the property that we have a pullback diagram

U //

φ

��

Y

φ̃
��

P
η
// P̃

Now this is the universal property characterizing the partial map classifier of P .

Exercise 3 a) (4pts) Let C be.a small category with finite limits. Prove that

the functor y : C → Ĉ has the following property: Ĉ is cocomplete and for
every finite-limit preserving functor F : C → E where E is a cocomplete
topos, there is an essentially unique functor F : Ĉ → E which preserves
finite limits and all colimits, and satisfies F◦y ' F .

b) (6pts) Now assume that C is a small regular category. Prove that there is

a topos C̃ and a functor yR : C → C̃ which is regular and has the following
property: for every regular functor F : C → E from C to a cocomplete topos
E , there is an essentially unique functor F̃ : C̃ → E which preserves finite
limits and all colimits, and satisfies F̃◦yR ' F . [Hint: a functor is regular
if it preserves finite limits and regular epimorphisms. Pick a suitable
Grothendieck topology on C to make yR preserve regular epimorphisms]

Solution: a) The category Ĉ is cocomplete since colimits are calculated point-
wise (and Set is cocomplete). We know from the theory of geometric morphisms
that for a cocomplete topos E there is a natural 1-1 correspondence between:

i) functors Ĉ → E which preserve colimits and finite limits, and

ii) flat functors C → E .

The bijection (i)⇒(ii) sends a functor F : C̃ → E to F◦y : C → E .
We also have that if C has finite limits, then a functor C → E is flat if and

only if it preserves finite limits.
So if F : C → E preserves finite limits, it is flat, and hence the colimit

preserving functor F : Ĉ → E which satisfies F◦y = F , preserves finite limits.
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Conversely, if a functor Ĉ → E preserves colimits and finite limits then its
composition with y : C → Ĉ preserves finite limits since y preserves all limits
which exist in C.
b): this was possibly the hardest exercise. Every regular functor F : C → E
preserves finite limits, so by a), F has an extension F : Ĉ → E which preserves

finite limits and all colimits. However, the Yoneda embedding y : C → Ĉ is
not regular. We see, however, that if e : A → B in C is a regular epi and
ε : y(A)→ X is the coequalizer in Ĉ of the kernel pair of y(e), then F (y(a)) and
F (ε) coincide, since F is regular and F preserves coequalizers of kernel pairs.

We need a Grothendieck topology on C which is as small as possible and is
yet such that the composition

C y→ Ĉ L→ Sh(C,Cov)

(where L is sheafification w.r.t. Cov) preserves regular epimorphisms. The least
topology doing this, has for an arbitrary object C ∈ C the collection of those
sieves on C which contain a regular epimorphism.

Note, that a functor F : C → E is regular, precisely wjen it is flat and
continuous (for Cov); which holds if and only if F factors through Sh(C,Cov).

Exercise 4 In this exercise we consider the category 2 which has two objects
0 and 1 and one non-identity arrow a : 0→ 1.

a) (2pts) Show that 2 is isomorphic to 2op.

b) (4pts) Show that for any category E with finite limits there is a bijection
between the following two collections:

i) The collection of subobjects of 1 in E
ii) The collection of isomorphism classes of functors 2 → E which pre-

serve finite limits

c) (4pts) Show that the category Set2 is a “classifying topos for subobjects
of 1”; that is: for any cocomplete topos E there is a natural bijection
between geometric morphisms E → Set2 and subobjects of the terminal
object in E .

Solution: a) Left to you.
b): Left to you.
c): First, suppose F : 2→ E preserves finite limits. In 2, the object 1 is terminal
and the arrow a is monic, so we must have that F (a) : F (0) → 1 ' F (1) is
a subobject of 1. Clearly, a natural isomorphism F ' G of two such functors
gives the same subobject of 1.
d): We have: (writing Top for the category of toposes and geometric morphisms)

Top(E ,Set2) ' by a)

Top(E ,Set2
op

) ' by theory
Flat(2, E) ' by c)

SubE(1)
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