
Exam Topos Theory, June 15, 2023, 14:00–17:00
with solutions

Exercise 1 Given an object X of a topos E , we consider a subobject a :
A→ X of X, classified by an arrow φ : X → Ω. We also consider the least
subobject of X, 0→ X, classified by n : X → Ω.

a) (5 pts) Let E
e // X

φ
//

n
// Ω be an equalizer diagram. Show that

the subobject E of X has the following universal property: whenever
C is a subobject of X such that C ∩ A = 0, then C ≤ E. In logical
terms, E is the Heyting implication A⇒ 0.

b) (5 pts) Suppose we now replace 0 by an arbitrary subobject b : B →
X of X. We now obtain a binary operation on subobjects of X by
considering the equalizer

E
e // X

φ
//

ψ
// Ω

where ψ : X → Ω classifies B. Does this give A ⇒ B? Determine
what we obtain in the case E = Set.

Solution a): For a subobject C of X, say c : C → X mono, the intersection
C ∩ A is classified by φc, and 0 = C ∩ 0 is classified by nc. So C ∩ A = 0
if and only if φc = nc, that is: iff c equalizes n and φ and hence factors
through E, in other words C ≤ E.

b): We have a binary operation on subobjects of X, sending a pair of sub-
objects (a : A → X, b : B → X) the equalizer e : E → X of their two
classifying maps. This does, of course, not give A⇒ B, since our operation
is symmetric whereas ⇒ is not. In Set, we get

(A ∩B) ∪ (X − (A ∪B))

Exercise 2 This exercise shows that every slice of a presheaf category is
again a presheaf category: show that for a small category C and a presheaf
F on C, the slice category Ĉ/F is equivalent to a presheaf category. [Hint:
consider the category of elements of F ]

Solution: We define a functor I : Ĉ/F → Êlts(F ). For an object µ : G→ F
of Ĉ/F we define I(µ) : Elts(F )op → Set by: I(µ)(x,C) = µ−1

C (x) ⊆ G(C).
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For an arrow α : (y,D) → (x,C) in Elts(F ), i.e. an arrow α : D → C
in C for which F (α)(x) = y, we see that G(α) sends µ−1

C (x) to µ−1
D (y), i.e.

I(µ)(α) sends I(µ)(x) to I(µ)(y). Checking functoriality is left to you. We
see that I(µ) is a presheaf on Elts(F ).

Now consider an arrow f : µ→ ν in Ĉ/F :

G

µ
��
@@

@@
@@

@@
f

// H

ν
~~~~
~~
~~
~~

F

We see that fC sends µ−1
C (x) to ν−1

C (x), that is: we have I(f) : I(µ)→ I(ν)

and a functor I : Ĉ/F → Êlts(F ).

In the other direction we have the embedding from Elts(F ) = y↓F into
Ĉ/F (sending an object (x,C) to the object yC → F of Ĉ/F to which it
corresponds) and take the left Kan extension of this.

If you had roughly this amount of detail, you got full credits for the
exercise.

Exercise 3 Suppose f : A→ B is monic, g : A→ C arbitrary. Let h : B →
ΩC be the transpose of the classifying map of the mono 〈f, g〉 : A→ B×C.
So

A

��

// B × C

h̃
��

1
t
// Ω

is a pullback, and h is the transpose of h̃. Show that the square

A

f
��

g
// C

{·}
��

B
h
// ΩC

is a pullback.

Solution: first we check that the diagram commutes. We consider the ex-
ponential transposes of both compositions (clockwise and counterclockwise).
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Clockwise we get A× C g×id
// C × C ∆ // Ω which, by considering the

pullback

A× C g×id
// C × C ∆ // Ω

A

〈id,g〉

OO

g
// C

δ

OO

// 1

t

OO

classifies the graph of g as subobject of A× C.
Counterclockwise we get the top row of the following diagram of pull-

backs:

A× C f×id
// B × C h̃ // Ω

A

〈id,g〉

OO

id
// A

〈f,g〉

OO

// 1

t

OO

which is seen to classify the same graph of g. The two compositions agree,
and the square commutes.

To show that the diagram is a pullback, suppose we have arrows v : V → C
and w : V → B satisfying {·}◦v = hw. Again transposing, we see that the

maps V × C v×id
// C × C ∆ // Ω and V × C w×id

// B × C h̃ // Ω agree.

We have a commutative square

V × C

w×id
��

v×id
// C × C

∆
��

B × C
h̃

// Ω

However, by definition of h̃ and ∆, the following diagram consists of pull-
backs, hence its outer square is a pullback:

A× C
πA
��

πC // C

��

δ // C × C

∆

��

A

〈f,g〉
��

// 1
t

##G
GG

GG
GG

GG
G

B × C
h̃

// Ω

So the pair (v, w) factors uniquely through A, as desired.
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Exercise 4 In this exercise we consider toposes E and F and a geometric
morphism f from E to F :

E
f∗
// F

f∗
oo

with f∗ a f∗. Now suppose j is a Lawvere-Tierney topology on E and k is
one on F .

a) (5 pts) Show: the functor f∗ sends j-sheaves to k-sheaves, if and only
if the functor f∗ sends k-dense monos to j-dense monos.

b) (5 pts) Show that if the equivalent conditions of part a) hold, then the
geometric morphism restricts to a geometric morphism between the
respective sheaf categories:

Shj(E)

��

// Shk(F)

��

E
f

// F

Solution a) it seems most expedient to prove a little lemma first. We
say that an object X has the right lifting property (RLP) with respect to an
arrow m : M → N , and equivalently that m has then the left lifting property
(LLP) w.r.t. X, if every diagram

M

��

m // N

X

has a unique filler: an arrow N → X making the triangle commute.

Lemma 0.1 Let S be a topos, and l a Lawvere-Tierney topology. The
following two statements are equivalent for a mono M

m→ N in S:

i) m has the LLP wit respect to every l-sheaf.

ii) m is l-dense.

Proof. The direction ii)⇒i) is immediate; this is the definition of an l-
sheaf. In order to prove i)⇒ii), i.e. that m is dense provided it has the LLP
w.r.t. all sheaves, we calculate the closure of m. Let i denote the embedding
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of the category of l-sheaves into S, and L its left adjoint (the sheafification
functor). Now the closure of m is the left hand vertical mono in the following
pullback square:

M

��

// iL(M)

iL(m)

��

N ηN
// iL(N)

where η denotes the unit of the adjunction L a i.
By applying assumption i) to the diagram

M

ηM
��

m // N

iL(M)

we obtain a filler n : N → iL(M) (satisfying nm = ηM ). If we look at the
diagram

M

m

{{xx
xx
xx
xx
x

m //

ηM
��

N

n
{{xx
xx
xx
xx
x

N

ηN
""E

EE
EE

EE
EE

iL(M)

iL(m)

��

iL(N)

we see that both ηN and iL(m)n are fillers for the diagram involving M,N
and iL(N), so they must be equal. This means that the diagram

N

id
��

n // iL(M)

iL(m)

��

N ηN
// iL(N)

commutes. So the identity on N (the maximal subpbject of N) factors
through the closure of m. We conclude that this closure is N , which is to
say that m is dense.

Now we can succinctly answer part a): if f∗ sends k-dense monos to j-dense
monos and X is a j-sheaf in E , then for any k-dense mono m in F , X has the
RLP w.r.t. f∗(m) (since f∗(m) is j-dense), hence f∗X has the RLP w.r.t.
m. So f∗X is a k-sheaf.
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Conversely, if f∗ sends j-sheaves to k-sheaves, then f∗ sends k-dense
monos (which have the LLP w.r.t. all objects f∗X for j-sheaves X), to
monos which have the LLP w.r.t. all j-sheaves X; that is, by the Lemma,
to j-dense monos.

b) Since f∗ sends j-sheaves to k-sheaves, we have a functor φ∗ : Shj(E) →
Shk(F). If we denote the sheafification on E by Lj and its right adjoint by i1,
and for F by Lk and i2, then we see that that the composites i2φ∗ and f∗i1
are naturally isomorphic. We need only to show that φ∗ has a left adjoint
φ∗, for then, by composition of adjoints, we will have a natural isomorphism
between Ljf

∗ and φ∗Lk.
Define φ∗ as Ljf

∗i2 : Shk(F)→ Shj(E). The adjunction is trivial, using
the natural isomorphism between i2φ∗ and f∗i1, the adjunctions between f∗
and f∗, between the L’s and the i’s, and the fact that i2 is full and faithful:

Shj(E)(φ∗Y,X) ' Shj(E)(Ljf
∗i2Y,X) '

E(f∗i2Y, i1X) ' F(i2Y, f∗i1X) '
F(i2Y, i2φ∗X) ' Shk(F)(Y, φ∗X)
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