Exam Topos Theory, June 15, 2023, 14:00–17:00 with solutions

Exercise 1 Given an object X of a topos \mathcal{E} , we consider a subobject $a : A \to X$ of X, classified by an arrow $\phi : X \to \Omega$. We also consider the least subobject of $X, 0 \to X$, classified by $n : X \to \Omega$.

- a) (5 pts) Let $E \xrightarrow{e} X \xrightarrow{\phi} \Omega$ be an equalizer diagram. Show that the subobject E of X has the following universal property: whenever C is a subobject of X such that $C \cap A = 0$, then $C \leq E$. In logical terms, E is the Heyting implication $A \Rightarrow 0$.
- b) (5 pts) Suppose we now replace 0 by an arbitrary subobject $b: B \to X$ of X. We now obtain a binary operation on subobjects of X by considering the equalizer

$$E \xrightarrow{e} X \xrightarrow{\phi} \Omega$$

where $\psi : X \to \Omega$ classifies *B*. Does this give $A \Rightarrow B$? Determine what we obtain in the case $\mathcal{E} =$ Set.

Solution a): For a subobject C of X, say $c : C \to X$ mono, the intersection $C \cap A$ is classified by ϕc , and $0 = C \cap 0$ is classified by nc. So $C \cap A = 0$ if and only if $\phi c = nc$, that is: iff c equalizes n and ϕ and hence factors through E, in other words $C \leq E$.

b): We have a binary operation on subobjects of X, sending a pair of subobjects $(a : A \to X, b : B \to X)$ the equalizer $e : E \to X$ of their two classifying maps. This does, of course, *not* give $A \Rightarrow B$, since our operation is symmetric whereas \Rightarrow is not. In Set, we get

$$(A \cap B) \cup (X - (A \cup B))$$

Exercise 2 This exercise shows that every slice of a presheaf category is again a presheaf category: show that for a small category C and a presheaf F on C, the slice category \widehat{C}/F is equivalent to a presheaf category. [Hint: consider the category of elements of F]

Solution: We define a functor $\mathcal{I} : \widehat{\mathcal{C}}/F \to \widehat{\text{Elts}(F)}$. For an object $\mu : G \to F$ of $\widehat{\mathcal{C}}/F$ we define $\mathcal{I}(\mu) : \text{Elts}(F)^{\text{op}} \to \text{Set by: } \mathcal{I}(\mu)(x,C) = \mu_C^{-1}(x) \subseteq G(C)$.

For an arrow $\alpha : (y, D) \to (x, C)$ in $\operatorname{Elts}(F)$, i.e. an arrow $\alpha : D \to C$ in \mathcal{C} for which $F(\alpha)(x) = y$, we see that $G(\alpha)$ sends $\mu_C^{-1}(x)$ to $\mu_D^{-1}(y)$, i.e. $\mathcal{I}(\mu)(\alpha)$ sends $\mathcal{I}(\mu)(x)$ to $\mathcal{I}(\mu)(y)$. Checking functoriality is left to you. We see that $\mathcal{I}(\mu)$ is a presheaf on $\operatorname{Elts}(F)$.

Now consider an arrow $f: \mu \to \nu$ in $\widehat{\mathcal{C}}/F$:

We see that f_C sends $\mu_C^{-1}(x)$ to $\nu_C^{-1}(x)$, that is: we have $\mathcal{I}(f) : \mathcal{I}(\mu) \to \mathcal{I}(\nu)$ and a functor $\mathcal{I} : \widehat{\mathcal{C}}/F \to \widehat{\text{Elts}}(F)$.

In the other direction we have the embedding from $\operatorname{Elts}(F) = y \downarrow F$ into $\widehat{\mathcal{C}}/F$ (sending an object (x, C) to the object $y_C \to F$ of $\widehat{\mathcal{C}}/F$ to which it corresponds) and take the left Kan extension of this.

If you had roughly this amount of detail, you got full credits for the exercise.

Exercise 3 Suppose $f : A \to B$ is monic, $g : A \to C$ arbitrary. Let $h : B \to \Omega^C$ be the transpose of the classifying map of the mono $\langle f, g \rangle : A \to B \times C$. So

is a pullback, and h is the transpose of \tilde{h} . Show that the square

$$\begin{array}{c} A \xrightarrow{g} C \\ f \downarrow & \downarrow \{\cdot\} \\ B \xrightarrow{h} \Omega^C \end{array}$$

is a pullback.

Solution: first we check that the diagram commutes. We consider the exponential transposes of both compositions (clockwise and counterclockwise).

Clockwise we get $A \times C \xrightarrow{g \times id} C \times C \xrightarrow{\Delta} \Omega$ which, by considering the pullback

$$\begin{array}{c} A \times C \xrightarrow{g \times \mathrm{id}} C \times C \xrightarrow{\Delta} \Omega \\ \langle \mathrm{id}, g \rangle & \uparrow & \uparrow \delta & \uparrow t \\ A \xrightarrow{g} C \xrightarrow{} C \xrightarrow{} 1 \end{array}$$

classifies the graph of g as subobject of $A \times C$.

Counterclockwise we get the top row of the following diagram of pull-backs:

$$\begin{array}{c} A \times C \xrightarrow{f \times \mathrm{id}} B \times C \xrightarrow{\tilde{h}} \Omega \\ \langle \mathrm{id}, g \rangle & \uparrow & \uparrow \langle f, g \rangle \\ A \xrightarrow{\mathrm{id}} A \xrightarrow{\mathrm{id}} A \xrightarrow{\mathrm{id}} 1 \end{array}$$

which is seen to classify the same graph of g. The two compositions agree, and the square commutes.

To show that the diagram is a pullback, suppose we have arrows $v: V \to C$ and $w: V \to B$ satisfying $\{\cdot\} \circ v = hw$. Again transposing, we see that the maps $V \times C \xrightarrow{v \times \mathrm{id}} C \times C \xrightarrow{\Delta} \Omega$ and $V \times C \xrightarrow{w \times \mathrm{id}} B \times C \xrightarrow{\tilde{h}} \Omega$ agree. We have a commutative square

However, by definition of \tilde{h} and Δ , the following diagram consists of pullbacks, hence its outer square is a pullback:

So the pair (v, w) factors uniquely through A, as desired.

Exercise 4 In this exercise we consider toposes \mathcal{E} and \mathcal{F} and a geometric morphism f from \mathcal{E} to \mathcal{F} :

$$\mathcal{E} \xleftarrow{f^*}{f_*} \mathcal{F}$$

with $f^* \dashv f_*$. Now suppose j is a Lawvere-Tierney topology on \mathcal{E} and k is one on \mathcal{F} .

- a) (5 pts) Show: the functor f_* sends *j*-sheaves to *k*-sheaves, if and only if the functor f^* sends *k*-dense monos to *j*-dense monos.
- b) (5 pts) Show that if the equivalent conditions of part a) hold, then the geometric morphism restricts to a geometric morphism between the respective sheaf categories:

Solution a) it seems most expedient to prove a little lemma first. We say that an object X has the *right lifting property* (RLP) with respect to an arrow $m: M \to N$, and equivalently that m has then the *left lifting property* (LLP) w.r.t. X, if every diagram

$$\begin{array}{c} M \xrightarrow{m} N \\ \downarrow \\ X \end{array}$$

has a unique filler: an arrow $N \to X$ making the triangle commute.

Lemma 0.1 Let S be a topos, and l a Lawvere-Tierney topology. The following two statements are equivalent for a mono $M \xrightarrow{m} N$ in S:

- i) m has the LLP wit respect to every l-sheaf.
- ii) m is l-dense.

Proof. The direction $ii) \Rightarrow i$) is immediate; this is the definition of an *l*-sheaf. In order to prove $i) \Rightarrow ii$), i.e. that *m* is dense provided it has the LLP w.r.t. all sheaves, we calculate the closure of *m*. Let *i* denote the embedding

of the category of *l*-sheaves into S, and *L* its left adjoint (the sheafification functor). Now the closure of *m* is the left hand vertical mono in the following pullback square:

$$\begin{array}{c} \overline{M} \longrightarrow iL(M) \\ \downarrow \qquad \qquad \downarrow^{iL(m)} \\ N \longrightarrow iL(N) \end{array}$$

where η denotes the unit of the adjunction $L \dashv i$.

By applying assumption i) to the diagram

$$\begin{array}{c} M \xrightarrow{m} N \\ \eta_M \\ \downarrow \\ iL(M) \end{array}$$

we obtain a filler $n: N \to iL(M)$ (satisfying $nm = \eta_M$). If we look at the diagram

we see that both η_N and iL(m)n are fillers for the diagram involving M, Nand iL(N), so they must be equal. This means that the diagram

$$\begin{array}{c} N \xrightarrow{n} iL(M) \\ \downarrow id \downarrow \qquad \qquad \downarrow iL(m) \\ N \xrightarrow{\eta_N} iL(N) \end{array}$$

commutes. So the identity on N (the maximal subplict of N) factors through the closure of m. We conclude that this closure is N, which is to say that m is dense.

Now we can succinctly answer part a): if f^* sends k-dense monos to j-dense monos and X is a j-sheaf in \mathcal{E} , then for any k-dense mono m in \mathcal{F} , X has the RLP w.r.t. $f^*(m)$ (since $f^*(m)$ is j-dense), hence f_*X has the RLP w.r.t. m. So f_*X is a k-sheaf. Conversely, if f_* sends *j*-sheaves to *k*-sheaves, then f^* sends *k*-dense monos (which have the LLP w.r.t. all objects f_*X for *j*-sheaves X), to monos which have the LLP w.r.t. all *j*-sheaves X; that is, by the Lemma, to *j*-dense monos.

b) Since f_* sends *j*-sheaves to *k*-sheaves, we have a functor $\phi_* : \operatorname{Sh}_j(\mathcal{E}) \to \operatorname{Sh}_k(\mathcal{F})$. If we denote the sheafification on \mathcal{E} by L_j and its right adjoint by i_1 , and for \mathcal{F} by L_k and i_2 , then we see that that the composites $i_2\phi_*$ and f_*i_1 are naturally isomorphic. We need only to show that ϕ_* has a left adjoint ϕ^* , for then, by composition of adjoints, we will have a natural isomorphism between $L_j f^*$ and $\phi^* L_k$.

Define ϕ^* as $L_j f^* i_2 : \operatorname{Sh}_k(\mathcal{F}) \to \operatorname{Sh}_j(\mathcal{E})$. The adjunction is trivial, using the natural isomorphism between $i_2\phi_*$ and f_*i_1 , the adjunctions between f_* and f^* , between the L's and the *i*'s, and the fact that i_2 is full and faithful:

$$\begin{array}{rcl} \operatorname{Sh}_{j}(\mathcal{E})(\phi^{*}Y,X) &\simeq & \operatorname{Sh}_{j}(\mathcal{E})(L_{j}f^{*}i_{2}Y,X) &\simeq \\ \mathcal{E}(f^{*}i_{2}Y,i_{1}X) &\simeq & \mathcal{F}(i_{2}Y,f_{*}i_{1}X) &\simeq \\ \mathcal{F}(i_{2}Y,i_{2}\phi_{*}X) &\simeq & \operatorname{Sh}_{k}(\mathcal{F})(Y,\phi_{*}X) \end{array}$$