Exam Topos Theory, June 16, 2022, 14:00–17:00

This exam consists of 4 exercises. Every exercise is worth 10 points; if an exercise consists of more than one part, it is indicated what each part is worth. The grade W for the written exam is your total number of points divided by 4. You final grade is the maximum of W and $\frac{7W+3H}{10}$ where H is your result from the homework exercises.

Advice: first do those exercises for which you see a solution right away. Then start thinking about the harder ones. Good luck!

Exercise 1 First, let us establish some terminology and notation. For an object A of a topos \mathcal{E} , the monomorphism $\in_A \to \Omega^A \times A$ is the subobject classified by the evaluation map $\Omega^A \times A \to \Omega$. For an object C, the map $\{\cdot\}: C \to \Omega^C$ is the exponential transpose of the map $\Delta: C \times C \to \Omega$ which classifies the diagonal $\delta: C \to C \times C$. For a subobject R of $B \times A$ we say that a map $r: B \to \Omega^A$ names R (or, is a name for R), if there is a pullback square

$$R \xrightarrow{R} \longleftrightarrow_{A} \bigoplus_{\downarrow} \bigoplus_{B \times A \xrightarrow{r \times \operatorname{id}_{A}} \Omega^{A} \times A}$$

It can be used without proof that names are unique.

- a) (4 pts) Let $g : A \to C$ be an arrow in \mathcal{E} . Show that the subobject $\langle \mathrm{id}_A, g \rangle : A \to A \times C$ is named by the composite arrow $\{\cdot\}g : A \to \Omega^C$.
- b) (6 pts) Suppose that we have morphisms $f : A \to B, g : A \to C$ with f monic. Suppose $h : B \to \Omega^C$ names the subobject $\langle f, g \rangle : A \to B \times C$. Prove that the square

$$\begin{array}{c} A \xrightarrow{g} C \\ f \downarrow & \downarrow \{\cdot\} \\ B \xrightarrow{h} \Omega^C \end{array}$$

is a pullback. [Hint: in order to see that the diagram commutes, combine the square which testifies that h names $\langle f, g \rangle$ with the pullback

$$\begin{array}{c} A \xrightarrow{\operatorname{id}_A} A \\ & & \downarrow^{\operatorname{id}_A,g} \downarrow & \downarrow^{\langle f,g \rangle} \\ & & A \times C \xrightarrow{f \times \operatorname{id}_C} B \times C \end{array}$$

and conclude that $hf: A \to \Omega^C$ names the subobject $(\mathrm{id}_A, g): A \to A \times C.$]

Exercise 2 Recall that there is a map $\wedge : \Omega \times \Omega \to \Omega$ which is such that if A and B are subobjects of X, classified by $\phi, \psi : X \to \Omega$ respectively, then the intersection $A \cap B$ is classified by the composite

$$X \xrightarrow{\langle \phi, \psi \rangle} \Omega \times \Omega \xrightarrow{\wedge} \Omega$$

Recall also that the order relation on Ω is the subobject Ω_1 of $\Omega \times \Omega$ which is the equalizer of \wedge and the first projection.

Prove that there is a monic arrow $i_{\Omega} : \Omega \to \Omega_1$ which is a partial map classifier for Ω .

- **Exercise 3** a) (5 pts) Let C be a small category and let Cov be a Grothendieck topology on C. Suppose $R \in \text{Cov}(C)$ contains a split epimorphism $f : B \to C$. Prove: for any presheaf X on C and any compatible family $(x_g | g \in R)$ indexed by R (so: $x_g \in X(\text{dom}(g))$ for all $g \in R$), there is a unique amalgamation in X(C).
- b) (5 pts) Use part a) to characterize all inclusions $\mathcal{E} \to \widehat{\mathcal{G}}$, where \mathcal{E} is a Grothendieck topos and $\widehat{\mathcal{G}}$ is the topos of right \mathcal{G} -sets, for a group \mathcal{G} .

Exercise 4 A filter of subterminals in a topos \mathcal{E} is a collection Φ of subobjects of 1, satisfying the following conditions:

- i) if $U \in \Phi$ and $U \leq V$ then $V \in \Phi$
- ii) $1 \in \Phi$
- iii) if $U, V \in \Phi$ then $U \cap V \in \Phi$
- a) (2 pts) Let Φ be a filter of subterminals in a topos \mathcal{E} . For objects A, B of \mathcal{E} we define a Φ -morphism from A to B to be an equivalence class of arrows $A \times U \to B$ in \mathcal{E} with $U \in \Phi$; two such arrows $f : A \times U \to B$ and $g : A \times V \to B$ are equivalent if there is a $W \in \Phi$ with $W \leq U \cap V$ and the square

$$\begin{array}{c} A \times W \longrightarrow A \times V \\ \downarrow \qquad \qquad \downarrow^{g} \\ A \times U \xrightarrow{f} B \end{array}$$

commutes.

Show that there is a category \mathcal{E}_{Φ} which has the same objects as \mathcal{E} , and Φ -morphisms as arrows.

- b) (3 pts) Characterize the monos in \mathcal{E}_{Φ} .
- c) (5 pts) Show that there is a functor $P_{\Phi} : \mathcal{E} \to \mathcal{E}_{\Phi}$ which preserves finite limits and exponentials. [Hint: given a finite diagram of Φ -morphisms, there is some $U \in \Phi$ such that every Φ -morphism in the diagram is equivalent to one of the form $A \times U \to B$]

[Remark: in fact it can be shown that \mathcal{E}_{Φ} is a topos and the functor P_{ϕ} is logical.]