Resit Topos Theory, July 6, 2023, 14:00–17:00 with solutions

I recall the following definition. Given an object X of a topos \mathcal{E} , a partial map classifier for X is a monomorphism $\eta_X : X \to \tilde{X}$ with the property that for any diagram

$$\begin{array}{c} U \xrightarrow{m} Y \\ f \\ X \end{array}$$

with m mono, there is a unique map $\tilde{f}: Y \to \tilde{X}$ making the diagram

$$\begin{array}{c} U \xrightarrow{m} Y \\ f \\ \downarrow \\ X \xrightarrow{\eta_X} X \end{array} \xrightarrow{\chi} \tilde{X}$$

a pullback.

Exercise 1 Let \mathcal{C} be a small category; we work in the category $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$ of presheaves on \mathcal{C} . Let P be such a presheaf. We define a presheaf \tilde{P} as follows: for an object C of \mathcal{C} , $\tilde{P}(C)$ consists of those subobjects α of $y_C \times P$ which satisfy the following condition: for all arrows $f: D \to C$, the set

$$\{y \in P(D) \,|\, (f,y) \in \alpha(D)\}$$

has at most one element.

- a) (4 pts) Complete the definition of \tilde{P} as a presheaf.
- b) (6 pts) Show that there is a monic map $\eta_P : P \to \tilde{P}$ which is a partial map classifier for P.

Solution.a) Remark: for any object P in a topos \mathcal{E} , the partial map classifier $P \xrightarrow{\eta_P} \tilde{P}$ is the factorization through \tilde{P} of the singleton map $\{\cdot\} : P \to \Omega^P$; so we define \tilde{P} as a subpresheaf of Ω^P , which gives at once the presheaf structure. Concretely, elements of $\tilde{P}(C)$ are subpresheaves of $y_C \times P$. Given such a subpresheaf α , and an arrow $g : D \to C$ in \mathcal{C} we let $g^*(\alpha) = \tilde{P}(g)(\alpha)$ be the subobject of $y_D \times P$ such that

$$\begin{array}{c} \alpha & \longrightarrow y_C \times P \\ \uparrow & \uparrow \\ g^*(\alpha) & \longrightarrow y_D \times P \end{array}$$

is a pullback. So

~

$$g^*(\alpha)(D') = \{(\mu : D' \to D, \xi) \, | \, \xi \in P(D), (g\mu, \xi) \in \alpha(D')\}$$

b) The map $\eta: P \to \tilde{P}$ is given by $\eta_C(\xi) = (\mathrm{id}_C, \xi)$ for $C \in \mathcal{C}, \xi \in P(C)$.

To prove that η is a partial map classifier, suppose we have a diagram

$$\begin{array}{c} U \xrightarrow{m} Y \\ \phi \\ P \end{array}$$

with *m* mono. We complete it by defining $\tilde{\phi}: Y \to \tilde{P}$ as follows. $\tilde{\phi}_C(z)$ is the subpresheaf of $y_C \times P$ given by

$$\phi_C(z)(D) = \{ (f: D \to C, \phi_D(u)) \mid m_D(u) = Y(f)(z) \}$$

Exercise 2 Recall that Ω_1 is the subobject of $\Omega \times \Omega$ defined by the equalizer diagram

$$\Omega_1 \longrightarrow \Omega \times \Omega \xrightarrow[]{p_0} \Omega$$

Let $\theta : \Omega \to \Omega_1$ be the factorization through Ω_1 of the map $\langle \mathrm{id}, t \rangle$. Show that $\theta : \Omega \to \Omega_1$ is a partial map classifier for Ω .

Solution: Suppose we are given a diagram

$$\begin{array}{c} X \xrightarrow{m} Y \\ f \\ \Omega \end{array}$$

with m monic. The map f classifies a subobject N of X, so we have subobjects $N \leq X \leq Y$. It is precisely this sort of "nested inclusions" that Ω_1 classifies.

Exercise 3 Let $f : \mathcal{F} \to \mathcal{E}$ be a geometric morphism; consider the universal closure operation on \mathcal{E} induced by f.

a) (2 pts) For a subobject $A \xrightarrow{a} X$ in \mathcal{E} we have: a is closed if and only if the diagram

is a pullback (here, η denotes the unit of the adjunction $f^* \dashv f_*$).

b) (4 pts) Let $\alpha : f_*f^*\Omega \to \Omega$ classify the mono $1 \simeq f_*f^{*1} \xrightarrow{f_*f^{*}(t)} f_*f^*\Omega$. Show that, if the mono $a : A \to X$ is classified by $\phi : X \to \Omega$, then the closure of a is classified by the composite arrow

$$X \xrightarrow{\eta} f_* f^* X \xrightarrow{f_* f^* \phi} f_* f^* \Omega \xrightarrow{\alpha} \Omega$$

c) (4 pts) Let α be as in b).

Prove that the Lawvere-Tierney topology corresponding to our closure operation is the composite $\Omega \xrightarrow{\eta} f_* f^* \Omega \xrightarrow{\alpha} \Omega$.

Solution: a) Given a mono $a : A \to X$, the closure of A is the left hand vertical in the pullback

$$\begin{array}{ccc} c(A) \longrightarrow f_* f^* A \\ a' & \downarrow \\ X \xrightarrow{\eta_X} f_* f^* X \end{array}$$

So a is closed if and only if the naturality square given in the exercise is a pullback.

b) Assuming that $a: A \to X$ is classified by $\phi: X \to \Omega$, we have pullbacks

$$(1) \begin{array}{c} f_*f^*1 \xrightarrow{f_*f^*t} f_*f^*\Omega & A \xrightarrow{a} X \\ \downarrow & \downarrow \alpha & (2) \\ 1 \xrightarrow{t} \Omega & 1 \xrightarrow{t} \Omega \end{array} \qquad \begin{pmatrix} A \xrightarrow{a} X \\ \downarrow & \downarrow \phi \\ 1 \xrightarrow{t} \Omega \end{array}$$

and a pullback diagram

$$(3) \quad \begin{array}{c} f_*f^*A \xrightarrow{f_*f^*a} f_*f^*X \\ \downarrow & \downarrow \\ f_*f^*1 \xrightarrow{f_*f^*t} f_*f^*\Omega \end{array}$$

obtained by applying the functor f_*f^* (which preserves finite limits) to diagram (2). Combining (3) with (1) and the diagram defining the closure c(A) of A from part a), we get

We see that $\alpha \circ f_* f^* \phi \circ \eta$ classifies the closure of a, as desired.

c) The Lawvere-Tierney topology corresponding to the universal closure operation is the classifying map of the closure of $1 \xrightarrow{t} \Omega$. The mono t is classified by the identity on Ω . Filling in id_{Ω} for ϕ in the expression obtained in b), we get $\alpha \circ \eta$ as desired.

- **Exercise 4** a) (3 pts) Let Set_f be the category of finite sets. Show that Set_f is the "free category with finite colimits generated by one object": there is an object I in Set_f such that for every finitely cocomplete category \mathcal{C} and every object X of \mathcal{C} , there is an essentially unique finite-colimit-preserving functor $F : \operatorname{Set}_f \to \mathcal{C}$ sending I to X.
- b) (4 pts) Formulate a similar universal property for the category $\operatorname{Set}_{f}^{\operatorname{op}}$.
- c) (3 pts) Let \mathcal{E} be a cocomplete topos. Show that there is a 1-1 correspondence between geometric morphisms $\mathcal{E} \to \operatorname{Set}^{\operatorname{Set}_f}$ and objects of \mathcal{E} . [The topos $\operatorname{Set}^{\operatorname{Set}_f}$ is called the "object classifier"]

Solution a) For any small category \mathcal{C} , we have that any functor $F : \mathcal{C} \to \mathcal{E}$ from \mathcal{C} to a cocomplete category \mathcal{E} , admits an extension $\tilde{F} : \widehat{\mathcal{C}} \to \mathcal{E}$ which preserves all colimits. In fact, we can define $\tilde{F}(X)$ as the colimit of the diagram

$$(*) \quad y \downarrow X \longrightarrow \mathcal{C} \xrightarrow{F'} \mathcal{E}$$

where y is the Yoneda embedding.

Now suppose \mathcal{E} has finite colimits, \mathcal{C} is the one-arrow category \mathbb{I} and X = 1, the terminal presheaf; then the diagram (*) is finite and it therefore shows that we have a *finite* colimit-preserving functor $\operatorname{Set}_f \to \mathcal{E}$, given any functor from \mathbb{I} into \mathcal{E} , that is: given any object of \mathcal{E} .

b) The functor $\tilde{F} : \operatorname{Set}_f \to \mathcal{E}$ preserves finite colimits if and only if the functor $\tilde{F}^{\operatorname{op}} : \operatorname{Set}_f^{\operatorname{op}} \to \mathcal{E}^{\operatorname{op}}$ preserves finite limits. Therefore, given a finite limit category \mathcal{F} and a functor $\mathbb{I} \to \mathcal{F}$, that is, again: an object of \mathcal{F} , we have an essentially unique extension $\operatorname{Set}_f^{\operatorname{op}} \to \mathcal{F}$ which preserves finite limits.

c) We have seen that for a cocomplete topos \mathcal{E} we have a natural 1-1 correspondence between objects of \mathcal{E} and finite-limit-preserving functors $\operatorname{Set}_{f}^{\operatorname{op}} \to \mathcal{E}$. Since $\operatorname{Set}_{f}^{\operatorname{op}}$ has finite limits, functors from it to a topos are flat if and only if they preserve finite limits; so objects of \mathcal{E} correspond to flat functors $\operatorname{Set}_{f}^{\operatorname{op}} \to \mathcal{E}$, and by the theory of geometric morphisms, these correspond to geometric morphisms $\mathcal{E} \to \operatorname{Set}_{f}^{\operatorname{Set}_{f}}$.

Remark: it may appear to you that the category Set_f is not small. However, it is equivalent to a small category; so if we are only interested in functors out of Set_f we may replace it by an equivalent small category and therefore do as if Set_f itself is small.