
Resit Topos Theory, July 6, 2023, 14:00–17:00
with solutions

I recall the following definition. Given an object X of a topos E , a partial
map classifier for X is a monomorphism ηX : X → X̃ with the property
that for any diagram

U

f
��

m // Y

X

with m mono, there is a unique map f̃ : Y → X̃ making the diagram

U

f
��

m // Y

f̃
��

X ηX
// X̃

a pullback.

Exercise 1 Let C be a small category; we work in the category SetC
op

of
presheaves on C. Let P be such a presheaf. We define a presheaf P̃ as
follows: for an object C of C, P̃ (C) consists of those subobjects α of yC ×P
which satisfy the following condition: for all arrows f : D → C, the set

{y ∈ P (D) | (f, y) ∈ α(D)}

has at most one element.

a) (4 pts) Complete the definition of P̃ as a presheaf.

b) (6 pts) Show that there is a monic map ηP : P → P̃ which is a partial
map classifier for P .

Solution.a) Remark: for any object P in a topos E , the partial map classifier

P
ηP→ P̃ is the factorization through P̃ of the singleton map {·} : P → ΩP ;

so we define P̃ as a subpresheaf of ΩP , which gives at once the presheaf
structure. Concretely, elements of P̃ (C) are subpresheaves of yC×P . Given
such a subpresheaf α, and an arrow g : D → C in C we let g∗(α) = P̃ (g)(α)
be the subobject of yD × P such that

α // yC × P

g∗(α)

OO

// yD × P

yg×idP

OO
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is a pullback. So

g∗(α)(D′) = {(µ : D′ → D, ξ) | ξ ∈ P (D), (gµ, ξ) ∈ α(D′)}

b) The map η : P → P̃ is given by ηC(ξ) = (idC , ξ) for C ∈ C, ξ ∈ P (C).
To prove that η is a partial map classifier, suppose we have a diagram

U

φ
��

m // Y

P

with m mono. We complete it by defining φ̃ : Y → P̃ as follows. φ̃C(z) is
the subpresheaf of yC × P given by

φ̃C(z)(D) = {(f : D → C, φD(u)) |mD(u) = Y (f)(z)}

Exercise 2 Recall that Ω1 is the subobject of Ω×Ω defined by the equalizer
diagram

Ω1
// Ω× Ω

p0
//

∧
// Ω

Let θ : Ω → Ω1 be the factorization through Ω1 of the map 〈id, t〉. Show
that θ : Ω→ Ω1 is a partial map classifier for Ω.

Solution: Suppose we are given a diagram

X

f
��

m // Y

Ω

with m monic. The map f classifies a subobject N of X, so we have sub-
objects N ≤ X ≤ Y . It is precisely this sort of ”nested inclusions” that Ω1

classifies.

Exercise 3 Let f : F → E be a geometric morphism; consider the universal
closure operation on E induced by f .
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a) (2 pts) For a subobject A
a→ X in E we have: a is closed if and only

if the diagram

A

a

��

η
// f∗f

∗A

f∗f∗(a)
��

X η
// f∗f

∗X

is a pullback (here, η denotes the unit of the adjunction f∗ a f∗).

b) (4 pts) Let α : f∗f
∗Ω→ Ω classify the mono 1 ' f∗f∗1

f∗f∗(t)→ f∗f
∗Ω.

Show that, if the mono a : A → X is classified by φ : X → Ω, then
the closure of a is classified by the composite arrow

X
η→ f∗f

∗X
f∗f∗φ→ f∗f

∗Ω
α→ Ω

c) (4 pts) Let α be as in b).

Prove that the Lawvere-Tierney topology corresponding to our closure
operation is the composite Ω

η→ f∗f
∗Ω

α→ Ω.

Solution: a) Given a mono a : A → X, the closure of A is the left hand
vertical in the pullback

c(A)

a′

��

// f∗f
∗A

��

X ηX
// f∗f

∗X

So a is closed if and only if the naturality square given in the exercise is a
pullback.

b) Assuming that a : A→ X is classified by φ : X → Ω, we have pullbacks

(1)

f∗f
∗1

f∗f∗t
//

��

f∗f
∗Ω

α
��

1
t

// Ω

(2)

A

��

a // X

φ
��

1
t
// Ω

and a pullback diagram

(3)

f∗f
∗A

��

f∗f∗a
// f∗f

∗X

f∗f∗φ
��

f∗f
∗1

f∗f∗t
// f∗f

∗Ω
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obtained by applying the functor f∗f
∗ (which preserves finite limits) to

diagram (2). Combining (3) with (1) and the diagram defining the closure
c(A) of A from part a), we get

c(A)

η

��

a′ // X

η

��

f∗f
∗A

��

f∗f∗a
// f∗f

∗X

f∗f∗φ
��

f∗f
∗1

��

f∗f∗t
// f∗f

∗Ω

α
��

1 // Ω

We see that α◦f∗f∗φ◦η classifies the closure of a, as desired.

c) The Lawvere-Tierney topology corresponding to the universal closure

operation is the classifying map of the closure of 1
t→ Ω. The mono t

is classified by the identity on Ω. Filling in idΩ for φ in the expression
obtained in b), we get α◦η as desired.

Exercise 4 a) (3 pts) Let Setf be the category of finite sets. Show that
Setf is the “free category with finite colimits generated by one object”:
there is an object I in Setf such that for every finitely cocomplete
category C and every object X of C, there is an essentially unique
finite-colimit-preserving functor F : Setf → C sending I to X.

b) (4 pts) Formulate a similar universal property for the category Setop
f .

c) (3 pts) Let E be a cocomplete topos. Show that there is a 1-1 corre-
spondence between geometric morphisms E → SetSetf and objects of
E . [The topos SetSetf is called the “object classifier”]

Solution a) For any small category C, we have that any functor F : C → E
from C to a cocomplete category E , admits an extension F̃ : Ĉ → E which
preserves all colimits. In fact, we can define F̃ (X) as the colimit of the
diagram

(∗) y↓X // C F // E

where y is the Yoneda embedding.
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Now suppose E has finite colimits, C is the one-arrow category I and
X = 1, the terminal presheaf; then the diagram (∗) is finite and it therefore
shows that we have a finite colimit-preserving functor Setf → E , given any
functor from I into E , that is: given any object of E .

b) The functor F̃ : Setf → E preserves finite colimits if and only if the
functor F̃ op : Setop

f → E
op preserves finite limits. Therefore, given a finite

limit category F and a functor I → F , that is, again: an object of F , we
have an essentially unique extension Setop

f → F which preserves finite limits.

c) We have seen that for a cocomplete topos E we have a natural 1-1
correspondence between objects of E and finite-limit-preserving functors
Setop

f → E . Since Setop
f has finite limits, functors from it to a topos are

flat if and only if they preserve finite limits; so objects of E correspond to
flat functors Setop

f → E , and by the theory of geometric morphisms, these

correspond to geometric morphisms E → SetSetf .
Remark: it may appear to you that the category Setf is not small.

However, it is equivalent to a small category; so if we are only interested in
functors out of Setf we may replace it by an equivalent small category and
therefore do as if Setf itself is small.
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