Resit Topos Theory, July 6, 2023, 14:00-17:00
with solutions
I recall the following definition. Given an object X of a topos \mathcal{E}, a partial map classifier for X is a monomorphism $\eta_{X}: X \rightarrow \tilde{X}$ with the property that for any diagram

with m mono, there is a unique map $\tilde{f}: Y \rightarrow \tilde{X}$ making the diagram

a pullback.
Exercise 1 Let \mathcal{C} be a small category; we work in the category $\mathrm{Set}^{\mathcal{C}^{\text {op }}}$ of presheaves on \mathcal{C}. Let P be such a presheaf. We define a presheaf \tilde{P} as follows: for an object C of $\mathcal{C}, \tilde{P}(C)$ consists of those subobjects α of $y_{C} \times P$ which satisfy the following condition: for all arrows $f: D \rightarrow C$, the set

$$
\{y \in P(D) \mid(f, y) \in \alpha(D)\}
$$

has at most one element.
a) (4 pts) Complete the definition of \tilde{P} as a presheaf.
b) (6 pts) Show that there is a monic map $\eta_{P}: P \rightarrow \tilde{P}$ which is a partial map classifier for P.

Solution.a) Remark: for any object P in a topos \mathcal{E}, the partial map classifier $P \xrightarrow{\eta_{P}} \tilde{P}$ is the factorization through \tilde{P} of the singleton map $\{\cdot\}: P \rightarrow \Omega^{P}$; so we define \tilde{P} as a subpresheaf of Ω^{P}, which gives at once the presheaf structure. Concretely, elements of $\tilde{P}(C)$ are subpresheaves of $y_{C} \times P$. Given such a subpresheaf α, and an arrow $g: D \rightarrow C$ in \mathcal{C} we let $g^{*}(\alpha)=\tilde{P}(g)(\alpha)$ be the subobject of $y_{D} \times P$ such that

is a pullback. So

$$
g^{*}(\alpha)\left(D^{\prime}\right)=\left\{\left(\mu: D^{\prime} \rightarrow D, \xi\right) \mid \xi \in P(D),(g \mu, \xi) \in \alpha\left(D^{\prime}\right)\right\}
$$

b) The $\operatorname{map} \eta: P \rightarrow \tilde{P}$ is given by $\eta_{C}(\xi)=\left(\operatorname{id}_{C}, \xi\right)$ for $C \in \mathcal{C}, \xi \in P(C)$.

To prove that η is a partial map classifier, suppose we have a diagram

with m mono. We complete it by defining $\tilde{\phi}: Y \rightarrow \tilde{P}$ as follows. $\tilde{\phi}_{C}(z)$ is the subpresheaf of $y_{C} \times P$ given by

$$
\tilde{\phi}_{C}(z)(D)=\left\{\left(f: D \rightarrow C, \phi_{D}(u)\right) \mid m_{D}(u)=Y(f)(z)\right\}
$$

Exercise 2 Recall that Ω_{1} is the subobject of $\Omega \times \Omega$ defined by the equalizer diagram

$$
\Omega_{1} \longrightarrow \Omega \times \Omega \underset{\wedge}{\stackrel{p_{0}}{\longrightarrow}} \Omega
$$

Let $\theta: \Omega \rightarrow \Omega_{1}$ be the factorization through Ω_{1} of the map $\langle\mathrm{id}, t\rangle$. Show that $\theta: \Omega \rightarrow \Omega_{1}$ is a partial map classifier for Ω.

Solution: Suppose we are given a diagram

with m monic. The map f classifies a subobject N of X, so we have subobjects $N \leq X \leq Y$. It is precisely this sort of "nested inclusions" that Ω_{1} classifies.

Exercise 3 Let $f: \mathcal{F} \rightarrow \mathcal{E}$ be a geometric morphism; consider the universal closure operation on \mathcal{E} induced by f.
a) (2 pts) For a subobject $A \xrightarrow{a} X$ in \mathcal{E} we have: a is closed if and only if the diagram

is a pullback (here, η denotes the unit of the adjunction $f^{*} \dashv f_{*}$).
b) (4 pts) Let $\alpha: f_{*} f^{*} \Omega \rightarrow \Omega$ classify the mono $1 \simeq f_{*} f^{*} 1 \xrightarrow{f_{*} f^{*}(t)} f_{*} f^{*} \Omega$. Show that, if the mono $a: A \rightarrow X$ is classified by $\phi: X \rightarrow \Omega$, then the closure of a is classified by the composite arrow

$$
X \xrightarrow{\eta} f_{*} f^{*} X \xrightarrow{f_{*} f^{*} \phi} f_{*} f^{*} \Omega \xrightarrow{\alpha} \Omega
$$

c) (4 pts) Let α be as in b).

Prove that the Lawvere-Tierney topology corresponding to our closure operation is the composite $\Omega \xrightarrow{\eta} f_{*} f^{*} \Omega \xrightarrow{\alpha} \Omega$.

Solution: a) Given a mono $a: A \rightarrow X$, the closure of A is the left hand vertical in the pullback

So a is closed if and only if the naturality square given in the exercise is a pullback.
b) Assuming that $a: A \rightarrow X$ is classified by $\phi: X \rightarrow \Omega$, we have pullbacks
(1)

(2)

and a pullback diagram

obtained by applying the functor $f_{*} f^{*}$ (which preserves finite limits) to diagram (2). Combining (3) with (1) and the diagram defining the closure $c(A)$ of A from part a), we get

We see that $\alpha \circ f_{*} f^{*} \phi \circ \eta$ classifies the closure of a, as desired.
c) The Lawvere-Tierney topology corresponding to the universal closure operation is the classifying map of the closure of $1 \xrightarrow{t} \Omega$. The mono t is classified by the identity on Ω. Filling in id_{Ω} for ϕ in the expression obtained in b), we get $\alpha \circ \eta$ as desired.

Exercise 4 a) (3 pts) Let Set_{f} be the category of finite sets. Show that Set $_{f}$ is the "free category with finite colimits generated by one object": there is an object I in Set_{f} such that for every finitely cocomplete category \mathcal{C} and every object X of \mathcal{C}, there is an essentially unique finite-colimit-preserving functor $F: \operatorname{Set}_{f} \rightarrow \mathcal{C}$ sending I to X.
b) (4 pts) Formulate a similar universal property for the category $\operatorname{Set}_{f}^{\mathrm{op}}$.
c) (3 pts) Let \mathcal{E} be a cocomplete topos. Show that there is a $1-1$ correspondence between geometric morphisms $\mathcal{E} \rightarrow \mathrm{Set}^{\mathrm{Set}_{f}}$ and objects of \mathcal{E}. [The topos Set ${ }^{\mathrm{Set}_{f}}$ is called the "object classifier"]

Solution a) For any small category \mathcal{C}, we have that any functor $F: \mathcal{C} \rightarrow \mathcal{E}$ from \mathcal{C} to a cocomplete category \mathcal{E}, admits an extension $\tilde{F}: \widehat{\mathcal{C}} \rightarrow \mathcal{E}$ which preserves all colimits. In fact, we can define $\tilde{F}(X)$ as the colimit of the diagram

$$
\text { (*) } \quad y \downarrow X \longrightarrow \mathcal{C} \xrightarrow{F} \mathcal{E}
$$

where y is the Yoneda embedding.

Now suppose \mathcal{E} has finite colimits, \mathcal{C} is the one-arrow category \mathbb{I} and $X=1$, the terminal presheaf; then the diagram $(*)$ is finite and it therefore shows that we have a finite colimit-preserving functor $\operatorname{Set}_{f} \rightarrow \mathcal{E}$, given any functor from \mathbb{I} into \mathcal{E}, that is: given any object of \mathcal{E}.
b) The functor $\tilde{F}: \operatorname{Set}_{f} \rightarrow \mathcal{E}$ preserves finite colimits if and only if the functor $\tilde{F}^{\mathrm{op}}: \mathrm{Set}_{f}^{\mathrm{op}} \rightarrow \mathcal{E}^{\mathrm{op}}$ preserves finite limits. Therefore, given a finite limit category \mathcal{F} and a functor $\mathbb{I} \rightarrow \mathcal{F}$, that is, again: an object of \mathcal{F}, we have an essentially unique extension $\operatorname{Set}_{f}^{\mathrm{Op}} \rightarrow \mathcal{F}$ which preserves finite limits.
c) We have seen that for a cocomplete topos \mathcal{E} we have a natural 1-1 correspondence between objects of \mathcal{E} and finite-limit-preserving functors Set $_{f}^{\mathrm{op}} \rightarrow \mathcal{E}$. Since Set $_{f}^{\mathrm{op}}$ has finite limits, functors from it to a topos are flat if and only if they preserve finite limits; so objects of \mathcal{E} correspond to flat functors Set ${ }_{f}^{\mathrm{op}} \rightarrow \mathcal{E}$, and by the theory of geometric morphisms, these correspond to geometric morphisms $\mathcal{E} \rightarrow \operatorname{Set}^{\mathrm{Set}_{f}}$.

Remark: it may appear to you that the category Set_{f} is not small. However, it is equivalent to a small category; so if we are only interested in functors out of Set_{f} we may replace it by an equivalent small category and therefore do as if Set_{f} itself is small.

