
Exam Category Theory and Topos Theory

May 26, 2014; 10:00–13:00

THIS EXAM CONSISTS OF FIVE PROBLEMS

Advice: first do those problems you can do right away; then, start thinking

about the others.

Good luck!

Exercise 1.

a) Prove that every faithful functor reflects monos and epis.

b) Give a counterexample to show that a) fails for isomorphisms.

c) Prove that every full and faithful functor reflects isomorphisms.

Solution: a) Let F faithful and f an arrow such that F (f) is mono. If
fg = fh then F (f)F (g) = F (f)F (h) so F (g) = F (h) since F (f) is mono;
hence g = h because F is faithful. Therefore f is mono, and F reflects
monos. The argument for epis is dual.
b) Consider the functor from the category {0 < 1} to the category {0 ≃ 1};
it is faithful but does not reflect isos.
c) Let F full and faithful and f such that F (f) has an inverse, say k. Since F

is full, there is g such that F (g) = k. Then F (fg) = F (f)F (g) = F (f)k =
id = F (id) so since F is faithful, fg = id. Similarly, gf = id and g is
aninverse for f . So F reflects isomorphisms.

Exercise 2. For each of the functors given below, determine whether it
preserves all limits, and whether it preserves all colimits. Give a short
argument in each case.

a) The functor Pos → Pos which sends a poset P to its opposite P op (so,
x ≤ y in P op iff y ≤ x in P ).

b) The functor Set → Set given by X 7→ A + X, where A is a fixed
nonempty set and + denotes disjoint sum.

c) The inclusion functor from Pos⊥ to Pos; the objects of Pos⊥ are posets
with a bottom element, and its arrows are order-preserving maps which
preserve the bottom element.

Solution:a) The functor (·)op is an isomorphism of categories (it is its own
inverse), so it preserves all limits and colimits.
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b) This functor preserves neither the terminal object nor the initial object,
so it does not preserve all limits or all colimits.
c) Pos⊥ is the category of algebras for a monad on Pos; the monad which
adds a new bottom element to a poset. And the inclusion Pos⊥ → Pos is
the forgetful functor. This functor preserves all limits. It does not preserve
all colimits; for example it does not preserve the initial object.

Exercise 3. An object M of a category C is called injective if for any
diagram

A

m

��

f

  
A

A

A

A

A

A

A

A

B M

with m mono, there is an arrow g : B → M satisfying gm = f .

a) Let C,D be categories and C
G

// D
Foo functors with F ⊣ G. Prove: if

F preserves monos, then G preserves injective objects.

b) Formulate the dual statement to part a).

Solution: a) Let M be injective in C. In order to prove that G(M) is
injective in D, consider a diagram

A
f

""
E

E

E

E

E

E

E

E

E

m

��

B G(M)

in D with m mono. This transposes over the adjunction F ⊣ G to a diagram

F (A)
f̃

""
D

D

D

D

D

D

D

D

D

F (m)
��

F (B) M

for which, by injectivity of M (and the fact that F (m) is mono), there is
an arrow F (B) → M making the triangle commute. The transpose of this
arrow: B → G(M) then does it for the original diagram.
b) Call an object P projective if, given a diagram

P

  
@

@

@

@

@

@

@

A

e

��

B
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with e epi, there is an arrow P → A making the triangle commute. Then

the following holds: if C
G

// D
Foo are functors with F ⊣ G and G preserves

epis, then F preserves projectives.

Exercise 4. In this exercise we work again with the notion of ‘injective
object’ defined in Exercise 3. Let E be a topos with subobject classifier

1
t
→ Ω.

a) Prove that Ω is injective.

b) Prove that every object of the form ΩX is injective.

c) Conclude that for every object X there is a monomorphism from X

into an injective object (One says: “E has enough injectives”).

Solution: a) Consider a diagram

A
φ

//

m

��

Ω

B

with m mono. Let A′ n
→ A be a mono which represents the subobject of

A classified by φ. Let χ : B → Ω be the classifying map of the subobject
A′ mn

→ B. We claim that χm = φ. Indeed, we have a diagram of pullbacks

A′

n

��

id // A′

mn

��

// 1

t

��

A m
// B χ

// Ω

which show that the subobject of A classified by χm is n, which is also the
subobject classified by φ. So χm = φ.
b) A topos is cartesian closed so we have (−) × X ⊣ (−)X . So the result
follows from Exercise 3a) if we know that the functor (−) × X preserves
monos. Indeed, because

A × X

πA

��

m×id
// B × X

πB

��

A m
// B
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is a pullback, m mono implies m × id mono.
c) Let δ : X × X → Ω classify the subobject X → X × X, and let δ̃ :
X → ΩX be its exponential transpose. We claim that δ̃ is mono. Suppose
g, h : Y → X satisfy δ̃g = δ̃h. Transposing, we get that δ(g × idX) =
δ(h × idX) : Y × X → Ω.

Now δ(g × idX) classifies the subobject represented by 〈idY , g〉 : Y →
Y ×X, i.e. the graph of g. And similarly, δ(h × idX) classifies the graph of
h. If these graphs coincide, then g must be equal to h, as you can ckeck for
yourself.

Exercise 5. Let C be a small category; we work in the category SetC
op

of presheaves on C. Let P be such a presheaf. We define a presheaf P̃ as
follows: for an object C of C, P̃ (C) consists of those subobjects α of yC ×P

which satisfy the following condition: for all arrows f : D → C, the set

{y ∈ P (D) | (f, y) ∈ α(D)}

has at most one element.

a) Complete the definition of P̃ as a presheaf.

b) Show that there is a monic map ηP : P → P̃ with the following
property: for every diagram

A
g

//

m

��

P

B

with m mono, there is a unique map g̃ : B → P̃ such that the diagram

A
g

//

m

��

P

ηP

��

B
g̃

// P̃

is a pullback square. The arrow P
ηP
→ P̃ is called a “partial map

classifier” for P .

c) Show that the assignment P 7→ P̃ is part of a functor (̃·) in such a
way that the maps ηP form a natural transformation from the identity
functor to (̃·), and all naturality squares for η are pullbacks.
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Solution: a) If f : D → C is an arrow in C and α ∈ P̃ (C) so α is a
subobject of yC × P , let P̃ (f)(α) be the subobject of yD × P given by the
pullback diagram

P̃ (f)(α)

��

// yD × P

yf×idP

��

α // yC × P

So, P̃ (f)(α)(E) is the set

{(g, y) | g : E → D, y ∈ P (E), (fg, y) ∈ α(E)}

from which it is clear that if α ∈ P̃ (C) then P̃ (f)(α) ∈ P̃ (D). Moreover,
this is clearly a contravariant functor C → Set.
b) Define ηP as follows: for each object C of C and y ∈ P (C), (ηP )C(y) is
the subobject α of yC × P given by

α(D) = {(f, z) ∈ yC(D) × P (D) | z = P (f)(y)}

Convince yourself that this is natural, well defined (i.e., (ηP )C(y) ∈ P̃ (C)),
and monic.

We have to show that g̃ is determined uniquely by the requirement that

A
g

//

m

��

P

ηP

��

B
g̃

// P̃

is a pullback square. First of all, the requirement means that the square
must commute, so if y ∈ B(C) and y = mC(x) for some (necessarily unique)
x ∈ A(C), then g̃C(y) must be equal to (ηP )C(g(x)).

Moreover, for y ∈ B(C) and f : D → C, we must have that g̃C(y)(D)
contains an element precisely when A(f)(y) is in the image of the map mD.
This together means that we have no choice but to put

g̃C(b)(D) = {(f, gD(x)) |x ∈ A(D),mD(x) = B(f)(y)}

c) Given φ : P → Q we define φ̃ : P̃ → Q̃ by demanding that

P

ηP

��

φ
// Q

ηQ

��

P̃
φ̃

// Q̃
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be a pullback. Since ηP is mono, such φ̃ exists uniquely by part b). And
the uniqueness implies that the assignment φ 7→ φ̃ is functorial.
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