Exam Category Theory and Topos Theory
May 26, 2014; 10:00-13:00

THIS EXAM CONSISTS OF FIVE PROBLEMS

Adpvice: first do those problems you can do right away; then, start thinking
about the others.

Good luck!

Exercise 1.
a) Prove that every faithful functor reflects monos and epis.
b) Give a counterexample to show that a) fails for isomorphisms.
c) Prove that every full and faithful functor reflects isomorphisms.

Solution: a) Let F faithful and f an arrow such that F(f) is mono. If
fg = fh then F(f)F(g) = F(f)F(h) so F(g) = F(h) since F(f) is mono;
hence g = h because F' is faithful. Therefore f is mono, and F' reflects
monos. The argument for epis is dual.

b) Consider the functor from the category {0 < 1} to the category {0 ~ 1};
it is faithful but does not reflect isos.

c) Let F full and faithful and f such that F'(f) has an inverse, say k. Since F'
is full, there is g such that F(g) = k. Then F(fg) = F(f)F(g9) = F(f)k =
id = F(id) so since F' is faithful, fg = id. Similarly, gf = id and g is
aninverse for f. So F' reflects isomorphisms.

Exercise 2. For each of the functors given below, determine whether it
preserves all limits, and whether it preserves all colimits. Give a short
argument in each case.

a) The functor Pos — Pos which sends a poset P to its opposite PP (so,
x <yin P?iff y <z in P).

b) The functor Set — Set given by X — A 4+ X, where A is a fixed
nonempty set and + denotes disjoint sum.

¢) The inclusion functor from Pos; to Pos; the objects of Pos | are posets
with a bottom element, and its arrows are order-preserving maps which
preserve the bottom element.

Solution:a) The functor (-)°P is an isomorphism of categories (it is its own
inverse), so it preserves all limits and colimits.



b) This functor preserves neither the terminal object nor the initial object,
so it does not preserve all limits or all colimits.

c) Pos, is the category of algebras for a monad on Pos; the monad which
adds a new bottom element to a poset. And the inclusion Pos; — Pos is
the forgetful functor. This functor preserves all limits. It does not preserve
all colimits; for example it does not preserve the initial object.

Exercise 3. An object M of a category C is called injective if for any

diagram
LN

B M
with m mono, there is an arrow g : B — M satisfying gm = f.
F
a) Let C,D be categories and (C % D functors with F' 4 G. Prove: if
F preserves monos, then G preserves injective objects.

b) Formulate the dual statement to part a).

Solution: a) Let M be injective in C. In order to prove that G(M) is
injective in D, consider a diagram

A
| N
B G(M)

in D with m mono. This transposes over the adjunction F' 4 G to a diagram

P
m| N
F F(JB)\ M

for which, by injectivity of M (and the fact that F'(m) is mono), there is
an arrow F'(B) — M making the triangle commute. The transpose of this
arrow: B — G(M) then does it for the original diagram.

b) Call an object P projective if, given a diagram

P A

Nk

B



with e epi, there is an arrow P — A making the triangle commute. Then
F

the following holds: if ¢ &—= D are functors with F' 4 G and G preserves
G

epis, then F' preserves projectives.

Exercise 4. In this exercise we work again with the notion of ‘injective
object’ defined in Exercise 3. Let £ be a topos with subobject classifier

14 Q.
a) Prove that Q is injective.
b) Prove that every object of the form Q¥ is injective.

¢) Conclude that for every object X there is a monomorphism from X
into an injective object (One says: “£ has enough injectives”).

Solution: a) Consider a diagram
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B

with m mono. Let A’ 5 A be a mono which represents the subobject of
A classified by ¢. Let x : B — Q be the classifying map of the subobject
A'"™ B. We claim that ym = ¢. Indeed, we have a diagram of pullbacks

/1Cl /
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which show that the subobject of A classified by xm is n, which is also the
subobject classified by ¢. So ym = ¢.

b) A topos is cartesian closed so we have (=) x X 4 (=)%. So the result
follows from Exercise 3a) if we know that the functor (—) x X preserves
monos. Indeed, because

mxid

Ax X —Bx X

A—p—B



is a pullback, m mono implies m x id mono.
c) Let § : X x X — Q classify the subobject X — X x X, and let O
X — QX be its exponential transpose. We claim that 4 is mono. Suppose
g,h : Y — X satisfy dg = 6h. Transposing, we get that 0(g x idx) =
d(hxidyx): Y x X — Q.

Now d(g x idx) classifies the subobject represented by (idy,g) : ¥ —
Y x X, i.e. the graph of g. And similarly, 6(h x idx) classifies the graph of
h. If these graphs coincide, then g must be equal to h, as you can ckeck for
yourself.

Exercise 5. Let C be a small category; we work in the category Set®”
of presheaves on C. Let P be such a presheaf. We define a presheaf P as
follows: for an object C' of C, P(C) consists of those subobjects a of yo x P
which satisfy the following condition: for all arrows f: D — C, the set

{y e P(D)[(f,y) € a(D)}

has at most one element.
a) Complete the definition of P as a presheaf.

b) Show that there is a monic map np : P — P with the following
property: for every diagram

with m mono, there is a unique map g : B — P such that the diagram

A1
|
B——
g
is a pullback square. The arrow P I P is called a “partial map
classifier” for P.

g

np

<—

o

¢) Show that the assignment P — P is part of a functor (-) in such a
way that the maps np form a natural transformation from the identity
functor to (), and all naturality squares for i are pullbacks.



Solution: a) If f : D — C is an arrow in C and a € P(C) so a is a
subobject of yo x P, let P(f)(a) be the subobject of yp x P given by the
pullback diagram

f) )——yp X P

J/ Jyfxidp
«

——yo x P

So, P(f)(«)(E) is the set

{(99)|g: E— D,y e P(E),(fg,y) € a(E)}

from which it is clear that if & € P(C) then P(f)(a) € P(D). Moreover,
this is clearly a contravariant functor C — Set.

b) Define np as follows: for each object C of C and y € P(C), (np)c(y) is
the subobject « of yo x P given by

a(D) = {(f,2) € yo(D) x P(D) |z = P(f)(y)}

Convince yourself that this is natural, well defined (i.e., (np)c(y) € P(C)),
and monic.
We have to show that g is determined uniquely by the requirement that

A—2Lsp
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is a pullback square. First of all, the requirement means that the square
must commute, so if y € B(C') and y = m¢(z) for some (necessarily unique)
x € A(C), then go(y) must be equal to (np)c(g(z)).

Moreover, for y € B(C) and f : D — C, we must have that jc(y)(D)
contains an element precisely when A(f)(y) is in the image of the map mp.
This together means that we have no choice but to put

9c()(D) = {(f,g9p(x)) |z € A(D), mp(z) = B(f)(y)}
c¢) Given ¢ : P — @ we define ¢:P— Q by demanding that

P—Q
J Ns
P—Q



be a pullback. Since np is mono, such é exists uniquely by part b). And
the uniqueness implies that the assignment ¢ — ¢ is functorial.



