
Exam Category Theory and Topos Theory
May 30, 2016; 10:00–13:00

With solutions and comments on the grading

THIS EXAM CONSISTS OF FIVE PROBLEMS. All problems have
equal weight (10 points); where a problem consists of more than
one part, it is indicated what each part is worth

Exercise 1.Let C be a locally small category. For an object X of C we
define the representable functor RX : C → Set by

RX(A) = C(X,A)

(and on arrows by composition)

a) (3 pts) Prove that the functor RX preserves monomorphisms.

b) (4 pts) Assume that the category C has all small coproducts. Show
that RX has a left adjoint.

c) (3 pts) Suppose F : C → Set is a functor and µ : RX ⇒ F a natural
transformation. Show that µ is completely determined by the element
µX(idX) of F (X).

Exercise 2. For each of the functors given below, determine whether it
preserves all limits, and whether it preserves all colimits. Give a short
argument in each case.

a) (2 pts) The forgetful functor Ring → Mon, which sends each ring to
its underlying multiplicative monoid.

b) (3 pts) The domain functor: C/A → C, where C is a category with
finite products, and A is a non-terminal object of C (recall that an
object of C/A is an arrow with codomain A).

c) (3 pts) The forgetful functor from preorders to sets.

d) (2 pts) The “poset reflection functor” functor from preorders to posets:
it sends a preorder P to the poset of isomorphism classes in P .

Exercise 3. In this exercise we work in a regular category C. Suppose
f : X → Y is an arrow in C; we denote by f∗ : Sub(Y ) → Sub(X) the
function on subobjects defined by pullback along f .
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a) (5 pts) Prove, for M ∈ Sub(X) and N ∈ Sub(Y ) the following identity:

∃f (M ∧ f∗N) = ∃f (M) ∧N

b) (5 pts) Now suppose that f is a regular epimorphism. Prove, for
subobjects M,N of Y , that f∗M ≤ f∗N implies M ≤ N .

Exercise 4. Let G be a group with more than 1 element, considered as a
category. We consider the category SetG

op
, which we may identify with the

category of G-sets.

a) (3 pts) Show that in SetG
op

, the terminal object is not projective.
Recall that an object P is projective if, whenever we have an arrow
f : P → Y and an epimorphism g : X → Y , there is an arrow
h : P → X such that f = gh.

b) (4 pts) Show that in SetG
op

, the object {0, 1} with trivial G-action is
a subobject classifier.

c) (3 pts) Show that SetG
op

is Boolean. That is, every subobject lattice
is a Boolean algebra.

Exercise 5. Let C be a small category; we work in the category SetC
op

of
presheaves on C.

a) (2 pts) Let U be a subobject of 1. Show that U determines a sieve on
C, that is: a set of objects D with the property that for any morphism
X → Y , if Y ∈ D then X ∈ D.

b) (3 pts) We define, using the sieve D on C from part a), a morphism
c(U) : Ω→ Ω in SetC

op
by putting, for a sieve R on an object C:

c(U)C(R) = R ∪ {f : C ′ → C |C ′ ∈ D}

Prove that c(U) is a Lawvere-Tierney topology on SetC
op

.

c) (2 pts) Let F be a subpresheaf of a presheaf G on C. Prove that F
is dense for c(U) if and only if for all C ∈ C0 and x ∈ G(C) we have:
x ∈ F (C) or C ∈ D.

d) (3 pts) Prove that the category of sheaves for c(U) is equivalent to the
category of presheaves on some subcategory of C.
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Solutions and comments on the grading
The exam seems to have been a bit tough, or in any case a lot of work for
most students; no one handed in a perfect solution. In order to obtain a
decent result I have decided to count, for each student, only his/her four
best exercises.

Exercise 1

a) For an arrow f : A→ B, we have RX(f) : C(X,A)→ C(X,B) sending
g : X → A to the composition fg in C. If f is mono and g, h : X → A
are elements of C(X,A), then clearly fg = fh implies g = h, so RX(f)
is injective, which means it is a monomorphism in Set.

b) An arrow Y → RX(A) in Set is just a Y -indexed family of arrows {fy :
X → A | y ∈ Y }. Since C has all small coproducts, this corresponds
uniquely to an arrow from the Y -indexed coproduct of copies of X,∑

y∈Y X, to A. For every function φ : Y → Z we have an arrow∑
y∈Y

X →
∑
z∈Z

X

which sends the y-th cofactor to the φ(y)-th one. This determines a
functor Set→ C which is left adjoint to RX .

c) This is just the Yoneda lemma, and saying so would have given you
3 points. Concretely, if µ is as given and f ∈ RX(A), then f =
RX(f)(idX), so by naturality

µA(f) = µA(RX(f)(idX)) = F (f)(µX(idX))

which proves the claim.

Exercise 2

a) This functor has a left adjoint, which sends each monoid M to the ring
Z[M ] of finite expressions n1m1 + · · ·nkmk (for k ≥ 0) with ni ∈ Z
and mi ∈M . Therefore, it preserves all limits.

It does not preserve all colomits; for example, the initial object of Ring,
the ring Z, is not sent to the initial monoid (which is a one-element
monoid).

b) This functor has a right adjoint, which sends an object X of C to the
projection X ×A→ A. It therefore preserves all colimits.
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It does not preserve all limits; for example, the terminal object of
C/A is the identity on A, which is sent to A, which as stated is non-
terminal in C (if A were terminal, then the given functor would be an
equivalence).

c) This functor has both adjoints: the left adjoint sends a set X to the
discrete preorder on X (x ≤ y iff x = y) and the right adjoint sends
X to the indiscrete preorder on X (x ≤ y always). So it preserves all
limits and all colimits.

d) The poset reflection functor is, as is easily seen, left adjoint to the
inclusion of Posets into Preorders; it preserves all colimits. It does not
preserve all limits; for example, look at equalizers. Consider the two
maps f, g : 1→ A where A is the indiscrete preorder on a two-element
set. The equalizer is the empty set (you may apply c) here). However,
upon poset reflection the two maps become equal, and the equalizer is
1 itself.

Some students (even among the very best) remarked that this functor
is “an equivalence of categories”. Although this is quite erroneous, it is,
in the heat of the fight, a plausible error to make; and I have therefore
decided to award you 1.5 pts if you wrote this down. After all, every
preorder is, as a category, equivalent to its poset reflection; however,
equivalence is not isomorphism, and in any case pseudo-inverses need
choice and cannot be natural.

Exercise 3

a) Let us abuse notation and write the same symbol for a subobject and
the domain of a representing monomorphism. So we have subobjects
M

m→ X and N
n→ Y ; we have the regular epi-mono factorization

M → ∃fM → Y , and pullback diagrams

M ∧ f∗N

��

//M

m

��

f∗N // X

f∗N //

��

X

f
��

N n
// Y

(∃fM) ∧N //

��

∃fM

��

N n
// Y

Now the compositions M ∧ f∗N → f∗N → N → Y and M ∧ f∗N →
M → ∃fM → Y are clearly equal, so by the third pullback diagram we
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have a unique arrow g : M ∧f∗N → (∃fM)∧N , making the diagrams

M ∧ f∗N

��

g
// (∃fM) ∧N

��

M // ∃fM

M ∧ f∗N

��

g
// (∃fM) ∧N

��

f∗N // N

commute.

Consider now the diagrams

M ∧ f∗N
g

��

//M

��

(∃fM) ∧N //

��

∃fM

��

N // Y

M ∧ f∗N //

��

M

��

f∗N //

��

X

��

N // Y

The outer squares of both are equal, and the right-hand diagram is
a composite of two pullbacks; therefore the left hand outer square is
a pullback. Since also the left hand lower square is a pullback, the
left-hand upper square must be a pullback. That means that g, being
pullback of the regular epi M → ∃fM , is a regular epi; but now we
see that

M ∧ f∗N g
// (∃fM) ∧N // Y

is a regular epi-mono factorization. This establishes that

∃f (M ∧ f∗N) = (∃fM) ∧N

as desired.

One inequality was easy to prove: we have M ∧ f∗N ≤ M and M ∧
f∗N ≤ f∗N , so since ∃f is order-preserving we have ∃f (M ∧ f∗N) ≤
(∃fM) ∧ ∃ff∗N ; now ∃ff∗N ≤ N by the adjunction ∃f a f∗, hence
∃f (M ∧ f∗N) ≤ (∃fM) ∧N . If you had only this, you got 3 points.

You got 3.5 points if you proved the equality assuming that Sub(X)
and Sub(Y ) were Heyting algebras and f∗ preserved the Heyting struc-
ture; although of course, we cannot in general assume this in a regular
category.
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b) Suppose f : X → Y is regular epi. Now for any subobject N of Y , we
have a pullback

f∗N

��

// N

��

X
f
// Y

so the map f∗N → N is regular epi, and hence the regular epi part of
the composite map f∗N → Y . Therefore N = ∃ff∗N for all subob-
jects N of Y ; from this (and the fact that ∃f is order-preserving) the
required implication follows at once.

Exercise 4

a) The presheaf category SetG
op

is isomorphic to the category G-Set of
sets X together with a right G-action X ×G→ X, and G-equivariant
functions (functions commuting with the G-action). Modulo this iso-
morphism, the fact that in any presheaf category, limits and colimits
are calculated point-wise, translates a.o. into the statements that the
terminal object is a one-element set (with unique G-action); that epis
are surjective functions and monos are injective functions. Further-
more, the one representable presheaf corresponds to the object G,
with G-action given by multiplication in G.

If 1 were projective, we would have a section for the epi G → 1.
However, such a section must send the unique element of 1 to an
element of G which is invariant under the action; i.e., an element
g ∈ G for which gh = g for all h ∈ G. This is clearly impossible if G
has more than one element.

b) A subobject of a G-set X is just a subset A ⊂ X which is closed
under the action. Since G is a group, this means that then also X−A
is closed under the G-action. We have therefore a classifying map
χA : X → {0, 1} such that χA(x) = 0 iff x ∈ A; i.e. a map such that

A //

��

X

χA

��

1
t
// {0, 1}

is a pullback (if t(?) = 0), and χA is clearly unique with this property.
Note, that by our remarks above, χA is a morphism of G-sets.
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c) We know that in any topos, Sub(X) is a Heyting algebra, so it only
remains to see that complements exist in Sub(X). Basically, the argu-
ment is the same as for b); observe that for a subobject A of X, X−A
is a complement (again using that limits and colimits are calculated
point-wise).

Exercise 5.

a) In SetC
op

, 1 is the presheaf with 1(C) = {∗} for all C. If U is a sub-
object of 1, we may regard U as a subpresheaf of 1, and U determines
the set of objects

D = {C ∈ C0 | ∗ ∈ U(C)}

Clearly, if C ∈ D and f : C ′ → C then C ′ ∈ D.

b) Let ΦC = {f : C ′ → C |C ′ ∈ D}, so c(U)C(R) = R ∪ ΦC . The
properties R ⊆ c(U)C(R), c(U)C(R ∩ S) = c(U)C(R) ∩ c(U)C(S) and
c(U)C(c(U)C(R)) = c(U)C(R) all follow trivially from this.

c) A subpresheaf F of G is dense if and only if for each object C of C
and every x ∈ G(C), we have that c(U)C((χF )C(x)) is the maximal
sieve on C, where χF (x) is the sieve on C consisting of precisely those
f : C ′ → C for which G(f)(x) ∈ F (C ′). So, F is dense in G if and
only if for each C and x, the arrow idC is an element of (χF )C(x)∩ΦC ;
but idC ∈ (χF )C(x) means that x ∈ F (C) and idC ∈ ΦC means that
C ∈ D, so we are done.

d) We use the property which characterizes sheaves w.r.t. dense inclu-
sions: a presheaf X is a sheaf if and only if for every dense inclusion
F ⊆ G, every map F → X has a unique extension to a map G→ X.

We claim that X is a sheaf for c(U) if and only if for every object
C ∈ D, X(C) is a singleton set.

Clearly, the condition above is sufficient: suppose that for every object
C ∈ D, X(C) is a singleton set. Let F ⊆ G be dense, and µ : F → X
a map. Since for C ∈ D there is nothing to choose (by the condition)
and for C 6∈ D, F (C) = G(C), we have a clearly unique extension of
µ. So X is a sheaf.

Conversely, suppose X is a sheaf. Let us write D also for the full sub-
category of C on the set of objects D, and write X�D for the restriction
of the functor X to Dop. Let Y be any presheaf on D and Ŷ be the
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presheaf on C defined by:

Ŷ (C) =

{
Y (C) if C ∈ D
∅ otherwise

Let 0 be the empty presheaf on C. Now 0 ⊆ Ŷ is dense, so the unique
map 0 → X has a unique extension Ŷ → X; in other words, there
is, for any presheaf Y on D exactly one arrow from Y to X�D. This
means X�D is terminal in SetD

op
, so the given condition holds.

We now see that the category of sheaves for c(U) is equivalent to the
category of presheaves on E , where E is the full subcategory of C on
the objects not in D.
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