Exam Category Theory and Topos Theory
May 30, 2016; 10:00-13:00
With solutions and comments on the grading

THIS EXAM CONSISTS OF FIVE PROBLEMS. ALL PROBLEMS HAVE
EQUAL WEIGHT (10 POINTS); WHERE A PROBLEM CONSISTS OF MORE THAN
ONE PART, IT IS INDICATED WHAT EACH PART IS WORTH

Exercise 1.Let C be a locally small category. For an object X of C we
define the representable functor Rx : C — Set by

Rx(4) = C(X,4)
(and on arrows by composition)
a) (3 pts) Prove that the functor Rx preserves monomorphisms.

b) (4 pts) Assume that the category C has all small coproducts. Show
that Rx has a left adjoint.

c) (3 pts) Suppose F' : C — Set is a functor and p : Rx = F a natural
transformation. Show that p is completely determined by the element

px (idx) of F(X).

Exercise 2. For each of the functors given below, determine whether it
preserves all limits, and whether it preserves all colimits. Give a short
argument in each case.

a) (2 pts) The forgetful functor Ring — Mon, which sends each ring to
its underlying multiplicative monoid.

b) (3 pts) The domain functor: C/A — C, where C is a category with
finite products, and A is a non-terminal object of C (recall that an
object of C/A is an arrow with codomain A).

c) (3 pts) The forgetful functor from preorders to sets.

d) (2 pts) The “poset reflection functor” functor from preorders to posets:
it sends a preorder P to the poset of isomorphism classes in P.

Exercise 3. In this exercise we work in a regular category C. Suppose
f: X — Y is an arrow in C; we denote by f* : Sub(Y) — Sub(X) the
function on subobjects defined by pullback along f.



a)

b)

(5 pts) Prove, for M € Sub(X) and N € Sub(Y) the following identity:

(M A f*N) = 3(M)AN

(5 pts) Now suppose that f is a regular epimorphism. Prove, for
subobjects M, N of Y, that f*M < f*N implies M < N.

Exercise 4. Let G be a group with more than 1 element, considered as a
category. We consider the category Set®", which we may identify with the
category of G-sets.

a)

b)

c)

(3 pts) Show that in Set®”, the terminal object is not projective.
Recall that an object P is projective if, whenever we have an arrow
f+ P — Y and an epimorphism g : X — Y, there is an arrow
h: P — X such that f = gh.

(4 pts) Show that in Set®”, the object {0,1} with trivial G-action is
a subobject classifier.

(3 pts) Show that Set®” is Boolean. That is, every subobject lattice
is a Boolean algebra.

Exercise 5. Let C be a small category; we work in the category Set®”’ of
presheaves on C.

a)

(2 pts) Let U be a subobject of 1. Show that U determines a sieve on
C, that is: a set of objects D with the property that for any morphism
X —=Y,ifY € Dthen X € D.

(3 pts) We define, using the sieve D on C from part a), a morphism
c(U) :  — Qin Set®” by putting, for a sieve R on an object C:

c(U)c(R) = RU{f:C"—C|C" €D}
Prove that ¢(U) is a Lawvere-Tierney topology on Set®”.

(2 pts) Let F' be a subpresheaf of a presheaf G on C. Prove that F'
is dense for ¢(U) if and only if for all C' € Cp and x € G(C') we have:
x € F(C)orCeD.

(3 pts) Prove that the category of sheaves for ¢(U) is equivalent to the
category of presheaves on some subcategory of C.



Solutions and comments on the grading

The exam seems to have been a bit tough, or in any case a lot of work for
most students; no one handed in a perfect solution. In order to obtain a
decent result I have decided to count, for each student, only his/her four
best exercises.

Exercise 1

2)

For an arrow f : A — B, we have Rx(f) : C(X, A) = C(X, B) sending
g : X — A to the composition fgin C. If f is mono and g,h: X — A
are elements of C(X, A), then clearly fg = fh implies g = h, so Rx(f)
is injective, which means it is a monomorphism in Set.

An arrow Y — Rx (A) in Set is just a Y-indexed family of arrows { fy :
X — Al|y € Y}. Since C has all small coproducts, this corresponds
uniquely to an arrow from the Y-indexed coproduct of copies of X,
Zer X, to A. For every function ¢ : Y — Z we have an arrow

ZX - ZX
yey z2e€Z

which sends the y-th cofactor to the ¢(y)-th one. This determines a
functor Set — C which is left adjoint to Rx.

This is just the Yoneda lemma, and saying so would have given you
3 points. Concretely, if p is as given and f € Rx(A), then f =
Rx(f)(idx), so by naturality

pa(f) = pa(Rx(f)(idx)) = F(f)(ux(idx))

which proves the claim.

Exercise 2

a)

This functor has a left adjoint, which sends each monoid M to the ring
Z[M)] of finite expressions nym; + ---npmy (for k > 0) with n; € Z
and m; € M. Therefore, it preserves all limits.

It does not preserve all colomits; for example, the initial object of Ring,

the ring 7Z, is not sent to the initial monoid (which is a one-element
monoid).

This functor has a right adjoint, which sends an object X of C to the
projection X x A — A. It therefore preserves all colimits.



It does not preserve all limits; for example, the terminal object of
C/A is the identity on A, which is sent to A, which as stated is non-
terminal in C (if A were terminal, then the given functor would be an
equivalence).

This functor has both adjoints: the left adjoint sends a set X to the
discrete preorder on X (x < y iff x = y) and the right adjoint sends
X to the indiscrete preorder on X (x < y always). So it preserves all
limits and all colimits.

The poset reflection functor is, as is easily seen, left adjoint to the
inclusion of Posets into Preorders; it preserves all colimits. It does not
preserve all limits; for example, look at equalizers. Consider the two
maps f,g:1 — A where A is the indiscrete preorder on a two-element
set. The equalizer is the empty set (you may apply c) here). However,
upon poset reflection the two maps become equal, and the equalizer is
1 itself.

Some students (even among the very best) remarked that this functor
is “an equivalence of categories”. Although this is quite erroneous, it is,
in the heat of the fight, a plausible error to make; and I have therefore
decided to award you 1.5 pts if you wrote this down. After all, every
preorder is, as a category, equivalent to its poset reflection; however,
equivalence is not isomorphism, and in any case pseudo-inverses need
choice and cannot be natural.

Exercise 3

a)

Let us abuse notation and write the same symbol for a subobject and
the domain of a representing monomorphism. So we have subobjects
M2 X and N % Y; we have the regular epi-mono factorization
M — dyM — Y, and pullback diagrams

MAfN—sM f*N—sX (GM)AN—3M

Lok

FN— X N—Y N————Y

Now the compositions M A f*N — f*N - N =Y and M A f*N —
M — 3y M — Y are clearly equal, so by the third pullback diagram we



have a unique arrow g : M A f*N — (3;M) A N, making the diagrams

MAf*N —"5(3M)AN  MAf*N—25 (3;M) AN

| L] |

M————3;M ffN —— N

comimute.

Consider now the diagrams

MAf*N———=M  MAfN—M

| ]

(3M)AN — 3 M f*N— X

N

N—Y N——Y

The outer squares of both are equal, and the right-hand diagram is
a composite of two pullbacks; therefore the left hand outer square is
a pullback. Since also the left hand lower square is a pullback, the
left-hand upper square must be a pullback. That means that g, being
pullback of the regular epi M — 3;M, is a regular epi; but now we
see that

MAf*N —5 (3 M)ANN —Y

is a regular epi-mono factorization. This establishes that
(M ANF*N) = (3fM)AN

as desired.

One inequality was easy to prove: we have M A f*N < M and M A
f*N < f*N, so since 3¢ is order-preserving we have 3;(M A f*N) <
(3 M) AN Fpf*N; now 3¢ f*N < N by the adjunction 3y 4 f*, hence
(M AN f*N) < (3gM) A N. If you had only this, you got 3 points.

You got 3.5 points if you proved the equality assuming that Sub(X)
and Sub(Y’) were Heyting algebras and f* preserved the Heyting struc-
ture; although of course, we cannot in general assume this in a regular
category.



Suppose f: X — Y is regular epi. Now for any subobject N of Y, we
have a pullback
ffN—— N

||

XTY

so the map f*N — N is regular epi, and hence the regular epi part of
the composite map f*N — Y. Therefore N = 37 f*N for all subob-
jects N of Y; from this (and the fact that 37 is order-preserving) the
required implication follows at once.

Exercise 4

a)

The presheaf category Set®” is isomorphic to the category G-Set of
sets X together with a right G-action X x G — X, and G-equivariant
functions (functions commuting with the G-action). Modulo this iso-
morphism, the fact that in any presheaf category, limits and colimits
are calculated point-wise, translates a.o. into the statements that the
terminal object is a one-element set (with unique G-action); that epis
are surjective functions and monos are injective functions. Further-
more, the one representable presheaf corresponds to the object G,
with G-action given by multiplication in G.

If 1 were projective, we would have a section for the epi G — 1.
However, such a section must send the unique element of 1 to an
element of G which is invariant under the action; i.e., an element
g € G for which gh = g for all h € G. This is clearly impossible if GG
has more than one element.

A subobject of a G-set X is just a subset A C X which is closed
under the action. Since G is a group, this means that then also X — A
is closed under the G-action. We have therefore a classifying map
x4 : X — {0,1} such that xya(zx) =0 iff x € A; i.e. a map such that

A——X

is a pullback (if ¢(x) = 0), and x4 is clearly unique with this property.
Note, that by our remarks above, x4 is a morphism of G-sets.



We know that in any topos, Sub(X) is a Heyting algebra, so it only
remains to see that complements exist in Sub(X). Basically, the argu-
ment is the same as for b); observe that for a subobject A of X, X — A
is a complement (again using that limits and colimits are calculated
point-wise).

Exercise 5.

a)

In Set®™”, 1 is the presheaf with 1(C') = {x} for all C. If U is a sub-
object of 1, we may regard U as a subpresheaf of 1, and U determines

the set of objects
D ={CelC|xecU(C)}

Clearly, if C € D and f : C' — C then C’ € D.

Let &c¢ = {f :C" — C|C" € D}, so ¢(U)c(R) = RUPc. The
properties R C ¢(U)c(R), ¢(U)c(RNS) = c(U)c(R) Ne(U)c(S) and
c(U)c(c(U)e(R)) = c¢(U)c(R) all follow trivially from this.

A subpresheaf F' of G is dense if and only if for each object C of C
and every x € G(C), we have that ¢(U)c((xr)c(x)) is the maximal
sieve on C, where xp(x) is the sieve on C' consisting of precisely those
f:C" — C for which G(f)(z) € F(C’). So, F is dense in G if and
only if for each C and z, the arrow id¢ is an element of (xp)c () NP¢;
but id¢ € (xr)c(x) means that x € F(C) and idc € ®¢ means that
C € D, so we are done.

We use the property which characterizes sheaves w.r.t. dense inclu-
sions: a presheaf X is a sheaf if and only if for every dense inclusion
F C @G, every map F' — X has a unique extension to a map G — X.

We claim that X is a sheaf for ¢(U) if and only if for every object
C €D, X(C) is a singleton set.

Clearly, the condition above is sufficient: suppose that for every object
C € D, X(C) is a singleton set. Let ' C G be dense, and p: F — X
a map. Since for C' € D there is nothing to choose (by the condition)
and for C ¢ D, F(C) = G(C), we have a clearly unique extension of
. So X is a sheaf.

Conversely, suppose X is a sheaf. Let us write D also for the full sub-
category of C on the set of objects D, and write X |D for the restriction
of the functor X to D°P. Let Y be any presheaf on D and Y be the



presheaf on C defined by:

~ _ Y(C) ifCeD
Y(e) = { 0 otherwise

Let 0 be the empty presheaf on C. Now 0 C Y is dense, so the unique
map 0 — X has a unique extension Y = X ; in other words, there
is, for any presheaf Y on D exactly one arrow from Y to X[D. This
means X |D is terminal in Set”””, so the given condition holds.

We now see that the category of sheaves for ¢(U) is equivalent to the
category of presheaves on £, where £ is the full subcategory of C on
the objects not in D.



