Exam Godel’s Incompleteness Theorems
June 4, 2015, 10.00-13.00
With solutions

Exercise 1.

a) Let F' be a primitive recursive function. Prove that the function

v F(F(-E(@) )
F(x) times

is primitive recursive too.

b) Let log(y, z) denote the largest number z such that y* < x. Prove that
log(y, x) is a primitive recursive function of two variables.

Solution: a). Define the function G(z,y) by G(z,0) = z and G(z,y +
1) = F(G(z,y)). Then G is defined by primitive recursion from the identity
function, projections and F', so GG is primitive recursive. The given function
is the function z — G(z, F(x)), defined from G by composition, so this
function is primitive recursive.

b). The given function is not defined for y < 2, so let’s agree on a default
value: put log(y,x) = 0 for y < 2. Now for y > 2, y* > z for all z, so we
see that log(y, z) < x in that case. So we can replace the search for a largest
number by a bounded minimisation: for y > 2, put

log(y, ) = (nz <wzy*>z) -1

Now log(y, =) is defined by case distinction on y > 2, bounded minimisation
and the exponential function (which is primitive recursive), so it is primitive
recursive.

Exercise 2. Recall that a function f : N — N is provably recursive if there
is a Xi-formula F(x,y) satisfying the following conditions:

PA+ F(m, f(n))  for every natural number n
PA F Vz3lyF(z,y)

Prove that the set of provably recursive functions is closed under composition.



Solution: the exercise only speaks of functions of one variable, so we can
limit ourselves to that case. Let f and g be provably recursive functions, and
F, G two %;-formulas such that for all natural numbers n, PA = F(7, f(n)) A
G(7, g(n)), and moreover PA F Va3lyF(z,y) and PA F Yu3lwG(u,v). Let

H(z,v) be the formula
Jw(F(z,w) AN G(w,v))

Then H(x,v) is a ¥y-formula (beware! If we had put H(z,v) = Fw(F(x, w)A
G(w,v)), then we had not obtained a 3;-formulal), since ¥;-formulas are
closed under conjunctions and existential quantifications. Moreover since we
have PAF F (7, f(n)) AG(f(n),g(f(n))), we see that PA = H (7, g(f(n))).

For the other property, reason inside PA (or, equivalently, in an arbitrary
model of PA). Given z, there is y with F(z,y); for such a y there is v
with G(y,v), so there is v with H(z,v). So we see PA + Vz3vH (z,v).
For uniqueness, suppose H(x,v) A H(z,v"). Then there are y and y’ with
F(z,y), F(z,y),G(y,v) and G(y',v"). But by the uniqueness satisfied by F
and G, we see y = ¢’ and hence v = v’. So we have in fact PA F Vz3lvH (z, v),
as desired.

Exercise 3. Recall that the notation (¢ stands for JzPrf(x,7¢7) and that
for OJ the following three “derivability conditions” hold:

D1 PA I ¢ implies PA F 0o
D2 PA F O(¢ — ¢) — (Op — Oo)

D3 PA F O¢ — O0é

You may use without proof, that conditions D1 and D2 imply
PAFO(p A ) < 0o A T

a) Let PA’ be the theory PA+y for some sentence y. Show that property
D1 also holds for PA’: if PA" - ¢, then PA" F Og.
b) Prove Formalised Léb’s Theorem, which is the statement

PAFO¢p — ¢) — o

for arbitrary ¢.
[Hint: given ¢, show that there is a sentence v such that PA F ¢ «

(Oy — ¢). Let PA’ be PA + O(0¢ — ¢). Prove that PA’ = Oy and
conclude that PA" + O¢.]



Solution: a). Suppose PA’ F ¢. Then PA + Oy — ¢, so by D1 for PA,
PA + Ox — ¢). Applying D2 we get PA - OO0y — O¢. Using D3 on
x (PA F Ox — OOy) we obtain PA F Oy — O¢, which is equivalent to
PA’ + Og.

b). Apply the Diagonalisation Lemma to the formula (3zPrf(x,v)) — ¢: we
obtain a sentence 1) satisfying PA ¢ <> (O — ¢). Let PA" be the theory

PA + 0O(0O¢ — ¢). We note that the properties D1,D2 and D3 hold true for
PA’ as well (using part a) of the exercise). We now get:

By D2 and choice of 1, PA'F Oy < OOy — ¢) (1)
By D3 on ¢, PA’ F O — O0W 2)
By D2 and (1), PA’ - Oy — (OO — Og)  (3)
By (2) and (3), PA’ - Oy — 0o (4)
By (4) and D1, PA'+O(0Oy — Oo) (5)
By (5) and definition of PA’, PA’+ OOy — ¢) (6)
By (1),(6) and choice of ¢,  PA"+ Oy (7)
By (4), PA’ - [l

And the last line just means PA + O(0¢ — ¢) — Oo.

Exercise 4. Let f : N — N be a provably recursive function (see Exercise
2). We work in a conservative extension of PA which has a function symbol
for f, and axiom VaF'(z, f(x)), where F(x,y) is the ¥;-formula representing
f. Note, that any model of PA has a unique interpretation of the function
symbol f making the axiom true.

Now assume that f is strictly increasing. Let M be a nonstandard model
of PA; by N we denote, as usual, the standard model. Furthermore, assume
that N is a Il -elementary submodel of M.

Prove that the following two statements are equivalent:

i) In M there exists a copy of Z which contains no elements of the form

f(z)
i) NVyJae(flz+1)> f(z) +y)

Solution. i)=-ii): Suppose ii) fails, so N' = Vy3z(f(z+1 > f(z)+y). Then
there is a standard number £ such that

N EVz(f(z+1) < f(z) +k)



Now Vz(f(z+1) < f(x)+k) is a [T;-sentence, so since the inclusion N' C M
is supposed to be II;-elementary, we get

MEVYe(f(r+1) < f(z)+ k)

In order to see that i) fails, let x € M be nonstandard. Because f is strictly
increasing, © < f(x) so there is a least y such that z < f(y). Then y cannot
be 0, for f(0) is a standard number. Now we have f(y) — f(y — 1) < k and
fly—1) <z < f(y), so the element f(y) lies in the same copy of Z as x.
The element x € M was an arbitrary nonstandard number, so we see that i)
fails.

ii)=1): Suppose N = Vy3Iz(f(x + 1) > f(z) +y). Then for all standard
numbers m we have

N EFz(f(x+1) > f(x) +m)

and since this is a Yj-sentence (we don’t need the assumption N <y, M
here!) it holds in M:

M x(f(z+1) > f(x) +m)

This holds for all standard m, so by Overspill there is a nonstandard element
¢ satisfying M |= 3z(f(z+1) > f(z)+¢). Pick a € M such that f(a+1) >
f(a) 4+ c. We see then, that f(a) and f(a + 1) lie in different copies of Z.
Since the ordering of these copies is dense, there is a copy of Z in between.
Now that copy cannot contain an element of the form f(z), because f is
strictly increasing.



