
Exam Gödel’s Incompleteness Theorems
June 4, 2015, 10.00–13.00

With solutions

Exercise 1.

a) Let F be a primitive recursive function. Prove that the function

x 7→ F (F (· · ·F︸ ︷︷ ︸
F (x) times

(x)) · · · )

is primitive recursive too.

b) Let log(y, x) denote the largest number z such that yz < x. Prove that
log(y, x) is a primitive recursive function of two variables.

Solution: a). Define the function G(x, y) by G(x, 0) = x and G(x, y +
1) = F (G(x, y)). Then G is defined by primitive recursion from the identity
function, projections and F , so G is primitive recursive. The given function
is the function x 7→ G(x, F (x)), defined from G by composition, so this
function is primitive recursive.

b). The given function is not defined for y < 2, so let’s agree on a default
value: put log(y, x) = 0 for y < 2. Now for y ≥ 2, yz > z for all z, so we
see that log(y, x) < x in that case. So we can replace the search for a largest
number by a bounded minimisation: for y ≥ 2, put

log(y, x) = (µz ≤ x.yz ≥ x)− 1

Now log(y, x) is defined by case distinction on y ≥ 2, bounded minimisation
and the exponential function (which is primitive recursive), so it is primitive
recursive.

Exercise 2. Recall that a function f : N → N is provably recursive if there
is a Σ1-formula F (x, y) satisfying the following conditions:

PA ` F (n, f(n)) for every natural number n
PA ` ∀x∃!yF (x, y)

Prove that the set of provably recursive functions is closed under composition.
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Solution: the exercise only speaks of functions of one variable, so we can
limit ourselves to that case. Let f and g be provably recursive functions, and
F,G two Σ1-formulas such that for all natural numbers n, PA ` F (n, f(n))∧
G(n, g(n)), and moreover PA ` ∀x∃!yF (x, y) and PA ` ∀u∃!vG(u, v). Let
H(x, v) be the formula

∃w(F (x,w) ∧G(w, v))

Then H(x, v) is a Σ1-formula (beware! If we had put H(x, v) ≡ ∃!w(F (x,w)∧
G(w, v)), then we had not obtained a Σ1-formula!), since Σ1-formulas are
closed under conjunctions and existential quantifications. Moreover since we
have PA ` F (n, f(n)) ∧G(f(n), g(f(n))), we see that PA ` H(n, g(f(n))).

For the other property, reason inside PA (or, equivalently, in an arbitrary
model of PA). Given x, there is y with F (x, y); for such a y there is v
with G(y, v), so there is v with H(x, v). So we see PA ` ∀x∃vH(x, v).
For uniqueness, suppose H(x, v) ∧ H(x, v′). Then there are y and y′ with
F (x, y), F (x, y′), G(y, v) and G(y′, v′). But by the uniqueness satisfied by F
and G, we see y = y′ and hence v = v′. So we have in fact PA ` ∀x∃!vH(x, v),
as desired.

Exercise 3. Recall that the notation �φ stands for ∃xPrf(x, pφq) and that
for � the following three “derivability conditions” hold:

D1 PA ` φ implies PA ` �φ

D2 PA ` �(φ→ ψ)→ (�φ→ �ψ)

D3 PA ` �φ→ ��φ

You may use without proof, that conditions D1 and D2 imply
PA ` �(φ ∧ ψ)↔ �φ ∧�ψ.

a) Let PA′ be the theory PA+�χ for some sentence χ. Show that property
D1 also holds for PA′: if PA′ ` φ, then PA′ ` �φ.

b) Prove Formalised Löb’s Theorem, which is the statement

PA ` �(�φ→ φ)→ �φ

for arbitrary φ.

[Hint: given φ, show that there is a sentence ψ such that PA ` ψ ↔
(�ψ → φ). Let PA′ be PA + �(�φ → φ). Prove that PA′ ` �ψ and
conclude that PA′ ` �φ.]
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Solution: a). Suppose PA′ ` φ. Then PA ` �χ → φ, so by D1 for PA,
PA ` �(�χ → φ). Applying D2 we get PA ` ��χ → �φ. Using D3 on
χ (PA ` �χ → ��χ) we obtain PA ` �χ → �φ, which is equivalent to
PA′ ` �φ.

b). Apply the Diagonalisation Lemma to the formula (∃xPrf(x, v))→ φ: we
obtain a sentence ψ satisfying PA ` ψ ↔ (�ψ → φ). Let PA′ be the theory
PA +�(�φ→ φ). We note that the properties D1,D2 and D3 hold true for
PA′ as well (using part a) of the exercise). We now get:

By D2 and choice of ψ, PA′ ` �ψ ↔ �(�ψ → φ) (1)
By D3 on ψ, PA′ ` �ψ → ��ψ (2)
By D2 and (1), PA′ ` �ψ → (��ψ → �φ) (3)
By (2) and (3), PA′ ` �ψ → �φ (4)
By (4) and D1, PA′ ` �(�ψ → �φ) (5)
By (5) and definition of PA′, PA′ ` �(�ψ → φ) (6)
By (1),(6) and choice of ψ, PA′ ` �ψ (7)
By (4), PA′ ` �φ

And the last line just means PA ` �(�φ→ φ)→ �φ.

Exercise 4. Let f : N → N be a provably recursive function (see Exercise
2). We work in a conservative extension of PA which has a function symbol
for f , and axiom ∀xF (x, f(x)), where F (x, y) is the Σ1-formula representing
f . Note, that any model of PA has a unique interpretation of the function
symbol f making the axiom true.

Now assume that f is strictly increasing. LetM be a nonstandard model
of PA; by N we denote, as usual, the standard model. Furthermore, assume
that N is a Π1-elementary submodel of M.

Prove that the following two statements are equivalent:

i) In M there exists a copy of Z which contains no elements of the form
f(x)

ii) N |= ∀y∃x(f(x+ 1) > f(x) + y)

Solution. i)⇒ii): Suppose ii) fails, so N 6|= ∀y∃x(f(x+1 > f(x)+y). Then
there is a standard number k such that

N |= ∀x(f(x+ 1) ≤ f(x) + k)
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Now ∀x(f(x+1) ≤ f(x)+k) is a Π1-sentence, so since the inclusion N ⊂M
is supposed to be Π1-elementary, we get

M |= ∀x(f(x+ 1) ≤ f(x) + k)

In order to see that i) fails, let x ∈M be nonstandard. Because f is strictly
increasing, x ≤ f(x) so there is a least y such that x ≤ f(y). Then y cannot
be 0, for f(0) is a standard number. Now we have f(y)− f(y − 1) ≤ k and
f(y − 1) < x ≤ f(y), so the element f(y) lies in the same copy of Z as x.
The element x ∈M was an arbitrary nonstandard number, so we see that i)
fails.

ii)⇒i): Suppose N |= ∀y∃x(f(x + 1) > f(x) + y). Then for all standard
numbers m we have

N |= ∃x(f(x+ 1) > f(x) +m)

and since this is a Σ1-sentence (we don’t need the assumption N ≺Π1 M
here!) it holds in M:

M |= ∃x(f(x+ 1) > f(x) +m)

This holds for all standard m, so by Overspill there is a nonstandard element
c satisfyingM |= ∃x(f(x+ 1) > f(x) + c). Pick a ∈M such that f(a+ 1) >
f(a) + c. We see then, that f(a) and f(a + 1) lie in different copies of Z.
Since the ordering of these copies is dense, there is a copy of Z in between.
Now that copy cannot contain an element of the form f(x), because f is
strictly increasing.
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