Exam Godel’s Incompleteness Theorems
May 26, 2010, 14.00-17.00

THIS EXAM CONSISTS OF 4 PROBLEMS; SEE ALSO BACK SIDE
Advice: first do those problems you can do right away; then, start thinking
about the others. Good luck!

1. Let ¢, % be sentences of PA. Define C by the following abstract syntax:
C=0¢|¢|CAC|—C
More precisely, C is the smallest class of sentences such that

o, el
x,.0eC = (xn0)eC
xeC = (—x) eC.

(a) Show precisely that C is primitive recursive, by proving that there is
a primitive recursive function g such that for all sentences y one has

xeC & g(x)=1
xX¢C < g(x)=0.

You may devise your own coding for these sentences.
(b) Show that there is a PA formula Z(z) with FV(Z) = {z}, such that

xeC = PAFE(Y):

(c¢) Show that there is a formula Q(z) with FV(Q) = {z} such that
PAFQ( x') < x, forall x € C.
2. Given a sentence ¢ of PA, define ¢,, as 0"(¢), for n € IN. More precisely

¢0 = ¢7
¢n+1 = D(¢n)

(a) Show that there is a primitive recursive function f such that for all
sentences ¢ and all n € IN one has

f(n,‘¢):‘¢n‘.

(b) Show that if PA is consistent, then there is no formula ©(z, a) with
FV(0) = {z,a}, such that for all sentences ¢ and all n € IN one has

PAF O, ¢ ) — .



[Hint. Suppose © exists. Define A(¢) = O(0,'¢'). Then for all
sentences ¢ one has

PAF A(¢) < ¢.
Immitating the liar paradox, apply the Diagonalization Lemma to
get a contradiction.]

(c) Show that there is a formula O(z, a) with FV(©) = {x,a}, such that
for all sentences ¢ and all n € IN, with n > 0 one has

PAF O, ¢ ) « .

3. In this exercise, you may assume that PA is consistent. By the Diago-
naization Lemma, let G be a sentence in the language of PA such that

PA + G~ O0-0G

We recall that in the course we proved the following three derivability

conditions:
D1 PAF¢ = PARO¢

D2 PAFDO(¢ — o) — (o — Ov)
D3 PAFO¢ — O0¢

(a) Prove that for any two sentences ¢ and v in the language of PA,
PA + O(p AY) < Op ATy

(b) Prove that PA+ G — O.L. Conclude that G is false in the standard
model.
(¢) Prove that also, PAFOL — G.

(d) Conclude from the previous two items that G is independent of PA.
4. Let M be a nonstandard model of PA.

(a) Show that there exists a nonstandard element a € M such that the
set {a £ n|n € IN} contains no squares.
[Hint: take ¢ € M nonstandard; consider ¢ and (¢ + 1)?

(b) Define the relation < between nonstandard elements of M by: a < b
iff for all standard n, na < b. Prove that a < b is equivalent to: there
is a nonstandard element ¢ such that ac < b.

(¢) Prove that the relation < is dense, that is: if a < b then there is an
element c such that a < ¢ < b.

Solution Exercise 3:

a) This could be done in a number of ways, but the point of the exercise is
that you can do almost everything just making use of D1-D3. So I present
the solution in this way.



PAF ¢ AN — ¢ by Logic, hence by D1 we have PA F O(p Ay — @)
whence by D2, PA F O(¢p A) — O¢. Similarly, PA F O(¢ Av) — O, so
PAFDO(¢ Ayp) — Op AOy. For the converse, we observe that PA - ¢ —
(v — ¢ A1) by Logic, hence by using D1 and twice D2 we get PA F O¢ —
(Oy — O(¢ A)) and therefore by Logic PA F (O¢ A Oy) — O(¢ A 9)
as desired. This part was worth 3 points: 1 for the first implication, 2 for
the second.

Let’s write H for —0JG, so PA - G <« [OH. By D1 and D2, applied
to - OH — G, we get - OOH — OG. By D3 we have - OH — OOH.
Combining, we see that - G — OG. By another application of D3 we have
F G — OOG. But by choice of G we also have F G — O-0G. Applying
part a) we see that H G — O(OG A -0OG). Since - OG A -0OG — L by
Logic, hence - O(OG A -0G) — OL by D1 and D2, we have - G — OL
as required.

It follows that G — L is true in the standard model (in fact, in any
model); by assumption (that PA is consistent), OJL is false in the standard
model. Hence G is false in the standard model.

This part was worth 3 points: 2 for the derivation of F G — 01, and 1
for the conclusion that G is false in the standard model.

By Logic we have - 1 — =[G, so D1 and D2 give us - 1 — O-0G; so
by choice of G, - 1L — G. This part was worth 2 points.

By the Second Incompleteness Theorem, =11 is independent of PA so its
negation, (L is also independent of PA. In parts b) and ¢) we have seen
that PA + G < OL. It follows that also G is independent of PA. This
part was worth 2 points.

Solution Exercise 4:

a)

Take ¢ € M nonstandard. Then (¢ + 1)2 = ¢ +2c+ 1 > ¢ +n for all
standard n, so (c + 1)? lies in a different copy of Z than the one c? lies
in. Since the ordering of copies of Z is dense, there is a copy of Z lying
in between. That copy cannot contain any squares, because the sentence
Va(x? <V (c+1)? < 2?) is true in M (it is a theorem of PA). So if a
is an element of that copy, a satisfies the statement. This part was worth
4 points.

If ac < b for some nonstandard ¢ then certainly an < b for all standard
n, since n < ¢ and multiplication is monotone. For the converse, suppose
an < b for all standard n. Then by Overspill there must be a nonstandard
element ¢ such that ac < b. To spell it out: suppose ac < b does not
hold for any nonstandard ¢. Then we have M | a0 < b (since b is
nonstandard) and M = Vy(ay < b — a(y + 1) < b) so by Induction we
would have M = Vy(ay < b) which is absurd. This part was worth 3
points.



c)

Suppose a, b nonstandard and a < b. Pick (by b)) a nonstandard ¢ such
that ac < b. Let d be the least element such that ¢ < (d+1)2. This exists
because the function F(y) = pz < y.y < (2 + 1)? is primitive recursive,
hence representable in PA, hence a function in M. Then d is nonstandard,
and d? < c. Alternatively one can say: for all standard n, M | n? < ¢
hence by overspill there is a nonstandard d such that d? < c.

We see that a(d—1) < ad so a < ad, and (ad)d = ad® < ac < bso ad < b.
We conclude that < is dense. This part was worth 3 points.



