Exam Foundations of Mathematics A with solutions

november 6, 2008, 14.00-17.00

This Exam CONsists of 5 ExERCISES; SEE ALSO THE BACK OF THIS SHEET.
Advice: first do those exercises you can do right away; then start thinking about the others. Good luck!

Exercise 1. Determine which of the following sets are countable or uncountable. Give a short explanation.
a) $\{x \in \mathbb{R} \mid \sin x \in \mathbb{Q}\}$
b) $\quad\left\{f \in\{0,1\}^{\mathbb{N}} \mid \exists k \forall n \geq k f(n)=0\right\}$
c) $\quad\{A \subseteq \mathbb{N} \mid A$ is infinite $\}$

Solution: a) Since the finction sin is injective on each interval $\left[\left(n-\frac{1}{2}\right) \pi,(n+\right.$ $\left.\frac{1}{2}\right) \pi$) and \mathbb{Q} is countable, there are in each such interval only countably many x with $\sin (x) \in \mathbb{Q}$; and \mathbb{R} is a countable union of these intervals. So the whole set is a countable union of countable sets; hence countable.
b): Let $\{0,1\}^{*}$ be the set of finite 01 -sequences. Then $\{0,1\}^{*}$ is countable, and there is a surjective function from $\{0,1\}^{*}$ to the set in the exercise (send a finite sequence σ to the function which starts with σ and has zeroes forever after); hence this set is countable too.
c): This set is equal to $\mathcal{P}(\mathbb{N})-\mathcal{P}_{\text {fin }}(\mathbb{N})$. Now $\mathcal{P}(\mathbb{N})$ is uncountable and $\mathcal{P}_{\text {fin }}(\mathbb{N})$ is countable, so the set in the exercise is uncountable.

Exercise 2. Let X be a set, L a well order, and $f: L \rightarrow X$ a surjective function. We define the following relation on $X: x<y$ holds if and only if for every $l \in L$ such that $f(l)=y$, there is a $k<l$ such that $f(k)=x$.

Prove, that this relation gives a well order on X.

Solution: define $s: X \rightarrow L$ by: $s(x)$ is the least $l \in L$ such that $f(l)=x$ (this is a good definition since f is surjective and L is a well-order). Now it is easy to see that for the given relation $<$ on X we have: $x<y$ in X precisely when $s(x)<s(y)$ in L. So $(X,<)$ is isomorphic to a subset of the well-order L (with the order from L). Because every subset of a well-order is a well-order, $(X,<)$ is a well-order.

More directly, one can say: if $A \subseteq X$ is a nonempty subset, then because f is surjective the subset $f^{-1}(A)=\{l \in L \mid f(l) \in A\}$ is nonempty and has therefore a least element l_{A}. You deduce easily that $f\left(l_{A}\right)$ is the least element of A for the relation $<$ on X. So every nonempty subset has a least element, hence $(X,<)$ is a well-order.

Exercise 3. Suppose A is a subset of \mathbb{R}. A real number ξ is said to be algebraic over A, if there is a polynomial $P(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$, with coefficients a_{0}, \ldots, a_{n} from A, such that $P(\xi)=0$. In this exercise you may use the known fact, that the number e is not algebraic over \mathbb{Q}.

Prove that there is a subset A of \mathbb{R} with the following properties:
i) e is not algebraic over A;
ii) every real number ξ can be written as a quotient $\frac{P(e)}{Q(e)}$, where $P(X)$ and $Q(X)$ are polynomials with coefficients from A.
[Hint: apply Zorn's Lemma to the poset of those subsets $A \subset \mathbb{R}$ that satisfy: $0 \in A, 1 \in A$ and e is not algebraic over A]

Solution: the hint was a bit miserly; in fact, it was better to consider the poset P of those subsets A of \mathbb{R} satisfying: a) $0,1 \in A \mathrm{~b})$ if $x \in A$ then $-x \in A$ c) e is not algebraic over A. Suppose \mathcal{C} is a chain in P; consider $\cup \mathcal{C}$. Clearly, $\bigcup \mathcal{C}$ satisfies a) and b); and if e were algebraic over $\bigcup \mathcal{C}$ there would be a polynomial P with coefficients in $\bigcup \mathcal{C}$ such that $P(e)=0$; but every polynomial has only finitely many coefficients, so in fact there would already be a $C \in \mathcal{C}$ which contained all coefficients; then e would be algebraic over C which contradicts that $C \in P$. We conclude: if \mathcal{C} is a chain in P then $\bigcup \mathcal{C}$ is in P. So, P satisfies the conditions of Zorn's Lemma and has a maximal element A. We prove b) for A :

If $\xi \in A$ then $\xi=\frac{\xi}{1}$, a quotient of constant polynomials with coefficients in A. If $\xi \notin A$ then by maximality of $A, A \cup\{\xi,-\xi\}$ is not a member of P although it satisfies a) and b). Therefore, e is algebraic over $A \cup\{\xi,-\xi\}$; let $P(e)=0$ with coefficients in $A \cup\{\xi,-\xi\}$. Not all coefficients are in A because
e is not algebraic over A; and not all coefficients are $\pm \xi$ because that would imply $\xi=0$ (contradicting that $\xi \notin A$), or e algebraic over A, a contradiction in both cases. So $P(X)$ can be written as $Q(X)+\xi R(X)$, where Q and R are polynomials with coefficients in A. The relation $P(e)=0$ can now be rewritten to $\xi=\frac{-Q(e)}{R(e)}$, and by condition c) also $-Q$ is a polynomial with coefficients in A, so this is of the desired form.
Exercise 4. In this exercise we consider the language $L_{\text {pos }}$ of posets: there is one binary relation symbol \leq.

For every natural number $n>1$ we denote by M_{n} the $L_{\text {pos }}$-structure which consists of all divisors of n, where we put $k \leq l$ precisely when k is a divisor of l.
a) Give an $L_{\text {pos }}$-sentence which is true in M_{32} but false in M_{18};
b) The same for M_{30} and M_{24}.

Give an explanation in words of what your sentences are intended to mean.
Solution: in the first case, you can see that M_{32} is a linear order whereas M_{18} is not; so you could take $\forall x y(x \leq y \vee y \leq x)$. Another possibility is to see that M_{32} contains a chain of length 6 and M_{18} does not; so you could take

$$
\begin{aligned}
& \exists x_{1} \exists x_{2} \cdots \exists x_{6}\left(x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge \cdots \wedge x_{5} \leq x_{6}\right. \\
& \left.\quad \wedge \neg\left(x_{1}=x_{2}\right) \wedge \neg\left(x_{2}=x_{3}\right) \wedge \cdots \wedge \neg\left(x_{5}=x_{6}\right)\right)
\end{aligned}
$$

In the second case, you could write down in a similar way a sentence expressing "there is no chain of length 5 ", which is true in M_{30} but false in M_{24}. Or, in M_{30} "there are 3 parwise incomparable elements":

$$
\begin{aligned}
& \exists x \exists y \exists z(\neg(x \leq y) \wedge \neg(y \leq x) \wedge \neg(x \leq z) \wedge \neg(z \leq x) \\
& \wedge \neg(y \leq z) \wedge \neg(z \leq y))
\end{aligned}
$$

Exercise 5. Again, we consider the language $L_{\text {pos }}$ of the previous exercise. Suppose M is an infinite well order. Prove that there is a poset M^{\prime} with the following properties:
i) $\quad M$ and M^{\prime} satisfy the same $L_{\text {pos }}$-sentences
ii) M^{\prime} is is not a well order.
[Hint: let $L^{*}=L_{\mathrm{pos}} \cup C$, where $C=\left\{c_{0}, c_{1}, \ldots\right\}$ is a set of new constants. Define the following L^{*}-theory:

$$
T=\{\phi \mid M \models \phi\} \cup\left\{c_{k+1} \leq c_{k} \wedge \neg\left(c_{k+1}=c_{k}\right) \mid k \in \mathbb{N}\right\}
$$

Prove, using the Compactness Theorem, that T has a model, and that every model of T satisfies i) and ii).]

Solution: let's abbreviate T_{M} for the set of L_{pos}-sentences true in M. If $T^{\prime} \subset$ T is a finite subtheory then T^{\prime} is contained in $T_{M} \cup\left\{c_{k+1}<c_{k} \mid 0 \leq k \leq N\right\}$ for some $N \in \mathbb{N}$. Now because M is infinite, it certainly contains a descending sequence of length $N+2$, hence interpretations for c_{0}, \ldots, c_{N+1} in such a way that T^{\prime} is true in M. So T^{\prime} is consistent; hence by the Compactness Theorem T is, and has a model M^{\prime}. This model satisfies i): if $M \models \phi$ then $\phi \in T_{M}$ so $M^{\prime} \models \phi$; if $M \not \models \phi$ then $M \models \neg \phi$ so $\neg \phi \in T_{M}$, whence $M^{\prime} \not \models \phi$. Also, M^{\prime} is not a well-order because M^{\prime} contains an infinite descending chain.

