Exam Foundations of Mathematics A with solutions

november 6, 2008, 14.00-17.00

This exam consists of 5 exercises; see also the back of this sheet.

Advice: first do those exercises you can do right away; then start thinking about the others. Good luck!

Exercise 1. Determine which of the following sets are countable or uncountable. Give a short explanation.

- a) $\{x \in \mathbb{R} \mid \sin x \in \mathbb{Q}\}$
- b) $\{f \in \{0,1\}^{\mathbb{N}} \mid \exists k \forall n \geq k f(n) = 0\}$
- c) $\{A \subseteq \mathbb{N} \mid A \text{ is infinite}\}$

Solution: a) Since the function sin is injective on each interval $[(n - \frac{1}{2})\pi, (n + \frac{1}{2})\pi)$ and \mathbb{Q} is countable, there are in each such interval only countably many x with $\sin(x) \in \mathbb{Q}$; and \mathbb{R} is a countable union of these intervals. So the whole set is a countable union of countable sets; hence countable.

b): Let $\{0, 1\}^*$ be the set of finite 01-sequences. Then $\{0, 1\}^*$ is countable, and there is a surjective function from $\{0, 1\}^*$ to the set in the exercise (send a finite sequence σ to the function which starts with σ and has zeroes forever after); hence this set is countable too.

c): This set is equal to $\mathcal{P}(\mathbb{N}) - \mathcal{P}_{\text{fin}}(\mathbb{N})$. Now $\mathcal{P}(\mathbb{N})$ is uncountable and $\mathcal{P}_{\text{fin}}(\mathbb{N})$ is countable, so the set in the exercise is uncountable.

Exercise 2. Let X be a set, L a well order, and $f : L \to X$ a surjective function. We define the following relation on X: x < y holds if and only if for every $l \in L$ such that f(l) = y, there is a k < l such that f(k) = x.

Prove, that this relation gives a well order on X.

Solution: define $s : X \to L$ by: s(x) is the least $l \in L$ such that f(l) = x (this is a good definition since f is surjective and L is a well-order). Now it is easy to see that for the given relation < on X we have: x < y in X precisely when s(x) < s(y) in L. So (X, <) is isomorphic to a subset of the well-order L (with the order from L). Because every subset of a well-order is a well-order, (X, <) is a well-order.

More directly, one can say: if $A \subseteq X$ is a nonempty subset, then because f is surjective the subset $f^{-1}(A) = \{l \in L \mid f(l) \in A\}$ is nonempty and has therefore a least element l_A . You deduce easily that $f(l_A)$ is the least element of A for the relation < on X. So every nonempty subset has a least element, hence (X, <) is a well-order.

Exercise 3. Suppose A is a subset of \mathbb{R} . A real number ξ is said to be *algebraic* over A, if there is a polynomial $P(X) = a_0 + a_1 X + \cdots + a_n X^n$, with coefficients a_0, \ldots, a_n from A, such that $P(\xi) = 0$. In this exercise you may use the known fact, that the number e is not algebraic over \mathbb{Q} .

Prove that there is a subset A of \mathbb{R} with the following properties:

- i) e is not algebraic over A;
- ii) every real number ξ can be written as a quotient $\frac{P(e)}{Q(e)}$, where P(X) and Q(X) are polynomials with coefficients from A.

[Hint: apply Zorn's Lemma to the poset of those subsets $A \subset \mathbb{R}$ that satisfy: $0 \in A, 1 \in A$ and e is not algebraic over A]

Solution: the hint was a bit miserly; in fact, it was better to consider the poset P of those subsets A of \mathbb{R} satisfying: a) $0, 1 \in A$ b) if $x \in A$ then $-x \in A$ c) e is not algebraic over A. Suppose C is a chain in P; consider $\bigcup C$. Clearly, $\bigcup C$ satisfies a) and b); and if e were algebraic over $\bigcup C$ there would be a polynomial P with coefficients in $\bigcup C$ such that P(e) = 0; but every polynomial has only finitely many coefficients, so in fact there would already be a $C \in C$ which contained all coefficients; then e would be algebraic over C which contradicts that $C \in P$. We conclude: if C is a chain in P then $\bigcup C$ is in P. So, P satisfies the conditions of Zorn's Lemma and has a maximal element A. We prove b) for A:

If $\xi \in A$ then $\xi = \frac{\xi}{1}$, a quotient of constant polynomials with coefficients in A. If $\xi \notin A$ then by maximality of A, $A \cup \{\xi, -\xi\}$ is not a member of P although it satisfies a) and b). Therefore, e is algebraic over $A \cup \{\xi, -\xi\}$; let P(e) = 0 with coefficients in $A \cup \{\xi, -\xi\}$. Not all coefficients are in A because *e* is not algebraic over *A*; and not all coefficients are $\pm \xi$ because that would imply $\xi = 0$ (contradicting that $\xi \notin A$), or *e* algebraic over *A*, a contradiction in both cases. So P(X) can be written as $Q(X) + \xi R(X)$, where *Q* and *R* are polynomials with coefficients in *A*. The relation P(e) = 0 can now be rewritten to $\xi = \frac{-Q(e)}{R(e)}$, and by condition c) also -Q is a polynomial with coefficients in *A*, so this is of the desired form.

Exercise 4. In this exercise we consider the language L_{pos} of posets: there is one binary relation symbol \leq .

For every natural number n > 1 we denote by M_n the L_{pos} -structure which consists of all divisors of n, where we put $k \leq l$ precisely when k is a divisor of l.

- a) Give an L_{pos} -sentence which is true in M_{32} but false in M_{18} ;
- b) The same for M_{30} and M_{24} .

Give an explanation in words of what your sentences are intended to mean.

Solution: in the first case, you can see that M_{32} is a linear order whereas M_{18} is not; so you could take $\forall xy(x \leq y \lor y \leq x)$. Another possibility is to see that M_{32} contains a chain of length 6 and M_{18} does not; so you could take

$$\exists x_1 \exists x_2 \cdots \exists x_6 (x_1 \le x_2 \land x_2 \le x_3 \land \cdots \land x_5 \le x_6) \\ \land \neg (x_1 = x_2) \land \neg (x_2 = x_3) \land \cdots \land \neg (x_5 = x_6))$$

In the second case, you could write down in a similar way a sentence expressing "there is no chain of length 5", which is true in M_{30} but false in M_{24} . Or, in M_{30} "there are 3 parwise incomparable elements":

$$\exists x \exists y \exists z (\neg(x \le y) \land \neg(y \le x) \land \neg(x \le z) \land \neg(z \le x)) \land \neg(y \le z) \land \neg(z \le y))$$

Exercise 5. Again, we consider the language L_{pos} of the previous exercise. Suppose M is an infinite well order. Prove that there is a poset M' with the following properties:

- i) M and M' satisfy the same L_{pos} -sentences
- ii) M' is is not a well order.

[Hint: let $L^* = L_{\text{pos}} \cup C$, where $C = \{c_0, c_1, \ldots\}$ is a set of new constants. Define the following L^* -theory:

$$T = \{ \phi \mid M \models \phi \} \cup \{ c_{k+1} \le c_k \land \neg (c_{k+1} = c_k) \mid k \in \mathbb{N} \}$$

Prove, using the Compactness Theorem, that T has a model, and that every model of T satisfies i) and ii).]

Solution: let's abbreviate T_M for the set of L_{pos} -sentences true in M. If $T' \subset T$ is a finite subtheory then T' is contained in $T_M \cup \{c_{k+1} < c_k \mid 0 \le k \le N\}$ for some $N \in \mathbb{N}$. Now because M is infinite, it certainly contains a descending sequence of length N+2, hence interpretations for c_0, \ldots, c_{N+1} in such a way that T' is true in M. So T' is consistent; hence by the Compactness Theorem T is, and has a model M'. This model satisfies i): if $M \models \phi$ then $\phi \in T_M$ so $M' \models \phi$; if $M \not\models \phi$ then $M \models \neg \phi$ so $\neg \phi \in T_M$, whence $M' \not\models \phi$. Also, M' is not a well-order because M' contains an infinite descending chain.