
Exam Foundations of Mathematics A with

solutions

november 6, 2008, 14.00-17.00

This exam consists of 5 exercises; see also the back of this

sheet.

Advice: first do those exercises you can do right away; then start thinking
about the others. Good luck!

Exercise 1. Determine which of the following sets are countable or uncount-
able. Give a short explanation.

a) {x ∈ R | sin x ∈ Q}

b) {f ∈ {0, 1}N | ∃k∀n ≥ kf(n) = 0}

c) {A ⊆ N |A is infinite}

Solution: a) Since the finction sin is injective on each interval [(n− 1
2
)π, (n+

1
2
)π) and Q is countable, there are in each such interval only countably many

x with sin(x) ∈ Q; and R is a countable union of these intervals. So the
whole set is a countable union of countable sets; hence countable.
b): Let {0, 1}∗ be the set of finite 01-sequences. Then {0, 1}∗ is countable,
and there is a surjective function from {0, 1}∗ to the set in the exercise (send
a finite sequence σ to the function which starts with σ and has zeroes forever
after); hence this set is countable too.
c): This set is equal to P(N)−Pfin(N). Now P(N) is uncountable and Pfin(N)
is countable, so the set in the exercise is uncountable.

Exercise 2. Let X be a set, L a well order, and f : L → X a surjective
function. We define the following relation on X: x < y holds if and only if
for every l ∈ L such that f(l) = y, there is a k < l such that f(k) = x.

Prove, that this relation gives a well order on X.
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Solution: define s : X → L by: s(x) is the least l ∈ L such that f(l) = x

(this is a good definition since f is surjective and L is a well-order). Now
it is easy to see that for the given relation < on X we have: x < y in X

precisely when s(x) < s(y) in L. So (X, <) is isomorphic to a subset of the
well-order L (with the order from L). Because every subset of a well-order
is a well-order, (X, <) is a well-order.

More directly, one can say: if A ⊆ X is a nonempty subset, then because
f is surjective the subset f−1(A) = {l ∈ L | f(l) ∈ A} is nonempty and has
therefore a least element lA. You deduce easily that f(lA) is the least element
of A for the relation < on X. So every nonempty subset has a least element,
hence (X, <) is a well-order.

Exercise 3. Suppose A is a subset of R. A real number ξ is said to be
algebraic over A, if there is a polynomial P (X) = a0 + a1X + · · · + anXn,
with coefficients a0, . . . , an from A, such that P (ξ) = 0. In this exercise you
may use the known fact, that the number e is not algebraic over Q.

Prove that there is a subset A of R with the following properties:

i) e is not algebraic over A;

ii) every real number ξ can be written as a quotient P (e)
Q(e)

, where P (X) and

Q(X) are polynomials with coefficients from A.

[Hint: apply Zorn’s Lemma to the poset of those subsets A ⊂ R that satisfy:
0 ∈ A, 1 ∈ A and e is not algebraic over A]

Solution: the hint was a bit miserly; in fact, it was better to consider the
poset P of those subsets A of R satisfying: a) 0, 1 ∈ A b) if x ∈ A then
−x ∈ A c) e is not algebraic over A. Suppose C is a chain in P ; consider

⋃
C.

Clearly,
⋃

C satisfies a) and b); and if e were algebraic over
⋃
C there would

be a polynomial P with coefficients in
⋃
C such that P (e) = 0; but every

polynomial has only finitely many coefficients, so in fact there would already
be a C ∈ C which contained all coefficients; then e would be algebraic over
C which contradicts that C ∈ P . We conclude: if C is a chain in P then

⋃
C

is in P . So, P satisfies the conditions of Zorn’s Lemma and has a maximal
element A. We prove b) for A:

If ξ ∈ A then ξ = ξ

1
, a quotient of constant polynomials with coefficients

in A. If ξ 6∈ A then by maximality of A, A ∪ {ξ,−ξ} is not a member of P

although it satisfies a) and b). Therefore, e is algebraic over A∪ {ξ,−ξ}; let
P (e) = 0 with coefficients in A∪{ξ,−ξ}. Not all coefficients are in A because



e is not algebraic over A; and not all coefficients are ±ξ because that would
imply ξ = 0 (contradicting that ξ 6∈ A), or e algebraic over A, a contradiction
in both cases. So P (X) can be written as Q(X) + ξR(X), where Q and R

are polynomials with coefficients in A. The relation P (e) = 0 can now be

rewritten to ξ = −Q(e)
R(e)

, and by condition c) also −Q is a polynomial with
coefficients in A, so this is of the desired form.

Exercise 4. In this exercise we consider the language Lpos of posets: there
is one binary relation symbol ≤.

For every natural number n > 1 we denote by Mn the Lpos-structure
which consists of all divisors of n, where we put k ≤ l precisely when k is a
divisor of l.

a) Give an Lpos-sentence which is true in M32 but false in M18;

b) The same for M30 and M24.

Give an explanation in words of what your sentences are intended to mean.

Solution: in the first case, you can see that M32 is a linear order whereas M18

is not; so you could take ∀xy(x ≤ y ∨ y ≤ x). Another possibility is to see
that M32 contains a chain of length 6 and M18 does not; so you could take

∃x1∃x2 · · · ∃x6(x1 ≤ x2 ∧ x2 ≤ x3 ∧ · · · ∧ x5 ≤ x6

∧¬(x1 = x2) ∧ ¬(x2 = x3) ∧ · · · ∧ ¬(x5 = x6))

In the second case, you could write down in a similar way a sentence express-
ing “there is no chain of length 5”, which is true in M30 but false in M24. Or,
in M30 “there are 3 parwise incomparable elements”:

∃x∃y∃z(¬(x ≤ y) ∧ ¬(y ≤ x) ∧ ¬(x ≤ z) ∧ ¬(z ≤ x)
∧¬(y ≤ z) ∧ ¬(z ≤ y))

Exercise 5. Again, we consider the language Lpos of the previous exercise.
Suppose M is an infinite well order. Prove that there is a poset M ′ with the
following properties:

i) M and M ′ satisfy the same Lpos-sentences

ii) M ′ is is not a well order.



[Hint: let L∗ = Lpos ∪ C, where C = {c0, c1, . . .} is a set of new constants.
Define the following L∗-theory:

T = {φ |M |= φ} ∪ {ck+1 ≤ ck ∧ ¬(ck+1 = ck) | k ∈ N}

Prove, using the Compactness Theorem, that T has a model, and that every
model of T satisfies i) and ii).]

Solution: let’s abbreviate TM for the set of Lpos-sentences true in M . If T ′ ⊂
T is a finite subtheory then T ′ is contained in TM ∪ {ck+1 < ck | 0 ≤ k ≤ N}
for some N ∈ N. Now because M is infinite, it certainly contains a descending
sequence of length N +2, hence interpretations for c0, . . . , cN+1 in such a way
that T ′ is true in M . So T ′ is consistent; hence by the Compactness Theorem
T is, and has a model M ′. This model satisfies i): if M |= φ then φ ∈ TM so
M ′ |= φ; if M 6|= φ then M |= ¬φ so ¬φ ∈ TM , whence M ′ 6|= φ. Also, M ′ is
not a well-order because M ′ contains an infinite descending chain.


