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A b s t r a c t  

It is well known that BiCG can be adapted so that the operations with A T can be avoided, and hybrid methods 
with computational complexity almost similar to BiCG can be constructed in a further attempt to improve the 
convergence behavior. Examples of this are CGS, Bi-CGSTAB, and BiCGstab(l). 

In many applications, the speed of convergence of these methods is very dependent on the incorporated 
BiCG process. The accuracy of the iteration coefficients of BiCG depends on the particular choice of the hybrid 
method. We will discuss the accuracy of these coefficients and how this affects the speed of convergence. We 
will show that hybrid methods exist which have better accuracy properties. This may lead to faster convergence 
and more accurate approximations. 

We also discuss look-ahead strategies for the determination of appropriate values for l in BiCGstab(l). These 
strategies are easily applied for the hybrid part, in contrast to similar techniques for the BiCG part (but of 
course they do not solve the breakdown problems of the BiCG part). 

O. I n t r o d u c t i o n  

By combining BiCG with other Krylov subspace methods, operations with the transpose of the 
matrix, as in standard BiCG [7], can be avoided. Examples of such hybrid B iCG methods are, CGS 
[23 ] where BiCG is combined with BiCG itself, Bi-CGSTAB [25 ] as a combination of BiCG and 
GMRES(1),  BiCGStab2 [12] that incorporates GCR(2) (i.e. GCR restarted every 2nd step), and 
BiCGstab(l) [19,22] that combines GMRES(I) with each lth step of BiCG. 

The method on top of BiCG in hybrid BiCG is used to get an additional reduction of the residual, 
but it can also be designed for other desirable properties. In [8], for instance, the performance 
of hybrid BiCG methods as linear solvers in (inexact) Newton schemes for nonlinear problems is 

* Corresponding author. E-mail: sleijpen@math.ruu.nl. 
t E-mail: vorst@math.ruu.nl. 

0168-9274/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDI 01 68-9274(95) 00085-2 



236 G.L.G. Sleijpen, H.A. van der Vorst/Applied Numerical Mathematics 19 (1995) 235-254 

studied. It is shown that the hybrid part can be selected to reduce the number of Newton steps rather 
than for the reduction of the computational costs for the linear Jacobian systems. 

It is not our purpose to compare hybrid BiCG methods with BiCG or QMR [ 10]. This has been 
done in, e.g., [16,24]. In the present paper, we will concentrate on approaches that help to reduce 
the effects of local rounding errors on the BiCG iteration coefficients in fiybrid schemes. 

Locally accurate BiCG coefficients, i.e., coefficients that ensure at least local bi-orthogonality of 
the BiCG basis vectors, are important for maintaining the convergence of the incorporated BiCG 
process in finite precision arithmetic. When the convergence of the hybrid method exhibits a phase 
of stagnation or a phase of very poor reductions, one often has to rely on the BiCG part in the hope 
to arrive at the phase where further reduction takes place. 

We will see that the hybrid part affects the accuracy of the BiCG part (see Section 4). Our 
analysis will suggest strategies for improvement. To be more specific, in Section 6 we will explain 
why BiCGstab(l) often performs much better for l > 1 than Bi-CGSTAB (= BiCGstab(1) ). GMRES 
[18] and GCR [6] produce residuals that are minimal in the associated Krylov subspaces, while 
methods as FOM [17] or GENCG [6] produce residuals that are orthogonal to Krylov subspaces 
of lower order, and this has been exploited to decrease the effects of rounding errors to the BiCG 
iteration coefficients. We will call this a stabilizing effect. One can form convex combinations of 
these methods: the residual at step l of such a combined method is a convex mean of the lth 
residual of GMRES and the one of FOM. An appropriate convex combination will turn out to lead 
to a very attractive stabilizing hybrid part for hybrid BiCG (see Sections 5 and 7). Due to more 
accurate BiCG coefficients, the stabilized BiCGstab(l) method often converges (much) faster than 
BiCGstab(l), and may lead to convergence in cases where BiCGstab(l) does not converge (see 
Section 9 on numerical experiments). The stabilizing strategy can be implemented in BiCGstab(l) 
without significant computational overhead (the additional operations concern vectors of dimension 
~ < l ÷ 1 ) .  

Also for the stabilized BiCGstab(l) the question arises what the most suitable value for I might be. 
Larger l, say l = 2, 4, or 8, may lead to more accurate BiCG coefficients and to faster convergence. 
On the other hand, a larger l is slightly more expensive per matrix-vector multiplication and this is 
not always compensated by faster convergence. Moreover, the final residual may not quite agree with 
the final approximation (see [22], also for implementational approaches to minimize this effect). 
Based on our analysis of the accuracy of BiCG coefficients, we will suggest strategies in Section 8 
to determine l automatically. We allow l to have a different value in successive iteration phases. 
Numerical experiments in Section 9 illustrate how well our strategies may do. 

BiCG, CGS, and Bi-CGSTAB play a key role in this paper. We briefly discuss these methods in 
Sections 1-3. 

Our approaches for the improvement of the convergence of BiCG in finite precision arithmetic 
work indirectly on BiCG: we will stabilize the computation through adapting the hybrid part in hybrid 
BiCG. In other publications (e.g., [ 1,2,5, 10, 15] ) strategies are discussed that operate directly on 
BiCG. Composite (multiple) BiCG steps are formed in the iterative process whenever standard single 
steps are expected to introduce large rounding errors (near-breakdown). Here, we will not consider 
these so-called look-ahead strategies, but we note that these strategies may be combined with our 
approaches in order to further improve the BiCG part. Our approaches, if applied only, may not cure 
the negative effects of (near-) breakdown. 

Although methods like GMRES and GCR are mathematically equivalent (if  GCR does not break 
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down), GMRES is known to be more stable than GCR. Similarly, as argued in [22], the stability of 
a hybrid BiCG method also depends on its implementation. For these aspects, we refer to [22] ; they 
will not be discussed in the present paper. 

Parts of our presentation in the Sections 4-7 are taken from [20]. 

1. BiCG 

With an initial guess x0, for the solution x of the equation Ax = b, and some "shadow" residual F0, 
BiCG [ 7 ] produces iteratively sequences of approximations xk, residuals rk, and search directions uk 
by 

bl k = r k - -  ~ k U k _ l ,  Xk+l = X k -~- OgkUk, rk+l = r k - -  OlkAUk,  (1) 

where the BiCG coefficients at and flk are such that rk and AUk are orthogonal with respect to 
the shadow Krylov subspace ~k(AT;70) := span(Fo, Aa'Fo . . . . .  (AT)k-1FO). If (~Pk) is some se- 
quence of polynomials of degree k with a nonvanishing leading coefficient 0k then the vectors 
$o(AT)7o . . . . .  ~bk_l (AT)Fo form a basis of/Ck(AT;Fo) and we have (see [23] or [19]):  

0k-I Pk and ak = Pk where ~ Pc := (rk,~b/(AT)r0), Bk 
Oh O'k-I O'k [ O'k := (auk,~Pk(a'r)Fo). (2) 

2. CGS 

Sonneveld [ 23] suggested to rewrite the inner products so as to avoid operations with A v, e.g., 

Pk = (rk, ~bk(AT)?0) = (¢k(A)rk,  to) = (rk, ro), 

and to generate recursions for the vectors 

rk = ¢bk ( A )rk, 

(3) 

(4) 

hoping that the operator ~Jk(A) would lead to a further reduction of the BiCG residual. More 
specifically he suggested to take ~'k = ~bk, with ~bk such that for the BiCG residual rk we have rk := 
qbk(A)ro, which led to the CGS method: rk = c~(A)ro. The search directions for the corresponding 
approximations x~ can be constructed in a similar way. In CGS the BiCG residuals and search 
directions themselves are not computed. 

The matrix polynomial qbk(A) reduces the initial residual r0 (in case of convergence) and one 
may hope that this polynomial reduces the vector ~bk(A)ro even further. Unfortunately, especially in 
the early phases of the process there is often irregular convergence in BiCG, and this is then squared 
in CGS, so that large residuals and very irregular convergence may be expected [ 25 ]. 

The accuracy Illrkl[ - l i b -  Axklll in the final approximation Xk for CGS, and other methods to be 
discussed here, is proportional to the largest residual norm [22]: 

Ilrk[I- lib- axkll <<. k-~Fm~Hrjll, (5) 
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where [[. 11 is the Euclidean norm, ~ is the relative machine precision, and F is a modest multiple of 
the condition number of A. In exact arithmetic [[Irk[[ - l i b -  Axd[ [ = O. Apparently it is desirable to 
avoid large, intermediate, residual norms. 

By very irregular convergence we refer to the situation where the norms of successive residual 
vectors differ in order of magnitude in norm. For instance when [Irk]] << lira-, 1[, the recurrence 
relation for the computation of rk may be perturbed by rounding errors that are relatively small with 
respect to Ilrk-, II but that are relatively large with respect to IIr ll. Experiments show that such local, 
and relatively large errors may affect the speed of convergence of the underlying BiCG process, or 
in other words, local bi-orthogonality of residuals and shadow residuals seems to be essential for the 
convergence of BiCG (cf. [9, 11 ] ). 

In [21 ] several strategies are discussed that minimize the negative effects of large intermediate 
residuals on the accuracy. These strategies are relatively inexpensive, require only a few additional 
lines of code, and work for other hybrid BiCG methods as well. Although they lead to more accu- 
rate approximations, they leave the speed of convergence (essentially) unchanged. These strategies 
do not introduce significant new errors, but, since they work a posteriori on residual vectors and 
approximations, they also do not reduce these errors. Of course such strategies can be combined by 
our approaches to improve accuracy of the BiCG iteration coefficients. 

3. Bi-CGSTAB 

The Bi-CGSTAB algorithm in [25] tries to avoid large residuals and irregular convergence by 
choosing 0k as a product of linear factors that minimize the residuals locally in contrast to the BiCG 
polynomials that "aim" for global minimization. If Ok is the polynomial in Bi-CGSTAB in step k 
then 

~k+l (t)  = (1 - w ~ t ) ~ k ( t )  (6) 

where, for 

:= ~ k ( A ) r l , + l ,  (7) 

Wk m i n i m i z e s  I I ( l  - oJkA) ll : 

(~, A~) (8) 
w~ = w~ R . -  (A~,A~)" 

Bi-CGSTAB shares the advantages of CGS: its steps are (almost) equally inexpensive and it is 
transpose free. Moreover, it often converges (much) faster and it is more accurate. 

Unfortunately, there are also situations where CGS performs reasonable well, while Bi-CGSTAB 
converges poorly or even stagnates. This often happens for discretized diffusion-advection equations 

MR may be expected with large advection terms, when using real arithmetic. In such situations, some w k 

to be relatively small, that is 

(F, AF) 
<< 1 where ~k := LL IIIIA II (9)  
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In finite precision arithmetic, this leads to inaccurate BiCG coefficients [ 12, 19]. As may be expected, 
and as experiments affirm [22], inaccuracies on these coefficients may seriously deteriorate the speed 
of convergence. Although this would help to explain the poor performance of Bi-CGSTAB in the 
situations mentioned above, an inspection of experimental results reveals that stagnation due to 

MR is relatively small inaccurate BiCG coefficients also may occur in situations where none of the ~o t 
(say, I~d > 0.02 for all k; cf. Fig. 1 and [20]).  

4. Towards accurate BiCG coefficients in hybrid BiCG methods 

To understand why the BiCG coefficients can be inaccurate, we concentrate on Pk (see (3)) .  
Similar arguments also apply to trk (in (2)) ;  for more details, see [20]. The value of Pt will be 
inaccurate if it is relatively small with respect to Ilrkll[lF0]]. The question is, when does this occur and 
can it be avoided? As is well known, it will happen if the incorporated Lanczos process nearly breaks 
down (i.e. (dpt(A)ro,~kt(AT)7o) ~ 0 for any polynomial Ct of exact degree k). But an "unlucky" 
choice of ~Ok may lead to a relatively small Pk as well. Here, we concentrate on a typical situation 
for hybrid BiCG, that is, we concentrate on the effect of the chosen polynomials ~t. Therefore, we 
assume that the Lanczos process does not (nearly) break down. 

In hybrid methods that exploit (3), like Bi-CGSTAB, the rounding error et in Pt c~m relatively 
and sharply be bounded by 

I 01) n~Jlrk[[ [[?oll n-~ [(r t , ro)  [ 
where  - -  ( 1 0 )  

I~t[ ~< I(rk,~0)l ~< °l(r t ,~0)l  ~< p~ IlrtllllToll' 

is the relative machine precision, and n is the dimension of the problem. For accuracy reasons we 
would like to have Pt (the scaled Pt) as large as possible. Since rk is orthogonal to /Ck(AT; F0), we 
see that (at least in exact arithmetic) Pt depends on ~bt only through its leading coefficient 0t: 

Pt = ( rt, ~//t(AT)r0) = ( rt, Ot( AT )k?O) 

(cf. (3) ) .  Hence, 

IOk(Atrt,?o)l 10t l  I(Atrt,?0)l 
~ t  = = ( 1 1 )  

Ilrtllll~ol[ II¢'t(a)rtll 117011 
Therefore, we would like to use the polynomial 0t  for which II rt  II/10t I = I I¢'t (a)  rt II/10tl is minimal. 
Since ~bt is a residual polynomial (that is, r t  corresponds to an approximate solution xt) ,  we have 
that ~k(0) = 1. The minimization problem is solved by the OR polynomial ffOR that is characterized 
by the property 

~90R(A)rk _1_ ICt(A; rk), ~O °R is of degree k, and OR Ct (0) = 1 k 

(see [20] ). 
The OR polynomial defines the residual s °R OR = ~t (A)so at the kth step of orthogonal residual 

methods, like FOM [ 17] or GENCG [6] (here with initial residual So = rt). On the other hand, the 
MR polynomial ~MR minimizes 

Ilrtll = I@t(a)rkl[ 
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over all polynomials ~bk of degree k for which ~Pk(0) = 1: the MR polynomial defines the residual 
skMR ---- Wk'I'MR (A)So at the kth step of minimal residual methods as GMRES [18] or GCR [6] (here also 
with initial residual So = rk). The MR polynomial seems to be more appropriate for creating residuals 
rk that are small with respect to the Euclidean norm. Obviously, we would like to avoid to do k steps 
of FOM or GMRES for the computation of rk = ¢ k ( A ) r k  (using So = rk as initial residual), since 
this would be too expensive for large k. The product of M R ( I )  polynomials (i.e. MR polynomials 
of degree 1 ), as in Bi-CGSTAB, is a compromise between the wishes for small residuals and for 

OR ( 7 , 7 ) / ( 7 ,  A 7 )  such inexpensive steps. Although OR(1) polynomials (cf. (6),  now with Wk = w k = 

that ( I  - t o ° a A ) r  / r )  occasionally cure stagnation of Bi-CGSTAB (see Section 5 and also [4] ), 
they also may amplify residuals with respect to I1" II, which may lead to inaccurate approximations 
(as explained by (5))  or even to overflow. 

5. Stabilizing Bi-CGSTAB 

In this section, we concentrate on the case where ~Pk+~ is constructed as the product of polynomials 
of degree 1. Furthermore, ~Pk, 7 and ~k are as defined in Section 3. 

Since (cf. ( 11 ) ) 

~k+l = lOk+~(ak+'rk+~'70)l = I 'o~1 lekll(ak+'rk+,,70)l (12) 
llrk+,llllToll l l(z -,o~a)711 117011 ' 

we may expect to obtain the most accurate BiCG coefficients when using degree 1 factors if we take 
the tOk for which II (I - ~,ka)711/l~'kl is minimal. 

1 If the angle between 7 and A7 (see (7))  is larger than 45 ° (i.e. I~kl < ~v~, cf. (9)) then the 
OR( 1 ) polynomial locally amplifies the residual, 

IIs°RII > 11711 > lls,~ll, (13) 

where 
s °u := ( I  - to°RA)7 and s MR := (I  - toMRA)7, (14) 

while the MR( 1 ) polynomial locally amplifies inaccuracies in Pk+l (cf. (10) and (12) ), 

lls,M~ll II(I--°~RA)71I IIs°RII II(I-°J°RA)Tll 
io~---T - io~Ri > IIATII > ~ = i,oo~1 (15) 

(see [ 20] for a detailed explanation). We should worry about such amplifications if they are extremely 
large or if they occur in a consecutive number of steps as will be the case in a stagnation phase 

_ _  sMR and = S? R, may slow down of the process. For different reasons, both choices rk+l rk÷l 

the convergence: O R ( l )  polynomials by amplifying Ilrk+~ II, MR(1)  polynomials by reducing Pk+! 
(cf. (10))  and thus affecting the accuracy of the BiCG coefficients. The reducing effect of MR(1)  
polynomials, due to small I~1, often seems to accumulate (cf. [20] ). In examples, for Bi-CGSTAB, 
one may observe that Pk+l is more or less proportional to ]-Ij~<k I~Jl: I~1 is the factor by which 
the M R ( l )  polynomial reduces Pk+l as compared with the OR( I )  polynomial (see (12) and (16) 
below). Apparently, Bi-CGSTAB may converge poorly not only if Io~RI is small but also if in a 
consecutive number of steps ItoMR[ is relatively less than, say 0.7, i.e. I~kl < 0.7 (cf, (9)). 
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The following property expresses the opposite effects of the OR(1) polynomial and the MR(1)  
polynomial (cf. [ 20, Corollary 3.1 ] ) : 

1 IisORll IIsl  ll IIs? ll / 

- I kl 2 -  11711 (16) IIs? ll =  - lls  ll, I -[ kl 
I ' 

Especially if in Bi-CGSTAB, the MR( 1 ) part almost stagnates in a consecutive number of steps, it 
is important to have accurate BiCG coefficients, because in such a case further convergence may only 
be expected from the BiCG part of Bi-CGSTAB. Unfortunately, as explained above, this is precisely 
the situation where the MR( 1 ) polynomials would spoil the accuracy of the coefficients. In that case 
the OR( 1 ) polynomials spoil the accuracy of the approximations or lead to overflow. Therefore, we 
have to find a cure in other modifications. 

With ~k as in (9),  we propose to take 

&k [17]] (I  wkA)7. (17) 
wk = T-~  max (l~kl, 0.7) IIATl[ ' rk+, = - 

Since 

11711 ok= 1 11711 
% = IIaTIl' % a t  IIaTIl' (18) 

we see how the choice in (17) combines the OR( 1 ) and the MR( 1 ) polynomial. The resulting first 
degree polynomial 1 - wtt only mildly amplifies both ]lrk+l ]] and the rounding errors in the BiCG 
coefficients in situations where the OR( I )  polynomial would strongly amplify IIrk+lll and where 
the M R ( l )  polynomial would strongly amplify the rounding errors. However, although, this often 
cures our problems, it cannot always prevent completely a poor convergence of Bi-CGSTAB (see 
Section 9).  For a more rigorous explanation for the factor 0.7 in (17),  see the end of Section 7. 

6. BiCGstab(/) 

In BiCGstab(/) [19] (see also [12,22])  the polynomial ~Pk is constructed as a product of poly- 
nomials of degree l: for k = ml, we have that ~bk+t = p(m) . ~Jk = p(rn) . . . . "  p(O) where, for 

7 := ~llml(A)rrnl+l = ~ m l ( A ) ~ ) m l + l ( A ) r o ,  (19) 

the polynomial pC,,) = pMR minimizes IIP~m)(A)711 over all polynomials pC,,) of degree l for which 
p"m)(o) = 1. The residual rml+l at the ( m + l ) s t  sweep of BiCGstab(/) is of the form rml+l = P~R(A)7, 
the polynomial ~bmt+t is given by Omt+t = p~m. ~,,t- 

The implementations in [ 19, 22] use simple polynomials like t i in intermediate steps, that is, for 
k = ml 4- i, i 4= O, they compute Pk from Ai7 (cf. (2) ) .  Thus they avoid the breakdown problems 
in the intermediate steps that would have occurred from degenerated MR polynomials. If, for i = 1, 
the angle between 7 and A7 is larger than 45 ° then the inequalities in (15) are now also valid. The 
first inequality in (15) shows that the first degree polynomial t may lead to more accurate Prom 
than the MR(1)  polynomial. A similar statement can also be made with respect to polynomials of 
degree i > 1. Moreover, even if the Pml+i decrease in the intermediate steps, this does not affect the 
accuracy of the BiCG coefficients in the next sweep. Any intermediate reduction plays no role since 
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fi,,t÷t depends only on the new polynomial pC,,) and, of course, the value of Pml+l depends on the 
previous polynomials as well (@mt+t = p(m). ~bmt). Apparently, more accurate BiCG coefficients are 
to be expected from BiCGstab(l) with l > 1 than from Bi-CGSTAB (=BiCGstab(1) ), also since it 
is less likely that p<m) will lead to stagnation for larger values of I. 

To compare the convergence of Bi-CGSTAB with BiCGstab(l), we should compare the results of 
m sweeps of BiCGstab(1) with the results of ml sweeps of Bi-CGSTAB: then, for both methods, the 
residual vectors can be expressed by a polynomial in A of degree 2ml applied to r0. Moreover, also 
the computational costs are almost equal in this case. 

For two reasons, we may expect better convergence for BiCGstab(/): 
( ! ) One sweep of MR(l)  may be expected to result in better reduction of the norm of the residual 

than l steps of MR(1) ,  because of the superlinear convergence of the MR approximations 
(note that GMRES is an implementation of the MR approach), 

(2) l steps of MR( 1 ) may contribute l times to a decrease in fit (hence contributing l times to 
increasingly larger rounding errors in Pc), while one sweep of MR(1) contributes only once; 
the decreasing effect in each single step of MR(1) may be expected to be comparable or 
worse than the effect of only one sweep by MR(l) .  

BiCGstab(/) is an improvement over Bi-CGSTAB both in the MR part as well as in the BiCG part: 
( 1 ) the MR part will produce residuals with smaller norm and (2) the convergence of exact BiCG 
will be better maintained. In many applications, the speed of convergence of the BiCGstab methods 
appears to be determined largely by the underlying BiCG process and then a better recovered BiCG 
part is much more important than the MR reductions. In these situations, the fit for Bi-CGSTAB may 
reduce to the order of magnitude of ~. In such a case, none of the digits of the BiCG coefficients 
is correct and BiCG, and consequently Bi-CGSTAB, does not converge. Taking l = 2 often suffices 

to keep fit large enough for convergence, larger than, say, ~1/3 (cf. [9, Section 4] ). Occasionally, a 
larger l (l = 4 or even l = 8) is necessary. 

Although the occurrence of MR(l)  polynomials with a relatively small leading coefficient may be 
expected to be less for larger l, almost degenerated MR polynomials or small leading coefficients 
in a consecutive number of sweeps may still spoil the accuracy of the BiCG coefficients. There are 
two obvious approaches for avoiding such a situation: select another polynomial p(m) of degree l, or 
increase l even further. In Section 8, we will discuss strategies for adapting the value of l automatically 
(that is, the value of l may vary per sweep). In the next section, we will propose polynomials pCm) 
of degree l that are more appropriate than pMR, similar to our approach to stabilize Bi-CGSTAB. 

7. Combining MR and OR polynomials 

Also for l > 1, one may consider OR polynomials as an alternative for (almost) degenerated MR 
polynomials. That is, one may take p<m) = pOR, where pOR is the polynomial of degree l for which 
pOR(0)  = 1 and S OR :--~ ppR(A)'~ _L /Ct(A;~). The OR(1) polynomial minimizes IIP<m>(A) ll/Io21, 
where o2 is the leading coefficient of p~m). Therefore, among all polynomials of degree l, the OR(1) 
polynomials may be expected to lead to the most accurate BiCG coefficients (cf. Section 4 and (12) 
in Section 5). Similarly as for l = 1 (see (16)) ,  the OR polynomial and the MR polynomial have 
opposite effects: with s MR := pMR(A)~, we can state the following result (cf. [20, Corollary 3.2] ). 
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Theorem 1 ([20, Corollary 3.2], see also [3 ,26]) .  For some ~ E (0, 1], we have 

I lIs~RII, IIsORII ~ IIs'~II x / 1 - - ~  2 IIs~ll (20) 
IIs°~ll = ~ Ito°~l ItoMRI ' - I I s ? ~  I1' 

where toOR and to uR are the leading coefficients o f  pOR and, respectively, pt MR. 

The coefficient & ~> 0 is a scaled version of ItoMRI and it can be computed in BiCGstab(l) and in 
the modified version that we will now propose, at almost no additional computational costs. 

As for l = 1 (cf. (17) ), one can compromise between the MR polynomial and the OR polynomial 
in order to obtain more accurate BiCG coefficients without amplifying the residuals with respect to 
I1 II. We suggest to take for rmt+t, 

Y ( s ~  - s~R), (21) r , , , , + ,  = s?_",  - -  

where 

> 0 is such that x/1 - ~2 _ IIs?RII and 3' .= max(~ ,o .7 ) ,  (22) 
S MR 1-111 

or, equivalently, 

1 - ~TpMR ~ 7 -  ~2 oR IIs~'RII 
pC,,) = 1 - if)2 ' + i -_--~-5 Pt where ~ := tlsORi I and max(~ ,  0.7). (23) 3' 

- =  

The relations (21) and (22) express the new residual in terms of MR residuals, while (23) shows 
that the polynomial p(m) is a convex combination of the MR polynomial and the OR polynomial. 
The equivalence is not trivial; for a proof we refer to [20, Theorem 3.1]. In [20] also suggestions 
are made for an efficient and stable implementation. Actually, the additional computational costs that 
are required for the computation of rml+l by (21), instead of rml+l = S MR, are negligible: only some 
operations with vectors and matrices of dimension smaller than l -t- 1 are involved. 

Observe that for l = 1 we have precisely the compromise as suggested in (17), since s~ R = 7. 
Of course, rml+l can also be obtained as a convex combination of the MR(l)  residual s~ R and the 

OR(l)  residual sOR: rml+t = ((1 -- ~3")$MR --I- (~3' -- ~2)sOR)/(1 -- ~2) (cf. (23)) .  
If, in the expression for p(m) in (23), we take y = ~,  then we obtain for p(") the MR polynomial, 

while for 3/= 1 /~  we have the OR polynomial. The value 3' = 1 would be some kind of average. 
We suggest to take for 3' the maximum of ~ and 0.7 in order to profit from the fact that the MR(l)  
polynomial reduces 7 strongly with respect to I1" II (IIs~RII << 11711) if ~ ~ 1, and we still avoid the 
situation where the MR polynomial may lead to large rounding errors in the BiCG coefficients in the 
case of (almost) stagnation in the lth step of MR (then II s?RII ~ II s?~ I I and ~ << 1 ). Obviously, the 
maximum of ~ and any other nonsmall positive constant 12 less than 1 would have a similar effect; 
in our experiments the choice/2 = 0.7 was quite satisfactorily. 

8. Varying I 

If, precisely in the lth step, MR does not reduce the residual well with respect to I1" II, then 
more accurate BiCG coefficients and faster convergence are to be expected for larger l where such a 
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reduction does happen. If, on the other hand, the lth step of MR reduces well, then the reduction by 
OR(l)  will be comparable (since then ~ ~ 1 and IIs RII IIs°RII; cf. (20)) ,  and it is not necessary to 
increase l for improving the accuracy. Counting only the costs associated with n-vectors, i.e. vectors 
of the dimension of the original problem, BiCGstab(l) requires 2l + 10 AXPYs (vector updates) 
and l + 7 DOTs (inner products) per 4 MVs (matrix-vector multiplications). Furthermore, storage 
is required for 21+ 5 n-vectors (cf. [22, Section 8] ). The costs associated with vectors of dimension 
~< l + 1 are negligible. Typical choices for 1 are 1 = 1 (Bi-CGSTAB), 2, 4, or 8. Therefore, it is 
only slightly more expensive to use an l that is somewhat larger. Moreover, due to large intermediate 
residuals (see [22] ), much larger l lead to less accurate approximations (cf. (5) ) .  For these reasons, 
it is advisable to keep 1 limited (say ~< 8). 

We will discuss briefly several strategies for the dynamical determination of I. 
In each sweep, we start with rk and 1 = 1, and we increase l to 2, or to 3 . . . . .  up to l = /max, if 

accurate computation of the BiCG coefficients seems to require such an increase. We try to avoid too 
small values for ~,, say less than t~ := ~1/2 (~ is the relative machine precision). 

As experiments indicate, lmax = 8 seems to be an appropriate value. 
The choice t~ = ~/2  expresses our aim to keep the local rounding errors in the BiCG coefficients 

relatively less than this value. We have experimental evidence that the BiCG recurrence relations may 
be perturbed by errors of this order of magnitude without affecting the convergence of BiCG too 
much [ 9, 20 ] ; see [ 11 ] for an explanation. 

8.1. Using the size of Pk 

To avoid a small Pk+/, it is tempting to 

_ I(rk+t, V0) I 
increase 1 i f /~< Imax and if Pk+t Ilrk+tllll 011 ~< 8. (24) 

This criterion might lead to additional costs, since rk+t may not be needed when l has to be 
decreased. Moreover, we should increase l before pk+t is too small and not afterwards. Although 
correction afterwards may seem doubtful, numerical experiments indicate that the a posteriori approach 
works well: it prevents future Pk tO become much smaller than 8. We do not have a theoretical 
explanation for this phenomenon. 

The idea of using Pk for monitoring the performance of Bi-CGSTAB can also be found in [ 14], 
where a restart is suggested when Pk is less than 8. As has also been observed in [ 14], a restart is 
not likely to cure stagnation, since after the restart Pk may again rapidly be smaller than t~. 

In [2, 13], O'k is USed in BiCG (Lanczos), and CGS, to make a decision for look-ahead steps (for 
the BiCG part). 

8.2. Computational details and costs 

Obviously, we have to compute 117011 only once in the iterative process. 
In the implementation of BiCGstab(l) in [19], the vectors ri, A?i . . . . .  Ai~ with ri := ~bk(A)rk+i 

are computed explicitly in the intermediate steps k + i, i = 1 . . . . .  l. This is done very efficiently. The 
residual rk+t is not formed until i = I. Then, for R := [rl [ A~t I . . .  [ Atrl] (note that ~ = rt; cf. (19)) ,  
the vector yMR E ]R l+l is determined for which rk+t = RY MR, and r~+t is computed. Except for the 
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AXPYs in the computation of rk+t from Ry MR and the DOTs in V := RTR, all other computations 
for yUR require only operations associated with vectors of dimension l + 1 at most. For instance, 
the "minimal residual" yMR will appear as the solution of a least square problem that can be solved 
from normal equations that can be formulated in terms of the l × l right lower block of V. A similar 
observation can be made for the computation of the rk+t given by (21): the vector y and the scalar 

needed for this rk+l = Ry, the leading coefficient to of the polynomial pC,,) in (23),  and even the 
norm [Irk+tit = ~ can be computed from the elements in V (cf. [20] ). Since 

( rk+t, ro) = w( AtFt, ro) , 

and since the inner product (AIFI, ?0) has to be computed anyway, the value Pk+t in (24) can be 
computed from V (and (AtFt,?o)). If the present value of l is to be preferred, then no additional 
costs are involved; otherwise, if l has to be increased then the computation of V requires another 
½(l + l ) ( l +  2) DOTs. 

In one sweep of BiCGstab(1), checking the criterion in (24) would require an additional number 
of ~<j<~t ½J(J + 1) = ~I(1 + 1)( l  + 2) - 1 DOTs. As compared with Bi-CGSTAB, BiCGstab(2) 
requires an additional 2 AXPYs and 1 DOT per 4 MVs, while an 1 = 1 step with (24) requires no 
additional work, and an l = 2 step requires another 2 AXPYs and 2.5 DOTs per 4 MVs. Apart from 
the fact that we do not have to worry about the choice of l if we use a criterion like (24),  we may 
save some computational costs. If Imax = 2 and when the strategy with variable l converges as fast as 
BiCGstab(2),  then we may save computational costs as soon as 34% of the steps are 1 = 1 steps. 

By skipping the odd values for l, we may save computational costs too. Because, for real-valued 
problems the situation of complex eigenvalues of A with relatively large imaginary parts may be ex- 
pected to be captured by polynomials of even degree. For such a situation, we expect no improvement 
by increasing the degree of the polynomial by only 1 to a polynomial of odd degree. Experiments 
seem to justify this point of view. 

8.3. An efficient approach 

Although the computation of I lrk+t[[ does not require additional AXPYs, especially if larger values 
of l are allowed (/max /> 8), it may become expensive. The following criterion is relatively cheap 
(per 4 MV, an additional 2 DOTs for computing IIAt~/II). 

Increase l if I ~</max and if ~k+t .-- I(At~z'~°)l 
iia/~tlllV011 .< 8. (25) 

The value of the scalar ~k+i indicates the accuracy of Pt+i for intermediate steps where Pk+i is 
computed from AiFi (see the discussion in the second paragraph of Section 6). Since lip <m) (A)~tll/Io~l 
may expected to be (much) smaller than IIAt  ll, the value of Pk+t will be larger than 6 whenever 
~k+t >~ 8. Therefore, as compared with criterion (24),  this criterion might lead to sweeps with larger 
values of I. 

8.4. Using the leading coefficients of MR polynomials 

The most obvious strategy to choose l would be to increase l as long as ~ (cf. (22))  is not large 
enough. However, it is not clear what "~ is not large enough" means. Obviously we should avoid 
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extremely small ~ (e.g. ~ ~ ( ) ,  but we should also avoid consecutive ~ 's  that are smaller than, say, 
0.7. Unfortunately, we only know that ~ is too small when it is too late: if Pk+~ < t~ then, apparently, 
~ ' s  from preceding sweeps have been too small. 

Now, recall that, for l = 1, often Pk seems to decrease proportionally to the product of preceding 
I jl (see Section 5). A similar observation can be made for larger l (& = I jl for l = 1). 

If ,ok is not small (say, of order 0. l)  we may permit a significant reduction of P~+I (say, with 
an ~ ~ 0.1). On the other hand, if Pk is small (say, of order 10 -6) we should avoid an additional 
reduction ( ~  should be larger than, say 0.7). Moreover, from a consecutive number of l = 1 steps 
with ~ ~ I 01 we expect a similar reduction as from a consecutive number of l steps with ~ ~ I&0} t. 
Therefore, for larger l we may allow smaller ~ compared with the ~ for l = 1. Our next criterion 
takes these observations into account. 

Increase l if l ~ /max and if ~<1) ~< , (26) 

with, say ~,(l) := 2 / ( l +  1) and v "- 1 
"--8"  

With ~,(l) = 1 we do not allow smaller ~ for larger l, while with ~(1) = 1/ l  we may anticipate 
not to improve the accuracy for larger l. Our suggestion u(1) = 2 / ( I  + 1) is a compromise. 

To apply the criterion in (26),  we need ~ and Pk+t. As explained in Section 8.2, these values can 
be computed from V. 

9. Numerical experiments 

In this section, we will focus on the effects of varying l using the criteria ( 2 4 ) - ( 2 6 ) ,  but we will 
also see numerical illustrations of our observations in the other sections of this paper. 

We use the same test problems (linear problems) as in [20]. 
As we have argued before, the numerical problems in computing the BiCG coefficients typically 

occur in stagnation phases of the hybrid iteration process. Such phases are quite common in real- 
life problems. In order to make these also visible for simple model problems we :have omitted 
preconditioning. 

All figures display: 
• the log1• of the norm of the true residual b - Axk  for k = ml ( ); 
• the log1• of Pk = I (rk, ?0) I/( II IIII r011 ), also for intermediate k ( . . . .  ); 
• the log1• of ~ = I ( a u k , 7 o ) l / ( l l a u k l l l l T o l l )  ( . . . . . .  ) .  
If the value of l was allowed to vary per sweep, then the figures also show: 
• the value of I per sweep (indicated by + 's: the + 's give the values of - l ,  with l as used at the 

sweep started at the 2kth MV).  
Finally, Figs. 1-3 show 
• the lOgl0 of & with ~ as in (22),  and ~ = I kl for l = 1 (indicated by o's).  
The scalar O'k is the scaled version of o'k (cf. (2),  (3) and (10)) .  From the figures, we see that, 

for our test problems, the coefficients Pk and ~k are almost similar and our approaches to minimize 
rounding errors in Pk have about the same effect on irk. 

All computations were carried out in finite precision arithmetic with relative machine precision 
= 2.2 10 --16. 
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Test problems 

For the f irst  test problem,  we considered the partial differential equation 

- uxx - uy~. - uz: + 1000u~ = f ,  (27)  

defined on the unit cube with Dirichlet boundary conditions, where f is such that 

u = e x p ( x y z  ) sin(Trx) sin(Try) sin(Trz ) 

is the solution. This equation was discretized by 10 x 10 × 10 finite volumes and central differences 
for ux, resulting in a 7-diagonal linear system of order 1000. 

For the second and third test problem, we have discretized 

- uxx - uy:. + a (xux + yUy) + bu = f ,  (28)  

on the unit square with Dirichlet boundary conditions, with 63 × 63 finite volumes, a = 100 and 
b = -200 ,  and 66 × 66 finite volumes, a = 1000 and b = 10, respectively. The function f is such that 
the discrete solution is constant 1 on the grid. 

9.1. Taking larger values f o r  l and combining M R  with OR polynomials  

In this subsection, we briefly discuss Figs. 1-4, which illustrate the effect of replacing l = 1 by 
l = 2 and the effect of combining the MR polynomials with the OR polynomials. For an extensive 
discussion we refer to [20]. 
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In Figs. 1 and 3 we see that the scalars Pk (and o'k) decrease to values 10 -14 or less, although the 
t~1 are not extremely small. At most two digits of the BiCG coefficients ak and/3k may be expected 
to be correct if Pk "~ 10-14, which explains well the stagnation of the method. 

For the first test problem, as shown in Fig. 2, increasing l to l = 2, leads to convergence. The 
~'s in this test problem of BiCGstab(2) are larger than the ~'s (= I kl's) of Bi-CGSTAB, and the 
frequency of a contribution to an increase of the rounding errors is halved. The combination of these 
effects appears to be enough to prevent ~ and o'k from becoming too small• Although, for the second 
test problem (of which the results are not displayed here), the values of the Pk and ~-~ improve 
by switching to BiCGstab(2), this is not enough to avoid stagnation: the ~'s for BiCGstab(2) are 
smaller than for Bi-CGSTAB, but this is not completely compensated for by halving the frequency 
of contribution. 

For the second test problem, Fig. 4 shows the effect of stabilizing, that is, of combining MR(1) 
and OR(I)  polynomials as explained in (17) (and (21)).  For this second test problem, stabilizing 
keeps the values of Pk and ~k large enough for sufficiently accurate BiCG coefficients. For the first 
test problem, the improvement from this approach (not shown here) was not enough to maintain 
convergence of the incorporated BiCG process. The amplification of the residual, though mildly, even 
led to divergence. 

For the third test problem, a combination of increasing l to l = 2 with the stabilizing strategy (not 
shown here) was needed to maintain convergence (of BiCG). 

Since the costs involved in stabilizing are negligible and the resulting BiCG coefficients may be 
significantly more accurate, we will employ this strategy in all our further experiments. 
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9.2. Various increasing criteria 

For a subset IL of  N, BiCGstab(L)  is the BiCGstab( l )  method in which we allow l to have a 
different value from the subset L in each sweep. In our experiments, L = { j  E N [ j ~ 8} = {1 : 8}.  
We fol lowed the strategy as explained in Section 8 using the criteria ( 2 4 ) - ( 2 6 )  with 8 = ~1/2 
( ~  10 -8)  and the values for v and v as suggested there. 
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Fig. I1. Stab. BiCGstab((1 : 8}) using (25). Fig. 12. Stab. BiCGstab({l : 8}) using (26). 

The results for the three test problems are shown in the Figs. 5-16 and will be discussed below. 
Each of the criteria seems to prevent the values for Pk and ~'k to decrease (much) below ~. The 

accuracy in the BiCG coefficients appears to be enough to survive the stagnation phase. All criteria 
lead to convergence for the test problems considered here, although they did not all have the same 
speed of convergence. Recall that for convergence, it was not sufficient to stabilize Bi-CGSTAB, for 
the first and third test problem. 
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Although the criterion (24) is applied a posteriori, this seems to keep the values for ,~k larger than 
,~ 6 (see Figs. 6, 10 and 14). 

Observe that the minimal values for ~k are also not much smaller than 6. In general the &k seem 
to be less than Pk. Therefore, criteria that try to prevent ~k, rather than P"k, from becoming too small, 
may be more effective. In [ 13], in the context of look-ahead strategies for BiCG methods, a similar 
observation is formulated. 
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Criterion (25) seems to allow values for Pk (and ~k) that are somewhat smaller than ~, but 
still acceptable (see Figs. 7, 11 and 15). In all the test problems, the values for Pk associated with 
criterion (25) are smaller than the ones associated with criterion (24). This seems to contradict our 
observation in the paragraph following (25). However, in the discussion there, we assumed p/m) to 
be close to the OR polynomial, as will be the case if MR (= GMRES) reduces well at the /th step 
with respect to the ( l -  1)st one. For our test problems, MR does not make (much) progress, in the 
early stage of the process; the value of ~ is (often) less than 0.7 and we will make stabilizing steps. 
This will lead to polynomials pCm) for which Ilp~m)(a)"r[[/lwl may be slightly larger than [[AtFII, 
resulting in over-estimates ,~ for Pk. 

The criteria (24) and (25) discussed above, allow the values for Pt to decrease rapidly as long as 
they are larger than 6. This means that, already in an early stage of the process, the BiCG coefficients 
will be correct to only approximately 7 digits. Although such an accuracy appears to be sufficient 
for maintaining convergence of BiCG, it may slow down this convergence: for the test problems, the 
stabilized BiCGstab({1 : 8}) methods converge slower than stabilized BiCGstab(2) when using the 
criteria (24) and (25). Criterion (26) is designed to control the cumulative reduction of fit due to 
a consecutive number of small ~, and it seems to work well (see Figs. 8, 12 and 16): this criterion 
leads to a slower decrease of ,~t than the other two. For the first and third test problem, this is 
rewarded by faster convergence. The improvements by more accurate BiCG coefficients is paid for 
by an l that is larger on average. Although, as a consequence, the steps are more expensive, less steps 
are needed and the overall efficiency is better. A small decrease in the number of iteration steps will 
already compensate for the small additionals costs due to larger l. 

For real-valued problems for which the matrix A has conjugate eigenpairs with relatively large 
imaginary parts, the MR polynomial of odd degree (l > 2) may often be approximately equal to the 
MR polynomial of even degree ( l -  1): in that case the odd degree polynomials will have a small 
leading coefficient. Since criterion (26) controls the size of the leading coefficient, the resulting l 
(the l of the sweep) will seldomly be odd when larger than 2. Figs. 8 and 12 (but also Fig. 16) 
nicely illustrate this observation. 

The criteria (24) and (26) rarely need the maximum value lmax = 8 for l. Criterion (25) is less 
efficient; it seems to select either minimal values (l = 1 or l = 2) or the maximum one (l = 8). 

The criteria (24) and (25) seem to favor low values for 1 (as l = 1 ). However, for the first and the 
third test problem, when considering the speed of convergence (also for stabilized Bi-CGSTAB and 
stabilized BiCGstab(2)),  the value l = 2 seems to be the optimal one; for the second test problem, 
l = 1 might be more appropriate. These values are precisely the ones that are favored by criterion 
(26). 

The value l = 4 is occasionally selected by criterion (26) for the first test problem (Fig. 8), 
keeping ~ larger than ~. The ~ for stabilized BiCGstab(2) decreases below ~ (Fig. 5), and we see 
a convergence that is smoother and faster in Fig. 8 than in Fig. 5. The improvement is not impressive 
since it takes place only at a final stage of the process. 

Criterion (26) seems to be attractive for finding optimal values for I. 
Figs. 5-16 confirm the importance of having BiCG coefficients that are locally rather accurate: the 

method with, on average, the most accurate coefficients exhibits the best convergence properties. We 
conclude that it is helpful to try to keep the Pk as large as possible. Although criteria that are directly 
based on the size of ~ may maintain convergence, they may also lead to less efficient computations 
than criteria that try, in addition, to prevent fit from decreasing too quickly. 
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10. Conclusions 

For convergence of the BiCG part in hybrid BiCG methods, it is important to compute the BiCG 
coefficients accurately. The polynomial associated with the hybrid part can be selected to minimize 
locally the rounding errors in these coefficients. 

The (dynamical) combination of two strategies for the improvement of the local accuracy seems 
to be attractive: (i) take a product of degree l polynomials with l > 1 (l = 2, 4 or 8) as in 
BiCGstab(/) rather than the product of degree 1 polynomials as in Bi-CGSTAB (cf. Section 6) ; (ii) 
try to avoid almost degenerated degree l polynomials by forming occasionally convex combinations 
of the polynomials associated with /-step MR residuals and /-step OR residuals (cf. Sections 5 and 
7). 

These approaches often lead to improved convergence and may help to overcome phases of stag- 
nation. The additional computational costs per sweep involved in forming the convex combinations 
of MR and OR results are negligible. The additional costs associated with larger l are small relatively 
to the costs of the matrix-vector multiplications. 

It is possible to change the value for l in each sweep. We have proposed criteria to identify, 
per sweep, a small l that leads to locally accurate BiCG coefficients. Especially criterion (26) 
seems to find (relatively inexpensively) the most appropriate values for I. However, the additional 
improvements by varying l are small as compared with the improvements by following strategies (i) 
with fixed I > 1 and (ii). 
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