
Beauty in the Beast
A Functional Semantics for the Awkward Squad

Wouter Swierstra Thorsten Altenkirch
University of Nottingham
{wss, txa}@cs.nott.ac.uk

Abstract
It can be very difficult to debug impure code, let alone prove its cor-
rectness. To address these problems, we provide a functional spec-
ification of three central components of Peyton Jones’s awkward
squad: teletype IO, mutable state, and concurrency. By construct-
ing an internal model of such concepts within our programming
language, we can test, debug, and reason about programs that per-
form IO as if they were pure. In particular, we demonstrate how our
specifications may be used in tandem with QuickCheck to automat-
ically test complex pointer algorithms and concurrent programs.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.5 [Software
Engineering]: Testing and Debugging; F.3.1 [Theory of Computa-
tion]: Logics and the Meanings of Programs

General Terms Experimentation, Languages, Reliability, Theory,
Verification.

1. Introduction
While we have a solid understanding of pure and total functions,
programming with and reasoning about effects is much more dif-
ficult. Every functional programmer worth his salt knows how to
reverse a list, debug the code, and prove that list reversal is its own
inverse. How many could do the same when asked to implement
queues using mutable variables?
We address this imbalance by providing a lightweight semantics

for side-effecting functions. We demonstrate how to construct pure
functional programs that precisely specify the behaviour of effects.
Our functional specifications are both pure and executable; as a re-
sult we can freely test and debug effectful code in pure functional
languages such as Haskell [29]. Reasoning about impure code is
reduced to reasoning about the pure functional programs we de-
scribe. As we can utilise Haskell’s expressivity when specifying
our semantics, we can capture a wide range of side-effecting func-
tions:

• We begin by describing how to conduct teletype IO (Section 3).
Although the programs we end up with are classic examples of
interactive structures in functional programming, the remainder
of our paper deals with more complex problems in a similar

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’07, September 30, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-674-5/07/0009. . . $5.00

vein. To illustrate how to reason with our semantics, we prove
that the echo function does indeed echo any character entered
by the user.

• We continue by describing a pure model of mutable state (Sec-
tion 4). We demonstrate how our semantics may be used in tan-
dem with QuickCheck [7] to test a reverse operator on queues
implemented using mutable variables and verify that it runs in
constant space.

• We show how concurrent processes can be modeled as func-
tions parametrised by a scheduler (Section 5). Using this intu-
ition, we provide a novel semantics for Concurrent Haskell. We
implement an example scheduler and use QuickCheck to verify
that a Haskell implementation of channels never duplicates or
loses data.

• Finally, we discuss how our functions can be made total (Sec-
tion 6). By restricting ourselves to a total framework, we can
avoid some of the hairier corners of Haskell’s semantics – such
as reasoning in the presence of bottoms.

The pure specifications we present are closely related to the de-
notational semantics of effects. Implementing them in a functional
language, however, is a valuable and novel contribution to the func-
tional programmers’ repertoire. It is no longer necessary to treat all
side-effecting functions as opaque black boxes: it is finally possi-
ble to assign some kind of meaning to programs in the IO monad
without leaving the realm of functional programming.
Having such meaning is not only of theoretical interest. Pro-

grammers can immediately profit from our specifications. They can
test code in the IO monad using QuickCheck without resorting to
unpredictable hacks such as unsafePerformIO. As our specifica-
tions consist entirely of pure values, they can examine the contents
of the heap when debugging or experiment with different schedul-
ing algorithms when executing concurrent code. Programmers can
study our specifications, without having to learn formal semantics.
While the semantics themselves may not be new, it is only by taking
it off the blackboard and into the hands of working programmers
that theory pays off in practice.
Naturally, we are still left with one central obligation: to show

that the actual code the compiler produces matches our functional
specification. Although we will discuss different approaches to this
problem (Section 8), this issue is beyond the scope of the current
paper.

2. Monadic Input/Output
Haskell encapsulates any potentially harmful side-effects in the IO
monad [31]. Any side-effecting function has a type that marks it as
potentially dangerous. For instance, the function getChar reads a
character from the terminal: it may not format your hard disk, but
carelessly executing it might break referential transparency. Its type

tells us that it is a side-effecting function that will return a value of
type Char:

getChar :: IO Char

Similarly, putChar prints a given character to the teletype. As we
are not interested in the value putChar returns, but rather in the
effect its execution entails, its result type is IO ().

putChar ::Char→ IO ()

There is no safe way to extract the actual character read using
getChar – doing so would allow seemingly innocent functions to
have side-effects: the exact problem we were trying to avoid in the
first place. Instead, values in the IO monad are combined using the
following two operations:

return ::a→ IO a
(>>=) :: IO a→ (a→ IO b) → IO b

The return function lifts a pure value into the IO monad. The op-
erator >>=, usually pronounced ‘bind’, performs the computation
associated with its first argument and passes the result to its second
argument. As these are the only primitive operations, programmers
must sequence individual computations explicitly using the>>= op-
erator.
As computations are first class values, we can define new con-

trol structures. The >> operator sequences two computations, but
discards the result of the first. We can construct a list of computa-
tions, and perform them one by one using the sequence combina-
tor:

(>>) :: IO a→ IO b→ IO b
p>>q= p>>=!x→ q
sequence :: [IO ()] → IO ()
sequence [] = return ()
sequence (x : xs) = x>> sequence xs

Using these building blocks it becomes straightforward to write
simple interactive programs:

echo :: IO ()
echo= getChar>>=(!c→ putChar c)>> echo
putString ::String→ IO ()
putString = sequence ◦ map putChar

Haskell offers syntactic sugar to make large monadic compu-
tations a great deal more palatable. A series of monadic expres-
sions can be sequenced using the do notation. We can also write
the above echo as:

echo= do c← getChar
putChar c
echo

Haskell provides a large number of built-in functions that can
perform all the real world side-effects that every serious program-
ming language should accommodate. The IO monad makes sure
that any such side-effecting functions are branded as hazardous.
Unfortunately, but unavoidably, side-effecting functions such as

putChar are primitive and are not implemented by a pure Haskell
expression. This makes debugging or reasoning about such code
inherently difficult. The IO monad may prevent unexpected side-
effects, but we need a system of formal semantics outside our
programming language to prove properties of putChar. Throughout
this paper, we explore a different avenue of research: we will model
getChar and putChar by pure functions in Haskell.

3. Teletype IO
We begin by defining a data type IOtt that specifies the primitive
interactions that can take place with the teletype in Listing 1.
Besides getting and putting a single character, we can end the
interaction by returning a value.

Listing 1 Teletype IO

data IOtt a=
GetChar (Char→ IOtt a)
| PutChar Char (IOtt a)
| Return a

instanceMonad IOtt where
return = Return
(Return a) >>=g= g a
(GetChar f) >>=g= GetChar (!c→ f c>>=g)
(PutChar c a)>>=g= PutChar c (a>>=g)

getChar :: IOtt Char
getChar = GetChar Return
putChar :: Char→ IOtt ()
putChar c= PutChar c (Return ())

This specification is far from original. Gordon describes a simi-
lar approach to doing teletype IO in his thesis [13], and cites related
work dating back more than twenty years [16, 19]. Rather than use
such structures to perform IO, however, we use them to construct a
pure model of functions in the IO monad.
Quite conveniently, the IOtt data type also forms a monad.

The return function corresponds to the Return constructor. The
bind operator recurses through the interaction specified by its first
argument and feeds the computed value to its second argument.
Using this data type we can define the getChar and putChar

functions as if they were any other functions in our language.
Although they will not actually print characters to the teletype, we
can use them to specify any interaction.
Given a value of type IOtt a, we can calculate its behaviour.

What should the result of an interaction be? From a user’s point of
view one of three things happen: either a value of type a is returned,
ending the interaction; or the interaction continues after a character
is read from the teletype or printed to the screen. Our Output data
type in Listing 2 captures exactly these three cases.

Listing 2 Teletype IO – semantics

dataOutput a=
Read (Output a)
| Print Char (Output a)
| Finish a

data Stream a= Cons{hd ::a, tl ::Stream a}
runtt :: IOtt a→ (Stream Char→ Output a)
runtt (Return a) cs = Finish a
runtt (GetChar f) cs = Read (runtt (f (hd cs)) (tl cs))
runtt (PutChar c p) cs= Print c (runtt p cs)

Once we have fixed the type of Output, writing the runtt func-
tion that models the behaviour of a given interaction is straightfor-
ward. We assume that we have a stream of characters that have been
entered by the user. Whenever our interaction gets a character, we

read the head of the stream and continue the interaction with the
tail.
Using the putChar and getChar functions that we have defined

ourselves, we can write the same code for teletype interactions
as before, but we now have a good understanding of how they
behave. When such code is compiled, we can replace our putChar
and getChar with calls to the primitive version defined in the
Haskell Prelude. Before moving on to more complex semantics,
we illustrate how to prove properties of teletype interactions.

Example: echo
Using our semantics, we can prove once and for all that echo prints
out any character entered at the teletype. In particular, we can define
the following function that exhibits the behaviour we expect echo
to have:

copy ::Stream Char→ Output ()
copy (Cons x xs) = Read (Print x (copy xs))
The copy function simply copies the stream of characters en-

tered at the teletype to the stream of characters printed to the tele-
type one at a time. The Read constructor is important here: a vari-
ation of the echo function that required two characters to be typed
before producing any output would not satisfy this specification.
We can now prove that running echo will behave exactly like the
copy function.
Using a variation of the take lemma [4], we show that copy cs

and the result of running echo on cs are identical, for every input
stream cs. The proof requires us to define an extra take function,
analogous to the one for lists:

take :: Int→ Output () → Output ()
take (n+1) (Print x xs) = Print x (take n xs)
take (n+1) (Read xs) = Read (take (n+1) xs)
take 0 = Finish ()

We can now prove that:
take n (runtt echo xs) = take n (copy xs)

The proof proceeds by induction on n. The base case is trivial; the
induction step is in Listing 3.
Proving such an equation is still quite some work. However,

most Haskell programmers are already familiar with such equa-
tional proofs. There is no external system of semantics needed to
prove such a property, but programmers can reason about their code
as if it were pure.

4. Mutable State
While teletype IO makes an interesting example, an obvious ques-
tion is whether or not this approach can deal with anything more
complicated. Interestingly, we can handle mutable state in a very
similar fashion.
Mutable state in Haskell revolves around mutable variables

known as IORefs. There are three functions that respectively create,
write to and read from an IORef :

newIORef ::a→ IO (IORef a)
writeIORef :: IORef a→ a→ IO ()
readIORef :: IORef a→ IO a
We begin by defining a data type representing the possible

changes to the state in Listing 4. We follow Haskell’s lead and
introduce separate constructors for each operation on IORefs. As
with the teletype, we have an additional constructor Return that
lifts pure values to stateful ones. It is worth pointing out that the
signatures of the functions we wish to implement determine the
constructors of our data type; the only freedom we have is in the
representation of memory locations and data.

Listing 3 The behaviour of echo

take (n+1) (runtt echo (Cons x xs))
= {by definition of echo,putChar and getChar}
take (n+1) (runtt (GetChar Return

>>=!c→ PutChar c (Return ())
>>echo)

(Cons x xs))
= {by definition of runtt and (>>=)}
take (n+1)

(Read (runtt (Return x
>>=!c→ PutChar c (Return ())
>> echo)

xs))
= {by definition of (>>=)}
take (n+1)

(Read (runtt (PutChar x (Return ()>> echo)) xs))
= {by definition of (>>)}
take (n+1) (Read (runtt (PutChar x echo) xs))

= {by definition of runtt}
take (n+1) (Read (Print x (runtt echo xs)))

= {by definition of take}
Read (Print x (take n (runtt echo xs)))

= {induction}
Read (Print x (take n (copy xs)))

= {by definition of take}
take (n+1) (Read (Print x (copy xs)))

= {by definition of copy}
take (n+1) (copy (Cons x xs))

We model memory locations using integers. This is rather lim-
ited. By using integers to model memory locations, programmers
could ‘invent’ their own locations, perform pointer arithmetic, or
access unallocated memory. To address this problem, we propose
to use Haskell’s module system to hide the constructor of the IORef
type. As a result, the only operations a programmer can perform
with an IORef are those supported by our IOs data type.
We also restrict ourself to mutable variables storing integers.

A more flexible approach would be to use Haskell’s support for
dynamic types [5, 1] to allow references to different types. This
does make reasoning about our programs much, much more dif-
ficult [10], as the implementation of dynamic types relies on
unsafeCoerce, for instance. For the sake of presentation, we there-
fore choose to limit ourself to references storing a fixed Data type.
The price we pay is, of course, having to update this type every
time we wish to change the types stored in mutable references. We
will discuss how to tackle both this and the previous problem using
a more expressive type system in Section 6.2.
Now that we have all relevant definitions, we construct an in-

terpretation of these operations in Listing 5. Haskell already has a
very convenient library for writing stateful computations that pivots
around the state monad:

newtype State s a= State{runState :: (s→ (a,s))}

Listing 4Mutable state – data type

typeData = Int
type Loc = Int
data IOs a=

NewIORef Data (Loc→ IOs a)
| ReadIORef Loc (Data→ IOs a)
|WriteIORef Loc Data (IOs a)
| Return a

instanceMonad IOs where
return = Return
(Return a)>>=g= g a
(NewIORef d f)>>=g

= NewIORef d (! l→ f l>>=g)
(ReadIORef l f)>>=g

= ReadIORef l (!d→ f d>>= g)
(WriteIORef l d s)>>=g

=WriteIORef l d (s>>=g)
newtype IORef = IORef Loc
newIORef ::Data→ IOs IORef
newIORef d = NewIORef d (Return◦ IORef)
readIORef :: IORef → IOs Data
readIORef (IORef l) = ReadIORef l Return
writeIORef :: IORef → Data→ IOs ()
writeIORef (IORef l) d =WriteIORef l d (Return ())

The state monad has several functions to manipulate the other-
wise implicit state. In particular, we will make use the following
functions:

get ::State s s
gets :: (s→ a) → State s a
put :: s→ State s ()
evalState ::State s a→ s→ a
execState ::State s a→ s→ s

To access the hidden state, we use the get and gets functions that
respectively return the hidden state and project value from it. The
put function updates the state. Finally, the functions evalState and
execState run a stateful computation, and project out the final result
and the final state respectively.
Before we can use the state monad, we must decide on the

type of the state s that we wish to use. In our case, there are two
important pieces of information the state should record: the next
free memory location and the heap that maps memory locations to
data. Both are captured by our Store data type.
Now we can begin defining the function runs that evaluates the

stateful computation described by a value of type IOs. We begin
by constructing a value of type State Store a, and subsequently
evaluate this computation, starting with an empty store. Note that
we leave the heap of the initial state undefined.
Once again, the Return case ends the stateful computation.

Creating a new IORef involves allocating memory and extending
the heap with the new data. A ReadIORef operation looks up the
data stored at the relevant location. Writing to an IORef updates
the heap with the new data. Although we require a few auxiliary
functions to manipulate the state and the heap, the code in Listing
5 should contain very few surprises.
All in all, the definition and semantics of an IORef fits on a

single page and is remarkably simple. Some might even argue that

Listing 5Mutable state – semantics

data Store = Store{fresh ::Loc,heap ::Heap}
typeHeap = Loc→ Data
emptyStore ::Store
emptyStore = Store{fresh = 0}
runs :: IOs a→ a
runs io= evalState (runIOState io) emptyStore
runIOState :: IOs a→ State Store a
runIOState (Return a) = return a
runIOState (NewIORef d g)

= do loc← alloc
extendHeap loc d
runIOState (g loc)

runIOState (ReadIORef l g)
= do d← lookupHeap l

runIOState (g d)
runIOState (WriteIORef l d p)

= do extendHeap l d
runIOState p

alloc ::State Store Loc
alloc= do loc← gets fresh

modifyFresh ((+) 1)
return loc

lookupHeap ::Loc→ State Store Data
lookupHeap l= do h← gets heap

return (h l)
extendHeap ::Loc→ Data→ State Store ()
extendHeap l d = modifyHeap (update l d)
modifyHeap :: (Heap→ Heap) → State Store ()
modifyHeap f = do s← get

put (s{heap = f (heap s)})
modifyFresh :: (Loc→ Loc) → State Store ()
modifyFresh f = do s← get

put (s{fresh = f (fresh s)})
update ::Loc→ Data→ Heap→ Heap
update l d h k

| l≡ k = d
| otherwise = h k

the semantics are trite and trivial – but this is a good thing! We want
our semantics to be easy to understand. There is really no need to
make things any more complicated.

Example: queues
To demonstrate how our semantics can be used in practice, we
implement queues using mutable references. Such queues consist
of two references to the first and last cell of the queue. Every cell
stores an integer value together with a pointer to the next cell. The
last cell’s reference points to a null value. Figure 1 illustrates what
an example queue might look like.
Although the implementation is standard, it is all too easy to

make a mistake. Listing 6 gives the type signatures of the operations
involved. To begin with, we must fix the type of our references.
From Figure 1 we can see that every pointer is either null, or
points to a cell storing an integer and another pointer. We need to

Figure 1An example queue implemented using mutable references

!" #

front back

change the type of data stored by a pointer, Data, in our semantics
accordingly.
A Queue consists of a pair of pointers to the front and back

of the queue. In an empty queue, both these pointers are null.
A complete implementation of the type signatures in Listing 6 is
provided in an appendix for the sake of completeness.

Listing 6 Implementing queues using mutable variables

data Data = Cell Int IORef | NULL
typeQueue = (IORef , IORef)
emptyQueue :: IOs Queue
enqueue ::Queue→ Int→ IOs ()
dequeue ::Queue→ IOs (Maybe Int)

Claessen and Hughes have shown how to use QuickCheck to
test properties of a similar implementation of queues in the ST
monad [8]. Rather than follow suit, we implement queue reversal.
Listing 7 shows how to reverse a queue. If the queue is empty,

we are done. Otherwise, we traverse the linked list, reversing every
pointer as we go and finish off by swapping the front and back
pointers.

Listing 7 Reversing queues

reverseQueue ::Queue→ IOs ()
reverseQueue (front,back)

= do f ← readIORef front
case f of
NULL→ return ()
Cell x nextRef → do
flipPointers NULL (Cell x nextRef)
b← readIORef back
writeIORef front b
writeIORef back f

flipPointers ::Data→ Data→ IOs ()
flipPointers prev NULL= return ()
flipPointers prev (Cell x next)

= do nextCell← readIORef next
writeIORef next prev
flipPointers (Cell x next) nextCell

revRevProp :: [Int] → Bool
revRevProp xs= xs≡ runs (revRev xs)
where revRev xs= do q← listToQueue xs

reverseQueue q
reverseQueue q
queueToList q

Operations that rely heavily on pointer manipulations are very
easy to get wrong. How can we be sure that reverseQueue does

what we expect? We should not just use equality to compare queues
– this will just compare the addresses of the head and tail, but not
the content of the queue.
One solution is to define a pair of functions listToQueue and

queueToList. The former enqueues all the elements of a list to
the empty queue; the latter dequeues elements from a queue until
it is empty. Using these functions, we can define the property
revRevProp in Listing 7 that compares a list of integers to the result
of enqueueing the integers, reversing the resulting queue twice, and
finally dequeuing all the elements of the queue.
When we run QuickCheck on the resulting property, we can

claim with some degree of certainty that our operation is its own
inverse:

*Main> quickCheck revRevProp
OK, passed 100 tests.

This is, of course, a useless property to check—the identity
function satisfies the same specification. It does illustrate, however,
that proofs and properties of pure functions, such as the famous
reverse ◦ reverse = id on lists, do not need to be treated differently
from those of impure functions.
In contrast to the work by Claessen and Hughes, we can also

verify that queue reversal does not allocate any new memory. We
accomplish this by inspecting the state after running a computation.
If new memory has been allocated, the fresh counter that points to
the next free memory cell will have been incremented.
The memoryUsage function in Listing 8 returns the number

of memory cells needed by a computation. Using this function
we can compare the amount of memory needed to store a queue,
queueMemSize, and the amount of memory allocated after revers-
ing a queue, revQueueMemSize. The revMemProp property then
formulates the desired property: reversing a queue should not allo-
cate new memory.

Listing 8Memory usage of queue reversal

memoryUsage :: IOs a→ Int
memoryUsage io

= fresh (execState (runIOState io) emptyStore)
queueMemSize :: [Int] → Int
queueMemSize xs= memoryUsage (listToQueue xs)
revQueueMemSize :: [Int] → Int
revQueueMemSize xs

= memoryUsage (listToQueue xs>>= reverseQueue)
revMemProp :: [Int] → Bool
revMemProp xs= queueMemSize xs≡ revQueueMemSize xs

This example shows how we can use the tools most functional
programmers are comfortable with to reason about effectful pro-
grams. As the store is modeled by a pure value, we can check prop-
erties of our programs that we could not even express if we wrote
them using the ST monad.
The model for mutable state is more complicated than our

previous model for teletype IO. Proofs using this model can easily
become quite complex. Even formulating properties involving the
heap layout, for instance, can become rather onerous. Fortunately,
as illustrated by Bird [3], we can introduce high-level combinators
to facilitate reasoning about and formulating properties of pointer
algorithms. Just writing down the low-level semantics of mutable
state is by no means the whole story, but rather forms a starting
point from which to embark on more serious analyses.

5. Concurrency
Although the models for teletype IO and mutable state were rela-
tively straightforward, concurrency poses a more serious problem.
Concurrent Haskell enables programmers to fork off a new thread
with the forkIO function:

forkIO :: IO a→ IO ThreadId

The new thread that is forked off will evaluate the argument of the
forkIO call. The programmer can subsequently use a ThreadId to
kill a thread or throw an exception to a specific thread.
Threads can communicate with one another using a synchro-

nised version of an IORef called an MVar. As with an IORef there
are three functions to create, write to and read from an MVar:

newEmptyMVar :: IO (MVar a)
putMVar ::MVar a→ a→ IO ()
takeMVar ::MVar a→ IO a

Unlike an IORef , an MVar can be empty. Initially, there is no
value stored in an MVar. An empty MVar can be filled using the
function putMVar. A filledMVar can be emptied using the function
takeMVar. If a thread tries to fill a non-empty MVar, the thread
is blocked until another thread empties the MVar using takeMVar.
Dually, when a thread tries to take a value from an emptyMVar, the
thread is blocked until another thread puts a value into the MVar.
Although there are several other functions in Haskell’s concur-

rency library, we choose to restrict ourselves to the four functions
described above for the moment.
In what should now be a familiar pattern, we begin by defining

the data type IOc for concurrent input/output in Listing 9. Once
again, we add a constructor for every primitive function together
with an additional Return constructor. As is the case in our IORef
implementation, we model memory addresses and the data stored
there as integers. Forked off threads have a unique identifier, or
ThreadId, which we also model as an integer. The type of Fork is
interesting as it will take an IOc b as its first argument, regardless
of what b is. This corresponds to the parametric polymorphism
that the forkIO function exhibits – it will fork off a new thread,
regardless of the value that the new thread returns.
Once we have defined the data type IOc, we can show it is

a monad just in the same fashion that IOs and IOtt are monads.
We continue by defining the basic functions, corresponding to the
constructors.
Running the computation described by a value of type IOc a

is not as straightforward as the other models we have seen so far.
Our model of concurrency revolves around an explicit scheduler
that determines which thread is entitled to run. The Scheduler is
a function that, given an integer n, returns a number between 0
and n−1, together with a new scheduler. Intuitively, we inform the
scheduler how many threads are active and it returns the scheduled
thread and a new scheduler. Listing 10 describes how initially to set
up the semantics of our concurrency operations.
Besides the scheduler, we also need to keep track of the threads

that could potentially be running. The thread soup is a finite map
taking a ThreadId to a ThreadStatus. Typically, such a ThreadStatus
consists of the process associated with a given ThreadId. Note,
however, that once a thread is finished, there is no value of IOc
that we could associate with its ThreadId so we have an additional
Finished constructor to deal with this situation. Besides the thread
soup we also store an integer, nextTid, that represents the next
unassigned ThreadId.
In addition to information required to deal with concurrency,

we also need a lot of machinery to cope with mutable state. In
particular, we keep track of a heap and fresh just as we did for our
model of mutable state. Unlike an IORef , an MVar can be empty;
hence the heap maps locations to Maybe Data, using Nothing to

Listing 9 Concurrency – data type

type ThreadId = Int
typeData = Int
type Loc = Int
data IOc a=

NewEmptyMVar (Loc→ IOc a)
| TakeMVar Loc (Data→ IOc a)
| PutMVar Loc Data (IOc a)
| ∀b . Fork (IOc b) (ThreadId→ IOc a)
| Return a

newtypeMVar =MVar Loc
instanceMonad IOc where
return = Return
Return x>>=g = g x
NewEmptyMVar f >>=g= NewEmptyMVar (! l→ f l>>=g)
TakeMVar l f >>=g = TakeMVar l (!d→ f d>>= g)
PutMVar c d f >>=g = PutMVar c d (f >>=g)
Fork p1 p2>>=g = Fork p1 (! tid→ p2 tid>>=g)

newEmptyMVar :: IOc MVar
newEmptyMVar = NewEmptyMVar (Return◦MVar)
takeMVar ::MVar→ IOc Data
takeMVar (MVar l) = TakeMVar l Return
putMVar ::MVar→ Data→ IOc ()
putMVar (MVar l) d = PutMVar l d (Return ())
forkIO :: IOc a→ IOc ThreadId
forkIO p = Fork p Return

Listing 10 Concurrency – initialisation

newtype Scheduler =
Scheduler (Int→ (Int,Scheduler))

data ThreadStatus =
∀b . Running (IOc b)
| Finished

data Store = Store{fresh ::Loc
, heap ::Loc→Maybe Data
, nextTid ::ThreadId
, soup ::ThreadId→ ThreadStatus
, scheduler ::Scheduler
}

initStore ::Scheduler→ Store
initStore s = Store{fresh = 0

, nextTid = 1
, scheduler = s
}

runIOc :: IOc a→ (Scheduler→ a)
runIOc io s= evalState (interleave io) (initStore s)

represent an empty MVar. All these ingredients together form the
Store.
To interpret a value of type IOc a, we define a function that

will run the concurrent process that it represents. Once again, we
use Haskell’s state monad to encapsulate the implicit plumbing
involved with passing around the Store. To run a concurrent process
we must tackle two more or less separate issues: how to perform a
single step of computation and how to interleave these individual
steps. We will begin defining the single steps in Listing 11, leaving
the interleave function undefined for the moment.
The step function closely resembles our semantics for mutable

variables, with a few minor adjustments. In contrast to the situation
for mutable variables, we do not guarantee that we return a value
of type a, but rather distinguish three different possible results.
First of all, a thread might terminate and produce a result.

Secondly, a thread might have a side-effect, such as taking the value
stored in an MVar, and return a new, shorter process. Finally, a
thread might be blocked, for instance when it tries to take a value
from an empty MVar. These three cases together form the Status
data type that is returned by the step function.
Note that we have omitted a few functions that modify a specific

part of the state, analogous to modifyFresh and modifyHeap in
Listing 5.
There are a few differences with the model of mutable state.

When we return a value, the thread is finished and we wrap our re-
sult in a Stop constructor. Creating a new MVar is almost identical
to creating a new IORef . The only difference is that anMVar is ini-
tially empty, so we extend the heap with Nothing at the appropriate
location.
The case for TakeMVar and PutMVar is more interesting. When

we read an MVar we look up the appropriate information in the
heap. If the MVar is filled, we empty it and perform a single step.
When theMVar is empty, the thread is blocked and we cannot make
any progress. The situation for writing to an MVar is dual.
The final case of the step function deals with forking off new

threads. We begin by generating a ThreadId for the newly created
thread. Subsequently, we extend the thread soup with the new
thread. Finally, we return the parent thread wrapped in the Step
constructor as the thread has made progress, but is not yet finished.
Although it was relatively easy to perform a single step, the

interleaving of separate threads is more involved. Listing 12 finally
defines the interleave function.
Different threads may return different types. In particular, the

main thread has type IOc a, but auxiliary threads have type IOc b
for some unknown type b. To make this distinction, we introduce
the Process data type.
Essentially, to interleave a concurrent process we begin by con-

sulting the scheduler to determine the next active thread. Initially,
this will always be the main process. Once the main process forks
off child threads, however, such threads may be scheduled instead.
The result of scheduling is a value of type Process a together with
the ThreadId of the thread that has been scheduled. Although we
have omitted the code for the schedule function, it is relatively
straightforward: given the main process, it consults the scheduler
for the next ThreadId, and returns that ThreadId together with the
corresponding process from the thread soup. We need to pass the
main process to the scheduler, as it is not in the thread soup, but
could still be scheduled.
If we want to use the Process returned by the scheduler, we

need to be careful. We would like to allow the scheduled process
to perform a single step – but what should we do with the result?
If the main thread returns a final value, we can wrap things up and
return that value. If an auxiliary thread returns a value, we are not
particularly interested in its result, but rather want to terminate

Listing 11 Concurrency – performing a single step

data Status a= Stop a | Step (IOc a) | Blocked
step :: IOc a→ State Store (Status a)
step (Return a) = return (Stop a)
step (NewEmptyMVar f)

= do loc← alloc
modifyHeap (update loc Nothing)
return (Step (f loc))

step (TakeMVar l f)
= do var← lookupHeap l

case var of
Nothing→ return Blocked
(Just d) → do emptyMVar l

return (Step (f d))
step (PutMVar l d p)

= do var← lookupHeap l
case var of
Nothing→ do fillMVar l d

return (Step p)
(Just d) → return Blocked

step (Fork l r)
= do tid← freshThreadId

extendSoup l tid
return (Step (r tid))

lookupHeap ::Loc→ State Store (Maybe Data)
lookupHeap l = do h← gets heap

return (h l)
freshThreadId ::State Store ThreadId
freshThreadId = do tid← gets nextTid

modifyTid ((+) 1)
return tid

emptyMVar ::Loc→ State Store ()
emptyMVar l = modifyHeap (update l Nothing)
fillMVar ::Loc→ Data→ State Store ()
fillMVar l d = modifyHeap (update l (Just d))
extendSoup :: IOc a→ ThreadId→ State Store ()
extendSoup p tid

= modifySoup (update tid (Running p))

the thread. As we want to treat the main and auxiliary threads
differently, we need to pattern match on the scheduled process.
Regardless of which thread was scheduled, we allow it to per-

form a single step. There are five possible outcomes of this step,
that we cover one by one:

The main thread stops When the main thread terminates, the en-
tire concurrent process is finished. We simply return the value
that the step produced. Any auxiliary threads that have unfin-
ished work will never be scheduled.

An auxiliary thread stops If an auxiliary thread finished its com-
putation and returns a value, we discard this value and finish the
thread. We update the thread soup to indicate that this thread is
finished and continue the interleaving.

The main threads performs a step If the main thread manages
to successfully perform a single step, we continue by calling
the interleave function again. The argument we pass to the

Listing 12 Concurrency – interleaving

data Process a=
Main (IOc a)

| ∀b . Aux (IOc b)
interleave :: IOc a→ State Store a
interleave main

= do (tid, t) ← schedule main
case t of
Main p→
do x← step p
case x of
Stop r → return r
Step p → interleave p
Blocked→ interleave main

Aux p→
do x← step p
case x of
Stop → do finishThread tid

interleave main
Step q → do extendSoup q tid

interleave main
Blocked→ interleave main

finishThread tid = modifySoup (update tid Finished)

interleave function is the new main process that was wrapped
in a Step constructor.

An auxiliary thread performs a step When an auxiliary thread
makes progress, we proceed much in the same way as we do
for the main thread. Instead of passing the new computation to
interleave, however, we update the thread soup. Once the soup
has been updated, we continue by interleaving with the same
main thread as we started with.

Blocked If the scheduled thread can make no progress, for instance
because it is waiting for an empty MVar to be filled, scheduling
that thread will return Blocked. In that case, we schedule a new
thread, until progress is made.

The semantics for concurrency are more complicated than those
for teletype IO and mutable state. Actually using them, however, is
no more difficult.

Example: channels
When Peyton Jones describes the semantics of concurrency in
Haskell [28], he illustrates the expressive power ofMVars by giving
an implementation of channels.
Channels enable separate threads to communicate safely. They

generalise the queues we have seen previously, as a channel al-
lows multiple processes to read from and write to it. This is accom-
plished by having a pair of MVars storing pointers to the read end
and write end of the channel. Whenever a process wants to read
from or write to the channel, it must first acquire access to the ap-
propriate end of the queue. Storing these pointers inMVars ensures
that separate writes or reads can never interfere with one another.
One example of a channel is illustrated in Figure 2.
Peyton Jones claims that:

. . . each value read will go to exactly one process.

Unfortunately, there is no justification of this claim. Proving such
statements can, of course, be really difficult. In fact, it is already

Figure 2 An example channel

! "#

!"#$%"&$ '()*"%"&$

hard to formulate precisely what it means for data to be lost or
duplicated.
Rather than repeat the implementation of channels, we once

again focus on how to use QuickCheck to demonstrate that cer-
tain properties are at least plausible. Listing 13 gives the types of
channels and the data stored by references, together with the type
signatures of the channel operations. We do not discuss how to im-
plement these operations, but refer the implementation discussed
in [28]. Our main concern is checking whether or not the above
property is plausible.

Listing 13 Channels

type Channel = (MVar,MVar)
dataData =

Cell Int MVar
| Ref MVar
| Res [Int]

newChan :: IOc Channel
putChan ::Channel→ Int→ IOc ()
getChan ::Channel→ IOc Int

Before we can implement the channel operations, we need to fix
the data type Data, i.e. the type of data stored in an MVar. As we
can see from Figure 2, the data stored in an MVar is not always a
cell. In particular, the references to the read end and write end of
the channel are also stored in an MVar. Therefore, we need to add
an extra constructor Ref to ourData data type. Finally, we will later
use anMVar to store a list of integers in the test we propose to run;
therefore, we add a final constructor Res.
Listing 14 shows the test we would like to run. The chanTest

function takes a list of integers, and forks off a thread for each
integer that will write that integer to an initially empty channel.
It also forks off a thread for each integer that attempts to read from
the channel. Once a thread manages to read from the channel, it
records the value read in a shared MVar called result. The main
thread then waits until every thread has successfully read from the
channel, and concludes by returning the list of all values that have
been read. This final result should, of course, be a permutation of
our original list.
The semantics of concurrency we have presented abstracts over

the scheduling algorithm. Before we can run the test we have in
mind, we must therefore decide what scheduler to use. As we are
already using QuickCheck, we implement a random scheduling
algorithm in an attempt to maximize the number of interleavings.
Listing 15 gives one possible implementation of such a scheduler.
The streamSch function defines a scheduler, given a stream

of integers. The definition of the Stream data type can be found
in Listing 2. Whenever it is asked to schedule a thread, it uses
the appropriate modulus on the head of the stream and continues
scheduling with its tail. As we can use QuickCheck to generate

Listing 14 Testing the implementation of channels

chanTest :: [Int] → IOc [Int]
chanTest ints
= do ch← newChan

result← newEmptyMVar
putMVar result (Res [])
forM ints (! i→ forkIO (putChan ch i))
replicateM (length ints) (forkIO (reader ch result))
wait result ints

reader ::Channel→MVar→ IOc ()
reader channel var

= do x← getChan channel
(Res xs) ← takeMVar var
putMVar var (Res (x : xs))

wait ::MVar→ [Int] → IOc [Int]
wait var xs
= do (Res r) ← takeMVar var

if length r ≡ length xs
then return r
else do putMVar var (Res r)

wait var xs

Listing 15 Random scheduling

streamSch ::Stream Int→ Scheduler
streamSch xs=
Scheduler (!k→ (hd xs ‘mod‘ k,streamSch (tl xs)))

instance Arbitrary a⇒ Arbitrary (Stream a) where
arbitrary= do x← arbitrary

xs← arbitrary
return (Cons x xs)

a random stream of integers, we use the streamSch to produce a
random scheduler.
The following property should hold:

chanProp ints stream =
sort (runIOc (chanTest ints) (streamSch stream))

≡ sort ints

Once again, QuickCheck informs us that the above property
holds for 100 test runs. When we classify the input lists according
to their length, it is reassuring to see that this property even holds
for lists of more than 90 elements: that’s almost 200 randomly
scheduled pseudothreads vying for access to a single channel!
Clearly, this property is insufficient to verify Peyton Jones’s

claim. We should also check that the resulting channel is empty
and all the threads are finished. Even then, we have only checked
one kind of scenario, where every thread either writes or reads a
single value. Yet our semantics are capable of providing some form
of sanity check. It is not clear how such a check could be realized
using Peyton Jones’s semantics.
It may not be a surprise that the implementation of channels

using MVars is correct. Running this test, however, found a very
subtle bug in our scheduling function. Recall that the schedule
function returns the ThreadId and process of the scheduled thread.
If we schedule a finished thread, we call the schedule function

again, in search of a thread that is not yet finished. In a faulty
version of our specification, if we encountered a finished thread,
we called the schedule function again, but returned the ThreadId
of the finished thread. This caused quite some chaos in the thread
soup, as threads were lost and duplicated.
As the entire state of concurrent computations is a pure value,

we can access otherwise inaccessible data, such as the size of the
heap or the number of threads that have finished. In particular,
abstracting over the scheduler allows us to check certain algorithms
with specific schedulers or check a large number of interleavings
using a random scheduler as we see fit.

Extensions
Haskell cognoscenti will have spotted that we have not included
all the primitive functions provided by Concurrent Haskell. Adding
new primitives to our semantics is, however, not difficult to do. In
particular, we do not need to extend the code that deals with the
interleaving and scheduling, but can restrict ourselves to adapting
the IOc data type and the step function. For instance, it is fairly
straightforward to extend our semantics with functions such as:

killThread ::ThreadId→ IO ()
yield :: IO ()

The killThread function simply removes a certain thread from the
thread soup; the yield function merely passes control to some other
thread, whenever it is scheduled.
These semantics could also be extended to deal with asyn-

chronous exceptions and explicitly delayed threads. Haskell’s ex-
ception mechanism allows threads to throw exceptions to other
threads. In our semantics, throwing an exception to another thread,
would involve updating the thread soup, i.e. alerting the thread that
receives the exception. Besides asynchronous exceptions, program-
mers can also delay threads for a number of milliseconds. A de-
layed thread will never be scheduled until enough time has elapsed.
We hope to be able to address this in the future by a more re-
fined functional semantics that takes time into account explicitly,
as is already done in functional reactive programming systems such
as Yampa [17]. Such semantics require a judicious choice of sup-
ported operations – adding explicitly delayed threads may add new
functionality, but could drastically complicate the semantics.

6. Totality
The semantics we have provided are very suitable for what has
been dubbed ‘fast and loose’ reasoning [9]. We use QuickCheck
and freely perform equational reasoning without worrying about
undefined values or non-terminating functions. While this justifies
our results to a degree, we may sometimes be interested in a water-
tight proof of correctness. The semantics we have provided so far,
however, are unsuitable for such proofs.
Fortunately, we can make our semantics more precise. If we

make sure that all our run functions are total, then any equality
we prove between programs written in a total calculus will be
valid. This is particularly relevant for programming languages with
dependent types where all functions are guaranteed to be total by
construction, such as Epigram [23] or Gallina, the functional core
of Coq [2]. In such systems, we can not only write our programs,
but also prove that they meet their specification.
Throughout our semantics we have occasionally used general

recursion and undefined values, such as the initial heap. By avoid-
ing bottoms and restricting ourselves to primitive recursion, the to-
tal run functions we describe below will assign sensible semantics
to every program.

6.1 Total semantics for teletype IO
The runtt function in Listing 2 is total. When we restrict ourself
to a total language, however, all data is finite. In particular, there
can be no infinite sequence of PutChar constructors that produce
an infinite stream of output. This is rather unfortunate: there are
situations where we would like to repeatedly print a character to
the teletype.
One solution is to distinguish between inductively defined

data and coinductively defined codata, as has been proposed by
Turner [33]. If we consider IOtt and Output to be codata, the stream
function below is total:

stream ::Char→ IOtt ()
stream c= PutChar c (stream c)

Once again, it becomes possible to output an infinite stream of
characters to the teletype. Similarly, we could write a sink function
that consume input from the user, without ever producing any
output.
There is slight subtlety here. We have chosen to make both

reading and printing visible in our Output data type. While this
makes sense for teletype interactions, it is questionable whether
you should be able to observe how much data a process reads from
a handle that is not stdin. If we drop the Read constructor of our
Output data type, our semantics become more abstract: we describe
a process’s behaviour as stream processor. Ghani et al. [11] use a
mixed data-codata structure that can be used to specify exactly this
behaviour in a total setting.

6.2 Total semantics for mutable state
There are a few problems with the semantics of mutable state in
Section 4. Although the runIOState function in Listing 5 only uses
primitive recursion, the semantics makes use of undefined values,
such as the empty heap. As a result, programmers may access
unallocated memory, resulting in unspecified behaviour. This is
easily fixed, provided our type system is sufficiently expressive.
In a dependently typed setting we can model the heap as an n-

tuple. We can then model an IORef as a pointer into the heap that
will never go out of bounds. Finally, we index the IOs data type by
the size of the source and a target heap, reminiscent of the tech-
nique used to type stack operations [24]. Every constructor then
explicitly records how it modifies the heap. Our runIOState func-
tion than becomes total – our types guarantee that it is impossible
to access unallocated memory. We have implemented these ideas
in Agda 2 [27]. Using such a dependently typed system, we can
even correctly handle a heterogeneous heap, storing different types
of data, and well-scoped, well-typed pointers. We defer the discus-
sion of this implementation to further work.

6.3 Total semantics for concurrency
The above remarks about mutable state are also pertinent for our se-
mantics of concurrency. A total implementation of the step function
in Listing 11 function should forbid programmers from accessing
unallocated memory.
Amore serious problem, however, is that the heart of our seman-

tics for concurrency, the interleave function in Listing 12, uses gen-
eral recursion. Whenever a blocked thread is scheduled, no progress
is made, and an unguarded recursive call is made. If there is a dead-
lock, however, we will continue scheduling blocked threads in the
hope that some thread will make progress, and the interleave func-
tion loops.
Fortunately, we can avoid this problem by detecting deadlocks.

Instead of hoping that our scheduler will indeed find a thread that
can make progress, we should keep track of threads that we know
are blocked. We sketch the idea here, but omit the details of our
implementation.

We begin by changing the return type of our runIOc function
to Maybe a, using Nothing to represent a deadlock. Whenever we
learn that a thread is blocked, we record its ThreadId. When every
thread is either blocked or finished, and the main process cannot
make progress, we are in a deadlock and return Nothing. Whenever
any thread makes progress, we empty the entire list of blocked
threads; a thread might be blocked because it is waiting for anMVar
to be filled. If another thread makes progress, it may have filled the
MVar our blocked thread was waiting on – thereby unblocking the
original thread. By dynamically detecting deadlocks in this fashion,
we claim our specification can be made total.

7. Related work
The idea of providing functional specifications of IO is hardly new.
Early versions of the Haskell Report [29] contained an appendix
with a functional specification of interactions with the operating
system. Curiously, this appendix disappeared after the introduction
of monads. Similar specifications have been proposed to teach se-
mantics to undergraduates. Our proposal to use these specifications
both for programming and reasoning, is an important step forwards.
This work has been influenced strongly by the semantics of

Haskell’s IO as described by Peyton Jones [28]. This semantics use
a process calculus containing Haskell’s purely functional core to
silently evaluate pure functions as the need arises. While this work
has been widely cited as an excellent tutorial on IO in Haskell,
the semantics presented have, to the best of our knowledge, never
been used on the scale of the examples we present here. Our spec-
ifications are intended to be more ‘user-friendly.’ They require no
external mathematical system of reasoning, but rather present the
semantics in terms with which programmers are already comfort-
able.
Besides Peyton Jones’s work, there is a huge amount of research

in the semantics of programming languages. Many of the problems
we discuss here have been covered elsewhere. The semantics for
mutable state are fairly well-understood. Our development of tele-
type IO was heavily influenced by earlier work on understanding
IO in a purely functional language [13, 16, 19].
There are several papers that model concurrency within Haskell

worth discussing separately. First of all, Claessen has described
a ‘concurrency monad transformer’ [6]. Using continuation pass-
ing ingenously, he shows how to add interleaved computations in
any monad. The monad transformer he describes can even model
MVars. While continuations are very expressive, it can be rather
difficult to reason about them. This makes it a bit less suitable to
reason with, when compared to our approach.
Harrison shows how the resumption monad can be used to in-

terleave stateful computations [15]. To interleave computations he
introduces a pair of mutual recursive functions: sched and handler.
The sched function is a round robin scheduler that essentially con-
sults the thread soup and passes the next active thread to the han-
dler. The handler processes the active thread and invokes the sched
function again. We feel that our separation of interleaving and pro-
cessing threads makes it easier to extend the semantics with new
functions, such as killThread and yield, without having to worry
about interleaving. Harrison mentions that ‘it is not the intention
of the current work to model the awkward squad,’ and does not
explore this line of research further.
Finally, Nanevski et al. have proposed a type theory that allows

programmers to reason about effectful programs [25, 26]. Instead
of giving a concrete implementation of the specification as we have
done here, they formulate several axioms that characterise how
effectful programs behave. Both approaches have their merits and
further research is warranted to fully understand how they relate.

8. Further work
There are two important issues that we hope to address in future
work: composing the individual semantic models and proving their
validity.

Composing semantics
Although we have discussed the semantics of several members of
the awkward squad separately, the real challenge involves combin-
ing these semantics. We do have good hope that there is a certain
degree of modularity we can exploit.
Combining arbitrary monads is a difficult problem and still sub-

ject to active research. Besides monad transformers [21] and dis-
tributivity laws [20], more recent work has focused on combining
monads by taking their coproduct [22]. Unfortunately, the general
formula to compute the coproduct of two monads is rather difficult.
The monads we have described so far, however, all have the

same shape: constructors for every supported operation; and a sin-
gle Return constructor. This general pattern is known as a free
monad. To compute the coproduct of free monads, we only need
to collect all the constructors for the supported operations by tak-
ing their coproduct. Previous work on modular interpreters [21] de-
scribes how to do so, while minimalizing the overhead associated
with finding the right injection into a large coproduct.
One major advantage of composing such monads using their

coproduct, is that we can compose the semantics of such constructs
– that is we could construct a function runc+s that will assign
semantics to a program in IOc+s that uses both concurrency and
mutable state. Essentially, this involves pasting together the state
associated with individual semantics, such as the scheduler and
heap, and allowing each operation to update the relevant pieces.
This would greatly refine the current state of affairs, in which

the colossal IO monad jumbles together all these separate is-
sues. Refining the IO monad is one of the major open problems
Peyton Jones identifies in his retrospective on Haskell’s develop-
ment [30]. This is really a problem – if you have a value of type
IO () it could do everything from format your hard drive to print
"Hello World!" – it’s a bit worrying that we really have no idea
of what kind of side-effects such a value has.

Correctness
Although we have defined semantics for teletype IO, mutable state,
and concurrency, we cannot be sure that the models we have con-
structed are indeed a faithful representation of the real side-effects.
We need to guarantee that that the semantics we have presented
here can actually be trusted.
We could try prove that our semantics are equivalent to those

presented by Peyton Jones [28]. One problem with this is that Pey-
ton Jones’s semantics are not completely formal – there is no spec-
ification of how pure functions should be silently evaluated. More-
over, this still does not guarantee that our specifications are seman-
tically equivalent to the code produced by any Haskell compiler,
but merely proves the two sets of semantics are equivalent.
An alternative approach would be to describe how Haskell com-

piles to code for some (virtual) machine. We could then compare
the behaviour of the primitive putChar with the putChar we have
defined ourselves. If these two are semantically equivalent on the
machine level, we know that it is safe to reason using the functions
we have defined. Hutton and Wright take a very similar approach
to proving the correctness of a compiler for a simple language with
exceptions [18].
This is actually an instance of a much wider problem: how many

compilers have been proven to satisfy a language’s specification?
We have provided a very usable specification of effects, but can
only share the burden of proof together with compiler implemen-

tors. There is an enormous gap between theory and practice that we
cannot hope to bridge unilaterally.

9. Conclusions
We feel that this work has several significant merits. We conclude
by reiterating why we believe this approach to semantics for the
awkward squad is worth pursuing further:

Simplicity In contrast to process calculi, operational and denota-
tional semantics, you don’t need a theoretical background to
understand these functional semantics. A programmer can use
them to debug or test impure code, without having a deep math-
ematical understanding of all the issues involved.

Transparency One of the joys of Haskell is that there is no magic.
Once someone understands higher order functions and alge-
braic data types, they could almost write the entire Prelude.
Using these functional semantics, there is no need to lose this
transparency.

Tool Support There are a large number of tools available to test,
trace, and debug Haskell code [7, 32, 12]. Such tools typically
do not cope well with functions in the IO monad. By construct-
ing a faithful model within the programming language, such
tools could be used to debug our pure model – a massive im-
provement over the status quo!

Granularity We have presented a fine grained semantics for pieces
of the IO monad. Further refinement could really pay off. A
case in point is made by Haskell’s software transactional mem-
ory [14]. The distinction between the STM monad and the IO
monad make sure that transactions can roll back. Similarly, we
can guarantee that a teletype interaction of type IOtt will never
cause a deadlock in a concurrent process of type IOc – the type
of a side-effecting function suddenly means something.

Mutable state, concurrency, and teletype IO are considered
beasts of programming language design by the purest of functional
programmers. With the advent of monads, these issues have be-
come managable – monads contain the havoc that such beasts can
wreak. The semantics we present here take things one step further
– there is no longer a hard distinction between pure and impure
functions. There is, perhaps, beauty in these beasts after all.

Acknowledgments
We are greatly indebted to our colleagues in the Foundations of Pro-
gramming group for their encouragement and entertaining discus-
sions. Diana Fulger, Peter Hancock, Graham Hutton, Mauro Jaske-
lioff, Andres Löh, and Nicolas Oury all deserve a particular men-
tion for their valuable feedback on earlier versions of this paper,
for which we are forever grateful. We would also like to express
our gratitude for the helpful feedback we received from anonymous
referees.

References
[1] Arthur I. Baars and S. Doaitse Swierstra. Typing Dynamic Typing. In

ICFP ’02: Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, 2002.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. Springer
Verlag, 2004.

[3] Richard Bird. Functional Pearl: Unfolding pointer algorithms.
Journal of Functional Programming, 11(3):347–358, 2001.

[4] Richard Bird and Philip Wadler. An Introduction to Functional
Programming. Prentice Hall, 1988.

[5] James Cheney and Ralf Hinze. A Lightweight Implementation of
Generics and Dynamics. In Manuel Chakravarty, editor, Proceedings
of the 2002 ACM SIGPLAN Haskell Workshop, pages 90–104. ACM-
Press, October 2002.

[6] Koen Claessen. A Poor Man’s Concurrency Monad. In Journal
of Functional Programming, volume 9, pages 313–323. Cambridge
University Press, May 1999.

[7] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs. In ICFP ’00: Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional
Programming, 2000.

[8] Koen Claessen and John Hughes. Testing Monadic Code with
QuickCheck. In Proceedings of the 2002 ACM SIGPLAN Haskell
Workshop, 2002.

[9] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. Fast and Loose Reasoning is Morally Correct. In
Conference record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 206–217, 2006.

[10] Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and
Manuel M. T. Chakravarty. Running the manual: an approach to high-
assurance microkernel development. In Haskell ’06: Proceedings of
the 2006 ACM SIGPLAN workshop on Haskell, 2006.

[11] Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous Functions
on Final Coalgebras. Electronic Notes in Theoretical Computer
Science, 164(1):141–155, 2006.

[12] Andy Gill. Debugging Haskell by Observing Intermediate Data
Structures. In Proceedings of the 4th Haskell Workshop, 2000.

[13] Andrew D. Gordon. Functional Programming and Input/Output. PhD
thesis, University of Cambridge, 1992.

[14] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice
Herlihy. Composable Memory Transactions. In Proceedings of
the tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 48–60, 2005.

[15] William L. Harrison. The Essence of Multitasking. In Michael John-
son and Varmo Vene, editors, Proceedings of the 11th International
Conference on Algebraic Methodology and Software Technology,
volume 4019 of Lecture Notes in Computer Science, pages 158–172.
Springer, 2006.

[16] Sören Holmström. PFL: A Functional Language for Parallel
Programming. In Declarative Programming Workshop, pages 114–
139, 1983.

[17] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, Robots, and Functional Reactive Programming. In Summer
School on Advanced Functional Programming, volume 2638 of
Lecture Notes in Computer Science, pages 159–187. Springer, 2003.

[18] Graham Hutton and Joel Wright. Compiling Exceptions Correctly. In
Proceedings of the 7th International Conference on Mathematics of
Program Construction, volume 3125 of Lecture Notes in Computer
Science. Springer, 2004.

[19] Kent Karlsson. Nebula: A Functional Operating System. Technical
report, Chalmers University of Technology, 1981.

[20] David J. King and Philip Wadler. Combining monads. In John
Launchbury and Patrick M. Sansom, editors, Proceedings of the
Glasgow Workshop on Functional Programming, pages 134–143,
Glasgow, 1992. Springer.

[21] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers
and modular interpreters. In Conference record of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 333–343, 1995.

[22] Christoph Lüth and Neil Ghani. Composing Monads Using
Coproducts. In Proceedings of the 7th ACM SIGPLAN International
Conference on Functional Programming, 2002.

[23] Conor McBride and James McKinna. The view from the left. Journal
of Functional Programming, 14(1):69–111, 2004.

[24] James McKinna and Joel Wright. A type-correct, stack-safe, provably
correct, expression compiler in Epigram. Submitted to the Journal of
Functional Programming, 2006.

[25] Aleksandar Nanevski and Greg Morrisett. Dependent type theory of
stateful higher-order functions. Technical Report TR-24-05, Harvard
University, 2005.

[26] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Poly-
morphism and separation in hoare type theory. In Proceedings of
th Eleventh ACM SIGPLAN Internation Conference on Functional
Programming, 2006.

[27] Ulf Norell. Agda II. Available online.
[28] Simon Peyton Jones. Tackling the Awkward Squad: monadic

input/output, concurrency, exceptions, and foreign-language calls
in Haskell. In Engineering theories of software construction, 2002.

[29] Simon Peyton Jones, editor. Haskell 98 Language and Libraries –
The Revised Report. Cambridge University Press, 2003.

[30] Simon Peyton Jones. Wearing the hair shirt: a retrospective
on Haskell. Invited talk at the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2003.

[31] Simon L. Peyton Jones and Philip Wadler. Imperative functional
programming. In Conference record of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 1993.

[32] Bernard Pope. Declarative debugging with Buddha. In Summer
School on Advanced Functional Programming, volume 3622 of
Lecture Notes in Computer Science, pages 273–308. Springer, 2005.

[33] D. A. Turner. Total functional programming. Journal of Universal
Computer Science, 10(7):751–768, 2004.

A. Appendix

Listing 16 An implementation of queues using mutable references

dataData = Cell Int IORef | NULL
typeQueue = (IORef , IORef)
emptyQueue :: IOs Queue
emptyQueue = do
front← newIORef NULL
back← newIORef NULL
return (front,back)

enqueue ::Queue→ Int→ IOs ()
enqueue (front,back) x=
do newBack← newIORef NULL

let cell= Cell x newBack
c← readIORef back
writeIORef back cell
case c of
NULL→ writeIORef front cell
Cell y t→ writeIORef t cell

dequeue ::Queue→ IOs (Maybe Int)
dequeue (front,back) = do
c← readIORef front
case c of
NULL→ return Nothing
(Cell x nextRef) → do
next← readIORef nextRef
writeIORef front next
return (Just x)

