
Observational Equality, Now!

Thorsten Altenkirch Conor McBride Wouter Swierstra
University of Nottingham, UK
{txa,ctm,wss}@cs.nott.ac.uk

Abstract
This paper has something new and positive to say about propo-
sitional equality in programming and proof systems based on the
Curry-Howard correspondence between propositions and types. We
have found a way to present a propositional equality type

• which is substitutive, allowing us to reason by replacing equal
for equal in propositions;

• which reflects the observable behaviour of values rather than
their construction: in particular, we have extensionality—
functions are equal if they take equal inputs to equal outputs;

• which retains strong normalisation, decidable typechecking and
canonicity—the property that closed normal forms inhabiting
datatypes have canonical constructors;

• which allows inductive data structures to be expressed in terms
of a standard characterisation of well-founded trees;

• which is presented syntactically—you can implement it di-
rectly, and we are doing so—this approach stands at the core
of Epigram 2;

• which you can play with now: we have simulated our system by
a shallow embedding in Agda 2, shipping as part of the standard
examples package for that system [21].

Until now, it has always been necessary to sacrifice some
of these aspects. The closest attempt in the literature is Al-
tenkirch’s construction of a setoid-model for a system with canon-
icity and extensionality on top of an intensional type theory with
proof-irrelevant propositions [4]. Our new proposal simplifies Al-
tenkirch’s construction by adopting McBride’s heterogeneous ap-
proach to equality [19].

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Lambda calculus and related systems; D.3.1 [Formal Definitions
and Theory]: Semantics

General Terms Languages,Theory

Keywords Type Theory, Equality

1. Introduction
Equations are ubiquitous in mathematical reasoning, and reasoning
about programs is no exception. Moreover, notions of equality

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’07, October 5, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-677-6/07/0010. . . $5.00

play a crucial internal rôle in the programs of any language where
datatypes are indexed in some way. Case analysis relies on solving
the equation between the type of the scrutinee and the possible
types returned by each constructor, specialising the return type of
each branch accordingly. For a standard example, consider length-
indexed lists. We need to know that a length 4 list cannot be be
made by the ‘nil’ constructor because 4 does not equal 0, but can
be made by ‘cons’, given a head element and a tail of length 3.

Further, computation within types is now commonplace: ap-
pending two length 2 lists yields a length 2 + 2 list, which should
somehow be regarded also as a length 4 list. Further still, we some-
times need to exploit algebraic properties of type-level expressions
beyond their symbolic evaluation: we may wish to use a length
x + y list where length y + x is expected.

Of course, dependent type theories have always had this is-
sue, but it is becoming increasingly prevalent in programming
languages, whether they have ‘full-blown’ value-dependency, like
Cayenne [5], Epigram [20, 11] and Agda [21], or a separate static
language of indices, as in DML [29], Ωmega [25] and Haskell with
Generalized Algebraic Datatypes [24].

This paper concerns the strength of equational reasoning avail-
able for both behind-the-scenes constraint solving and the explicit
manipulation of type-level expressions in Martin-Löf type theories,
hence in proof systems and programming languages based on the
“propositions-as-types” principle. These tend to be divided into two
camps:

extensional type theories (ETTs, as implemented in NuPRL [7])
identify the definitional equality (as used in typechecking) with
the propositional equality (expressed as a type and used for rea-
soning), resulting in powerful systems with undecidable type-
checking;

intensional type theories (ITTs, as implemented in Coq, Agda
and Epigram) separate these notions, keeping the definitional
equality (and hence typechecking) decidable, but at some cost
to the power of the propositional equality—until now.

In this paper, we examine an approach which delivers a ‘no
compromise’ candidate: Observational Type Theory (OTT), with
all the good properties of both. OTT is an intensional type theory
with all the key computational properties we expect of such sys-
tems, but a notion of propositional equality that identifies values up
to observation, rather than by construction. It is just as powerful for
reasoning as the extensional theories.

This paper also records an attempt to code the phenomena of
dependently typed programming in a simple and closed core type
theory. In particular, recursive data are introduced uniformly via the
so-called ‘W-types’, inhabited by higher-order encodings of well-
founded trees. This encoding has always been feasible in ETTs, but
it has never worked in an ITT—until now. The OTT approach has
allowed us to make the encoding, and to discover its price.

Our adventure has a strong practical component. We show how
to construct an OTT by a shallow embedding in an existing inten-
sional type theory, defined within the Agda 2 framework. By doing
so, we expose the mechanics of the approach and gain evidence
for key metatheoretical properties. In particular, we obtain at least
a sketch proof for strong normalisation for expressions in general,
and canonicity for closed expressions—the latter always compute
to canonical values, as programmers might naturally hope. How-
ever, you can also download the OTT construction (now a standard
Agda 2 example) and try out observational equality, now!

1.1 The Equality Dilemma
In traditional type theories, equational propositions are typically
represented as instances of a family of types:

` A : Set a, b : A
` a =A b : Prop

where Set is the sort of datatypes and Prop is the sort of propo-
sitional types—sometimes these coincide. Most people agree that
equality should be reflexive, and provide the introduction rule:

` a : A
` reflA a : a =A a

As these theories have nontrivial computations within types, they
come with a notion of definitional equality, presented here as a
typed equality judgment (≡). Types are identified up to definitional
equality, as expressed by the conversion rule:

` s : S ` S ≡ T
` s : T

The definitional equality is a congruence, so the full effect of the
refl constructor is to embed ≡ into =:

if ` a ≡ b : A then ` a =A a ≡ a =A b : Prop
and therefore ` reflA a : a =A b

The two camps diverge when it comes to the way that propo-
sitional equations are used. Extensional type theories adopt the
equality reflection rule, allowing provable equations to impact di-
rectly and silently on typechecking:

` q : a =A b
` a ≡ b : A

By contrast, intensional type theories require an explicit oper-
ation, coresponding to the ‘Leibniz rule’ for equality, transporting
values between types which are merely provably—but perhaps not
definitionally—equal

` q : a =A b ` T : A → Set ` t : T a
substA;a;b q T t : T b

with the associated computational rule

` substA;a;a (reflA a) T t ≡ t : T a

making subst disappear when the proof reflA a guarantees that
initial and final types coincide definitionally. This approach pre-
serves the desirable canonicity property of ITTs—closed expres-
sions have canonical values. In the empty context, the only pos-
sible proof of an equation is by refl, so all top-level substs are
guaranteed to vanish. Compilers for programming languages based
on strongly-normalising ITTs can thus erase equation proofs and
appeals to subst from run-time code.

Clearly, ITT results in terms which are more bureaucratic: there
is no need for subst in ETT because the proof of a =A b gives us
t : T b by the conversion rule and equality reflection. However, a
high price must be paid for this benefit.

Firstly, the equality reflection rule is clearly not syntax-directed:
if we want a machine to recover the typing derivations for well-
typed terms, it must be able to invent the proofs of equations
demanded by appeals to equality reflection. In an ITT, the proofs
are always explicit.

Secondly, ETTs identify all types in the presence of false hy-
potheses, making it unsafe to compute under binders. In an ITT,
the machine can check terms and execute them safely if they are
well-typed, regardless of the context. In an ETT, the checkable ob-
jects are the derivations, recording not only the appeals to typing
rules but also every equational step. ETT terms may be smaller, but
only because the evidence which justifies them is somewhere else.
Gonthier and Werner’s proof of the Four-Colour Theorem is a rel-
atively small ITT term, but its ETT derivation would be unfeasibly
large because it relies very heavily on computation.

A big attraction of ETTs is that more desirable equations have
proofs. In particular, the extensionality law holds for functions, just
by congruence, equality reflection and the η-law:

if ∀x. f x = g x then (λx. f x) = (λx. g x) so f = g

This just cannot happen in ITTs following the refl and subst
pattern. To see this, consider the functions λx. 0+x and λx. x+0.
One may certainly give a closed inductive proof

plus0 : ∀x. 0+x = x+0

but the two functions are not definitionally equal, hence refl cannot
show that λx. 0+x = λx. x+0 and correspondingly, there can
be no closed proof of this mathematically intuitive fact. By the
same token, it is difficult to reason equationally about higher-order
functional programs in ITT-based systems, where laws like

map id = id map (f ◦ g) = map f ◦ map g

cannot be proven.
The challenge is to combine the computational power (and

decidable typechecking) of intensional theories with the reasoning
power of extensional theories. One cannot just add an axiom

q : ∀x. f x = g x
ext q : f = g

without losing canonicity:

subst (ext plus0) (λ . Nat) 0 : Nat

is a closed expression which cannot compute a number, because
the subst has got stuck! The irony of this example is that λ . Nat
makes no use of its argument. In fact, subst (ext plus0) (λ . Nat)
is a function from Nat to Nat which is provably equal (by ext) to
id. If we only looked at the source and target, we could quite easily
see how to perform the transportation! It is in this irony that we find
some hope of resolution.

1.2 The Observational Approach
Our approach is designed to ensure the effectiveness of the maps
induced by equations, transporting values between provably equal
sets. We start by explicitly introducing a notion of set equality. This
will not be defined inductively, but will rather compute what you
need to know to transport canonical values from one set to another.
Equations between sets induce coercions.

S, T : Set
S = T : Prop

Q : S = T s : S
s [Q:S =T 〉 : T

Of course, we still need to talk about equality of values. We
allow the formation of heterogeneous equations, relating values in
arbitrary sets. This is again a computed notion, telling you how to

ensure that equal values support equal observations.

s : S t : T
(s : S) = (t : T) : Prop

Heterogeneous equality may seem a little disturbing: when
would it make sense to say that (0 : Nat) = (id : Nat → Nat)?
On the other hand, how would you state the fact that some function
f preserves equality of arguments if its type is dependent—some
Πa :A. B[a]?1 With heterogeneous equality, we can write

∀x, y. (x : A) = (y : A)→(f x : B[x]) = (f y : B[y])

but with the traditional homogeneous equality, it is rather clumsy
to cope with the way the results have definitionally distinct types.
Using homogeneous equality, with extra dependency and heavy use
of subst, we would have written:

∀x, y. ∀q :x =A y. subst q (λa. B[a]) (f x) =B[y] f y

Our approach scales up much more conveniently. The crucial point
is that heterogeneous equations are only useful if we know why
their types are equal.

Heterogeneity also allows us to formulate the coherence opera-
tor, another OTT primitive, whose definition requires us to ensure
that all of our equality-induced coercions are in some sense just the
identity:

Q : S = T s : S
{s ‖Q:S =T} : (s : S) = (s [Q:S =T 〉 : T)

Note that, by construction, the two sides of this equation have equal
types. We shall need coherence in order to explain the action of
coercion on types which involve binding.

The need to implement coercion between sets will drive the
definition of equality on sets. We shall then be in a position to
consider what equality on values must be.

1.3 A Brief History of Equality
There has been quite a lot of work addressing the problem that
intensional type theories have weak reasoning properties, despite
their good computational behaviour. The most significant contri-
bution is that of Martin Hofmann, who showed that equality re-
flection, in the style of ETT, is conservative over ITT extended by
axioms for ‘extensional concepts’ [14, 13]. The idea of extending
ITT consistently with extensionality axioms goes back at least to
Turner [27], but the problem of losing canonicity was also clear at
that time.

Hofmann also pioneered the construction of setoid models, en-
coding a type theory where extensionality holds in an extensional
theory. A setoid is a set equipped with its own notion of equiv-
alence; functions between setoids form a setoid with functions
equivalent when they take equivalent domain values to equivalent
range value. In order to reason by substitution, we need to be sure
that the predicates we can form over a setoid respect its equiva-
lence. Hofmann’s machinery ensures that this is always the case.

However, Hofmann’s attempt to build a setoid model of a sys-
tem with large elimination—computation of types from values—
ran into technical difficulties. Altenkirch’s setoid model [4] gets
around these problems: his meta-logic has a more liberal defini-
tional equality, identifying all proofs of the same proposition, al-
lowing the extension of Hofmann’s work.

Meanwhile, McBride’s contribution of heterogeneous equal-
ity [19] reduced the bureaucracy of working with equations be-
tween values in dependent types, motivated by need to express
the unification problems inherent to Coquand’s dependent pattern

1 We write Π when we range over a Set and ∀ when we range over a Prop.

matching [8]. The idea of using heterogeneous equality goes back
at least to Huet and Saı̈bi’s formalisation of category theory in type
theory [16], itself an epic struggle. However, McBride’s contribu-
tion was to provide a homogeneous substitution principle, equiva-
lent to extending the usual intensional propositional equality with
the so-called ‘K-rule’, expressing the uniqueness of identity proofs.
The latter is a trivial consequence of pattern matching, but was
shown by Hofmann and Streicher to be unprovable from the usual
induction principle for equality [15].

Heterogeneous equality was employed more recently by Oury to
simplify Hofmann’s proof, showing that an extensional variant of
the Calculus of Constructions is conservative over the intensional
version with extensional axioms [22]. Our present work is a het-
erogeneous variant of the theory for which Altenkirch constructed
a setoid model. The consequent simplification allows us to give a
direct syntactic presentation of OTT, calculating all the necessary
machinery from the structure of the types involved.

In an exciting parallel development, the need to manage equa-
tional constraints for functional programming with Generalized Al-
gebraic Datatypes in Haskell has resulted in an extension of Sys-
tem F with a notion of equality, inducing coercions which compute
through the structure of values [26]. Our system has something of
the same flavour, but type dependency involves more interaction
between its layers: we have fewer, more general components, but
we need a more delicate touch.

2. A Simple Core Type Theory
We shall start from a very basic type theory, then show how to equip
it with a notion of observational equality. We should emphasize that
we intend this theory to act as a very simple core language, with
few syntactic conveniences and the minimal feature set required to
investigate and illustrate the observational approach. In particular,
our basic theory has no hierarchy of universes, although it still has
type-level computation. Let us first establish the core syntax of sets
and terms.

set S ::= G | B X :S. S | If T Then S Else S
ground G ::= 0 | 1 | 2
binder B ::= Π | Σ | W

term T ::= 〈〉 | tt | ff | λX :S. T | 〈T,T〉ΣX:S. S | TCWX:S. ST
| T!S | if T/X.S then T else T
| T T | fst T | snd T | rec T/X.S with T

We have a fixed repertoire of set-formers: ground sets with 0 el-
ements, 1 element 〈〉 and 2 elements {tt, ff}, and set binders Π for
dependent functions (λ-terms), Σ for dependent pairs, and W for
well-founded trees whose nodes sCWx:S.T f comprise a choice s of
node shape from S and a ‘child-function’ f from recursive posi-
tions T [s] to subtrees. Informally, we shall drop type annotations
from value constructors where they may readily be inferred.2 We
shall adopt the standard abbreviations → and × for non-dependent
Π- and Σ-types, respectively. We also write λx y. t for λx.λy. t and
〈r,s,t〉 for 〈r,〈s,t〉〉.

Computation happens via the corresponding eliminators, with
−!T making a ‘magic’ element of T from a mythical element
of 0, dependent if-then-else for 2, application for Π, projections
for Σ, and dependent recursion for W. We have been careful to
consider only functions between sets: dependent eliminators like
if and rec abstract their target sets over a bound variable, leaving
no need to internalise a type of set-valued functions. Informally,
we shall drop this range annotation when eliminating a variable,

2 More formally, we can introduce a bidirectional approach to typechecking
which ensures that we can always drop these annotations, but that is a story
for another time.

in which case the abstraction is readily determined from the type
required. Despite the absence of set-valued functions, we shall still
see computation within types via ‘large’ conditionals on elements
of 2.

The operational semantics of computation is given by structural
closure of the following schemes:

(λx. t) v t[v]
fst 〈s,t〉 s

snd 〈s,t〉 t
if tt/x.P then t else f t
if ff/x.P then t else f f
rec sCf/w.P with p p s f (λt. rec f t/w.P with p)

If tt Then T Else F T
If ff Then T Else F F

This system is just a fragment of many standard-issue type theo-
ries (Martin-Löf’s Intensional Type Theory, the Calculus of Induc-
tive Constructions, Luo’s UTT, etc) all of which enjoy metatheo-
retical properties such as confluence and strong normalisation. We
are therefore entitled to presume the existence of an operator −⇓,
defined on well-typed terms, taking them to values (in this case,
just the normal forms):

set S̄ ::= G | B X : S̄. S̄ | If N̄ Then S̄ Else S̄

term T̄ ::= N̄ | 〈〉 | tt | ff | λX. T̄ | 〈T̄,T̄〉 | T̄CT̄
neutral N̄ ::= X | N̄!S̄ | if N̄/X.S̄ then T̄ else T̄

| N̄ T̄ | fst N̄ | snd N̄ | rec N̄/X.S̄ with T̄

We say that normal terms are canonical if they are built by
canonical constructors, i.e., 〈〉, tt, ff, λ . , 〈 , 〉, C ; other normal
terms are neutral. Similarly, the canonical sets are the ground sets
and those introduced by the three set-binders: the neutral sets are
those given by large elimination on neutral elements of 2. As the
base case for neutral terms is the variable case, we can readily see
that there are no neutral terms in the empty context. Hence, in the
empty context, all normal forms are canonical, for both sets and
values: we call this property canonicity.

We specify definitional equality (≡) on terms by giving an
equivalence on their values. Until section 6, when we introduce an
important modification, α-equivalence on values will suffice.

As usual, we take contexts to assign sets to variables:

Ctxt ::= E | Ctxt; X :S

We can now give the rules of context validity, set formation and
type synthesis.

Ctxt `

E `
Γ ` S set
Γ; x :S ` x 6∈ Γ

Ctxt ` S set

Γ `
Γ ` G set

G ∈ G Γ ` S set Γ; x :S ` T set
Γ ` Bx :S. T set

B ∈ B

Γ ` b : 2 Γ ` T set Γ ` F set
Γ ` If b Then T Else F set

Ctxt ` T : S

Γ ` s : S S ≡ T
Γ ` s : T

Γ `
Γ ` 〈〉 : 1

Γ `
Γ ` tt : 2

Γ `
Γ ` ff : 2

Γ; x :S ` t : T
Γ ` λx :S. t : Πx :S. T

Γ ` s : S Γ ` t : T [s]
Γ ` 〈s,t〉Σx:S.T : Σx :S. T

Γ ` s : S Γ ` f : T [s] → Wx :S. T
Γ ` sCWx:S.T f : Wx :S. T

Γ `
Γ ` x : T

x : T ∈ Γ
Γ ` f : Πx :S. T Γ ` s : S

Γ ` f s : T [s]

Γ ` p : Σx :S. T
Γ ` fst p : S

Γ ` p : Σx :S. T
Γ ` snd p : T [fst p]

Γ ` z : 0
Γ ` P set

Γ ` z!P : P

Γ ` b : 2 Γ ` t : P [tt]
Γ; x : 2 ` P set Γ ` f : P [ff]
Γ ` if b/x.P then t else f : P [b]

Γ ` u : Wx :S. T Γ; w : Wx :S. T ` P set
Γ ` p : Πs :S. Πf :T [s] → Wx :S. T.

(Πt :T [s] . P [f t]) → P [sCf]
Γ ` rec u/w.P with p : P [u]

2.1 Examples, and a Problem
Although this is rather a small theory, lots of familiar constructions
can be expressed in terms of it. For example, the binary sum type,
S+T can be coded as the pair of a tag choice and a suitable
element, whose type is computed from the tag by large elimination.

S+T 7→ Σb :2. If b Then S Else T
inl s 7→ 〈tt,s〉
inr t 7→ 〈ff,t〉

In much the same way, the natural numbers can be defined as
the well-founded structure with two shapes: the ‘successor’ shape
has one recursive position and the ‘zero’ shape has none.

Tr b 7→ If b Then 1 Else 0
Nat 7→ Wb :2. Tr b
zero 7→ ffCλz. z!Nat

suc n 7→ ttCλ . n

To construct elements, we either indicate the ‘zero’ shape and
supply the trivial child-function, or we choose the ‘successor’ shape
and make the child-function return the predecessor.

Operators such as addition can now be defined via the recursor:

plus 7→ λx y. rec x with
λb. if b then λf h. suc (h 〈〉) else λf h. y

Although it is reassuring that we can implement specific famil-
iar operations, we run into trouble when we try to give a general
induction scheme for this coding of Nat. Suppose we have some
n :Nat ` P set. We should like to find

indP : P [zero] → (Πn :Nat. P [n] → P [suc n]) →
Πn :Nat. P [n]

but the ‘obvious’ program, following the same pattern as plus,

indP 7→ λpz ps n. rec n with

λb. if b then λf h. ps (f 〈〉) (h 〈〉) else λf h. pz

does not typecheck, and for the most infuriating of reasons.
In the ‘zero’ case, we must prove P [ffCf], but the proof we

offer is pz : P [ffCλz. z!Nat]. That is, we are obliged to show

that P holds for any implementation of ‘zero’, but we only know
that it holds for a specific implementation of ‘zero’. Similarly, in
the ‘successor’ case, we need a proof of P [ttCf], but we supply a
proof of P [ttCλ . f 〈〉], which is again a more specific thing.3

This is a real problem. There are infinitely many implementa-
tions of ‘zero’. For example,

zero′ 7→ ffCλz. suc (suc zero)

defines ‘zero’ to be ‘the number with no predecessors, all of which
are two’! The frustrating thing is that these distinctions cannot be
observed from within the theory. They are all extensionally equal.
In each case of indP , we can prove that the child-functions given
and required coincide on all inputs, so our program is typable in
ETTs. With observational equality, we shall be able to bridge the
typing gaps explicitly, with coercions.

2.2 An Inductive-Recursive Universe
We can define our core theory as an inductive-recursive universe in
the intensional setting of Agda 2. Firstly, we must declare the type
constructors we shall need: 0 is the datatype with no constructors,

data Empty : Set where

1 is the record type with no fields

record Unit : Set where

and 2 is the usual Boolean datatype

data Bool : Set where
tt : 2
ff : 2

Meanwhile, we can re-use the system’s own Π-sets, written

(x : S) → T x

we can define Σ-sets as records,

record Σ (S : Set)(T : S → Set) : Set where
fst : S
snd : T fst

and give W-sets as a datatype.

data W (S : Set)(T : S → Set) : Set where
C : (x : S) → (T x → W S T) → W S T

Now we can build the collection of these sets, simultaneously
defining a datatype to ‘name’ them and the function which decodes
names as sets

mutual
data ‘set’ : Set where

‘0’, ‘1’, ‘2’ : ‘set’
‘Π’, ‘Σ’, ‘W’ : (S : ‘set’) → (JSK → ‘set’) → ‘set’

J K : ‘set’ → Set
J‘0’K = Empty
J‘1’K = Unit
J‘2’K = Bool
J‘Π’ S T K = (x : JSK) → JT xK
J‘Σ’ S T K = Σ JSK (λx 7→ JT xK)
J‘W’ S T K = W JSK (λx 7→ JT xK)

With this encoding, we can readily define all our constructors
and eliminators of our core theory as functions in Agda 2, either
invoking the coresponding Agda constructors, or implementing the
computational behaviour exactly as we have specified it. This gives
us a translation ˆ taking core sets to elements of ‘set’ and core

3 Adding η-laws for Π and 1 solves this particular problem, but does not
help the general case.

elements of a core set S to elements of JŜK, preserving both type
and computational behaviour. This is the first step towards the
inheritance of strong normalisation and canonicity from an existing
intensional theory.

2.3 A Propositional Fragment
We shall shortly construct our propositional equality, but before
we do so, let us consider what constitutes a proposition in this
setting. Of course, we could just identify propositions with sets,
but we prefer to be more precise: we want to know that proofs
have no interesting computational content. Correspondingly, we
shall identify a sublanguage of propositions, then explain how to
interpret them as sets of proofs.

P ::= ⊥ | > | P ∧ P | ∀X :S. P

Let us be clear that this is by no means the largest sublanguage of
content-free sets. Rather, it is the smallest such language fit for our
current purpose.

We introduce a judgment form to distinguish the well-formed
propositions, and we show how the latter may be interpreted ad-
missibly as sets of proofs,

Ctxt ` P prop Γ ` P prop
Γ ` dP e set

Γ `
Γ ` ⊥ prop

d⊥e 7→ 0

Γ `
Γ ` > prop

d>e 7→ 1

Γ ` P prop Γ ` Q prop
Γ ` P ∧Q prop

dP ∧Qe 7→ Σ :dP e. dQe

Γ ` S set Γ; x :S ` P prop
Γ ` ∀x :S. P prop

d∀x :S. P e 7→ Πx :S. dP e

Propositional implication, P ⇒ Q, is coded as ∀ :dP e. Q. We
say that a term is a proof if it inhabits some dP e.

To some extent, this is just window-dressing. We could just have
worked with sets which happen to be propositional. However, we
have an ulterior motive. Consider which observations on proofs can
interfere with the world of non-propositional sets: > has no obser-
vations; both projections from a proof of P∧Q are proofs; applying
a proof of ∀x : S. P yields a proof; only from a contradiction can
we make data!

This has at least two useful consequences. Firstly, it allows us
to erase all proof objects from run-time code: if we never compute
under λ, we shall never find a proof of ⊥, so proofs are just
dead code. Secondly, we may extend the language of proofs with
whatever propositional laws we like, as long as they are consistent,
and yet retain canonicity.

We can also express this propositional fragment as an inductive-
recursive universe in Agda, this time decoding into our ‘set’ uni-
verse rather than the native Set, exactly following the rules above.

mutual
data ‘prop’ : Set where

‘⊥’, ‘>’ : ‘prop’
‘∧’ : ‘prop’ → ‘prop’ → ‘prop’
‘∀’ : (S : ‘set’) → (JSK → ‘prop’) → ‘prop’

d e : ‘prop’ → ‘set’
· · ·

3. Equality, Coercion and Laziness
In this section, we shall try to implement the operation which
transports values between equal sets. As we do so, we shall find

out what the necessary consequences of set equality should be, and
that will tell us how set equality should be defined! Let us introduce
new operators for set equality and coercion, by recursion on sets,

Γ ` S set Γ ` T set
Γ ` S = T prop

Γ ` Q : dS = T e Γ ` s : S
Γ ` s [Q:S =T 〉 : T

together with their value-level counterparts, which we shall define
in the next section.

Γ ` s : S Γ ` t : T
Γ ` (s : S) = (t : T) prop

Γ ` Q : dS = T e Γ ` s : S
Γ ` {s ‖Q:S =T} : d(s : S) = (s [Q:S =T 〉 : T)e

As you can see, coercion apparently introduces a new way for
proofs to interfere with data. However, we shall define coercion re-
cursively in terms of the existing operations on proofs, thus retain-
ing both the erasability of propositions and, crucially, our freedom
to add consistent laws.

As the sets inhabited by canonical values are themselves canon-
ical, it is sufficient to explain how to compute a coercion between
any two canonical sets, given a proof that they are equal. Let us deal
with the easy cases first: at identical ground types, there is nothing
to do!

z [Q: 0=0 〉 7→ z
u [Q: 1=1 〉 7→ u
b [Q: 2=2 〉 7→ b

Correspondingly, we may take

0 = 0 7→ >
1 = 1 7→ >
2 = 2 7→ >

The hard work will come when explaining what to do with types
made with the same binder. Even harder are the off-diagonal cases,
so we shall have to rule them out.

f0 [Q: Πx0 :S0. T0=Πx1 :S1. T1 〉 7→ ?
p0 [Q: Σx0 :S0. T0=Σx1 :S1. T1 〉 7→ ?

(s0Cf0) [Q: Wx0 :S0. T0=Wx1 :S1. T1 〉 7→ ?
x [Q: S=T 〉 7→ Q!T otherwise

(Πx0 :S0. T0) = (Πx1 :S1. T1) 7→ ?
(Σx0 :S0. T0) = (Σx1 :S1. T1) 7→ ?
(Wx0 :S0. T0) = (Wx1 :S1. T1) 7→ ?

S = T 7→ ⊥ for other canonical sets
We must fill in those ?s. Let us start with Σ-types, as tuples are

relatively mundane, compared to functions or well-founded trees.
We must solve

. . . ; Q : (Σx0 :S0. T0) = (Σx1 :S1. T1);
p0 : Σx0 :S0. T0

` ? : Σx1 :S1. T1

Let us work by refinement, following the trail left by the types.
Some moves are clear. Let us name the input’s projections for
convenient access, then construct the output componentwise. We
use an informal let notation for ‘definitions’ to be substituted out
in the final term. This notation is not part of our theory, but makes
our terms a bit more legible.

let
s0 7→ fst p0 : S0

t0 7→ snd p0 : T0[s0]
s1 7→ ? : S1

t1 7→ ? : T1[s1]
in 〈s1,t1〉

Now, the only way we can make an output equal to the input
is if the output components are equal to the input components. We
must make s1 by coercing s0 and t1 by coercing t0. We get

let
Fs0 7→ fst p0 : S0

Ft0 7→ snd p0 : T0[s0]
QS 7→ ? : dS0 = S1e
s1 7→ s0 [QS :S0 =S1〉 : S1

QT 7→ ? : dT0[s0] = T1[s1] e
t1 7→ t0 [QT :T0[s0]=T1[s1] 〉 : T1[s1]

in 〈s1,t1〉

It remains to find proofs of the equations which justify the
coercions. These concern the components of the Σ-types, and must
surely be extracted from Q. We shall clearly need Q to tell us that
S0 = S1. However, in the case of QT , we are obliged to show
that the s0 instance of T0 equals the s1 instance of T1, where s0
and s1 are unknown when Q’s type is being determined. It is too
much to require that arbitrary instances of T0 and T1 are equal—
that would force us to remove any meaningful dependency. We
can, however require T0 and T1 to coincide whenever they are
instantiated equally, for s1 is a coercion of Fs0, hence equal by
coherence.

Let us therefore take

(Σx0 :S0. T0) = (Σx1 :S1. T1) 7→
S0 = S1 ∧
∀x0 :S0. ∀x1 :S1. (x0 :S0) = (x1 :S1) ⇒ T0[x0] = T1[x1]

so that we can have

QS 7→ fst Q
QT 7→ (snd Q) s0 s1 {s0 ‖QS :S0 =S1}

completing the case for Σ-types.
For Π-types, we can expect a little contravariant twist. We need

to coerce the argument s1 right-to-left, so that we can apply the
function f0, then coerce the result left-to-right. Working in the same
style, we have

. . . ; Q : (Πx0 :S0. T0) = (Πx1 :S1. T1);
f0 : Πx0 :S0. T0

` λs1. let
FQS 7→ ? : dS1 = S0e
s0 7→ s1 [QS :S1 =S0〉 : S0

t0 7→ f0 s0 : T0[s0]
QT 7→ ? : dT0[s0] = T1[s1] e
t1 7→ t0 [QT :T0[s0]=T1[s1] 〉 : T1[s1]

in t1
: Πx1 :S1. T1

Correspondingly, we should take

(Πx0 :S0. T0) = (Πx1 :S1. T1) 7→
S1 = S0 ∧
∀x1 :S1. ∀x0 :S0. (x1 :S1) = (x0 :S0) ⇒ T0[x0] = T1[x1]

QS 7→ fst Q
QT 7→ (snd Q) s1 s0 {s1 ‖QS :S1 =S0}

In the case of W types, we shall need a recursive coercion,
shifting shapes and child-functions left-to-right: for the latter, we
shall need to shift child-positions right-to-left, and the resulting
child-trees left-to-right recursively. Perhaps you can already guess
that we shall take

(Wx0 :S0. T0) = (Wx1 :S1. T1) 7→
S0 = S1 ∧
∀x0 :S0. ∀x1 :S1. (x0 :S0) = (x1 :S1) ⇒ T1[x1] = T0[x0]

The coercion can then be defined recursively as follows:

(s0Cf0) [Q:Wx0 :S0. T0 =Wx1 :S1. T1〉 7→
let

QS 7→ fst Q : dS0 = S1e
s1 7→ s0 [QS :S0 =S1〉 : S1

QT 7→ (snd Q) s0 s1 {s0 ‖QS :S0 =S1} : dT1[s1] = T0[s0] e
in s1Cλt1. let t0 7→ t1 [QT :T1[s1]=T0[s0] 〉 : T0[s0]

in f0 t0 [Q:Wx0 :S0. T0 =Wx1 :S1. T1〉

We have completed the first stage of our journey. What we have
produced may look complex and detailed, but there was relatively
little choice at any point. The structure of the types determined
the structure of the coercions between them. This delivered in turn
the requirements which determined what set equality should be:
impossible off the diagonal; trivial at ground types; for binders,
equal domains and equal range instances for equal domain values,
twisted according to variance.

3.1 Value Equality
We must now explain when values are equal. The idea is that
values should be equal when they support equal observations. For
those sets equipped with inductive eliminators (0, 2, W-sets), this
amounts to equality of construction. For those equipped only with
projective eliminators (1, Σ, Π), we are free to require only that
projections coincide.

(z0 : 0) = (z1 : 0) 7→ >
(u0 : 1) = (u1 : 1) 7→ >
(tt : 2) = (tt : 2) 7→ >
(tt : 2) = (ff : 2) 7→ ⊥
(ff : 2) = (tt : 2) 7→ ⊥
(ff : 2) = (ff : 2) 7→ >

(f0 : Πx0 :S0. T0) = (f1 : Πx1 :S1. T1) 7→
∀x0 :S0. ∀x1 :S1. (x0 : S0) = (x1 : S1) ⇒

(f0 x0 : T0[x0]) = (f1 x1 : T1[x1])

(p0 : Σx0 :S0. T0) = (p1 : Σx1 :S1. T1) 7→
(fst p0 : S0) = (fst p1 : S1) ∧
(snd p0 : T0[fst p0]) = (snd p1 : T1[fst p1])

(s0Cf0 : Wx0 :S0. T0) = (s1Cf1 : Wx1 :S1. T1) 7→
(s0 : S0) = (s1 : S1) ∧
∀y0 :T0[s0] . ∀y1 :T1[s1] . (y0 : T0[s0]) = (y1 : T1[s0]) ⇒

(f0 y0 : Wx0 :S0. T0) = (f1 y1 : Wx1 :S1. T1)

(: T0) = (: T1) 7→ ⊥
T0, T1 other canonical sets

As you can see, two functions are equal if they take equal inputs
to equal outputs; two pairs are equal if they have equal projections.
Meanwhile, as the eliminators for 2 and W allow us to observe
the construction of their contents, equality for elements of these
types is equality of construction. Note that this definition of value
equality preserves set equality: if we know that the values on the
left inhabit equal sets, then we know that every equation on the
right relates values in equal sets.

What can impede the computation of = for values? Only the
presence of a neutral set, or of a neutral value in 2 or a W-set.

We have shown how to construct equations between sets and
how these equations, if provable, yield coercions. We have also
shown how to construct observational justifications for the equality
of terms. This does not complete our presentation of OTT. We shall
need to add more introduction rules for equations which are not
directly observational. However, we have now given all of OTT’s
computation schemes. Whatever we add will not change the com-
putational behaviour of the system, only enlarge the collection of

provable equations. Correspondingly, it is a good time to consider
the metatheoretical properties of these computation schemes.

3.2 Modelling Equality and Coercion yields Normalisation
The definition of equality and coercion, given above, is entirely
representable in our Agda model. We show how our universe can
readily be equipped with equality and coercion by definitional ex-
tension. Moreover, we ensure that all the computation schemes are
faithfully simulated. By this means, we shall be able to demonstrate
that OTT is strongly normalising. We define

mutual
Eq : ‘set’ → ‘set’ → ‘prop’
· · ·
eq : (S : ‘set’) → JSK → (T : ‘set’) → JT K → ‘prop’
· · ·

with operational behaviour delivering exactly the above computa-
tion schemes. These functions cover all the canonical sets and val-
ues from our core theory: they introduce no ‘new’ propositions.

Of course, we must be sure that these programs terminate. The
contravariant twists we used to keep coercion simple mean that our
recursion is not directly structural: although we appeal to recursion
on smaller elements of ‘set’, we swap the argument positions in
which they appear. We shall address this issue shortly.

Once we know what equality is, we may introduce coercion and
coherence as a mutual definition:

mutual
coe : (S : ‘set’)(T : ‘set’) → JdEq S T eK → JSK → JT K
coe ‘0’ ‘0’ Q z = z
coe ‘0’ ‘1’ Q z = Q!Unit
...
coe (‘W’ S0 T0) (‘W’ S1 T1) Q (s0Cf0) = · · ·

coh : (S : ‘set’)(T : ‘set’)(Q : JdEq S T eK)(s : JSK) →
eq S s T (coe S T Q s)

coh S T Q s = ?

The definition of coercion follows the same twisted recursion
scheme on the names of types, combined lexicographically with
structural recursion on trees in W-types, when required. Corre-
spondingly, the computation schemes for coercion are faithfully
simulated by the embedding. We shall keep you in suspense about
the definition of coherence a little while longer.

LEMMA 1 (Strong Normalisation). OTT is strongly normalising.

PROOF SKETCH Our approach to strong normalisation is to simu-
late the reduction behaviour of OTT within a strongly normalising
intensional type theory. We proceed in two steps.

Firstly, we must account for the non-structual twisting in con-
travariant positions. There are advanced ways to do this [2], but the
basic, clumsy way is to define the equality in the model without
twists and close the simulating set modelling each OTT equation
under symmetry. If we do this, we must extend the model of co-
ercion to give us both directions at once, and switch direction in
contravariant positions. By doing so, we acquire a model in the
system of inductive-recursive definitions proposed by Dybjer and
Setzer [9]. Although this system has a set-theoretic model and is
widely suspected to be normalising, we cannot consider the job
done.

Correspondingly, the second step is to code the induction-
recursion within a standard type theory such as Luo’s UTT [17]
or the Calculus of Inductive Constructions [28]. The usual coding
trick, discovered independently by Capretta, McBride and doubt-
less others, is to turn the decoding function into an index. Where

Agda allows us

data ‘set’ : Set . . . J K : ‘set’ → Set

we may instead resort to an indexed-family, given a larger universe

HasCode : Set → Type

and rearrange our constructions accordingly,

‘set’ = ΣS : Set. HasCode S J K = fst

We may define the operations, all as a package, using just the
standard eliminator for structural recursion on HasCode. �

4. Canonicity from Consistency
We are now in a position to investigate the issue of canonicity for
OTT. By adding coercion, we introduced a new way for proofs of
propositions to interact with calculations on data, so we must check
that coercion never ‘gums up the works’. Our careful separation of
propositions from sets allows us to proceed in two stages: first, we
check that logical contradiction is the only possible source of non-
canonical data; then, we check that our proof -language is free of
such contradictions.

LEMMA 2 (Canonicity from Consistency). Suppose OTT is con-
sistent, i.e. that there is no s such that E ` s : 0 . Then, for all
normal S and s,

• if E ` S set then S is canonical;
• if E ` s : S then either s is canonical, or s is a proof.

PROOF We proceed by mutual induction on the normal forms S
and s. Clearly we need only consider how to rule out neutral sets
and values. We have three forms of neutral set:

• E ` If b Then T Else F set This must follow from some
E ` b : 2; however, 2 is not a proposition, so inductively, b
must be tt or ff, hence our set computes further, contradicting
the hypothesis that it is in normal form.

• E ` dS0 = S1e set This must follow from E ` S0 set
and E ` S1 set. Inductively, S0 and S1 are canonical, so the
equation computes further.

• E ` d(s0 : S0) = (s1 : S1)e set Inductively, the two sets
must be canonical. Moreover, if Si is 2 or a W-set, then si is
also canonical. Hence the equation computes further.

Meanwhile, for the values, the result holds for

• canonical term-formers, directly;
• variables, vacuously, because the context is empty;
• z!S, by our assumption of consistency;
• if b/x.P then t else f , because b : 2 must be canonical,

inductively, hence the conditional computes;
• rec w/x.P with p, because w : Wx : S. T must be canonical,

inductively, hence the recursor computes;
• f a, because, inductively, f must be either

λx. t, contradicting normality of f a, or

a proof, in which case so is f a;
• fst p and snd p, by the same argument—these must be proofs

because, inductively, p must be a proof;
• {s ‖Q:S =T}, because this is a proof;
• s [Q:S =T 〉, because inductively, S and T are canonical which

is enough to make the coercion compute, except in the case
where they are both W-sets, in which case we also need the
inductive hypothesis that s is canonical. �

The impact of this lemma is significant: it tells us that we can
add introduction rules for any propositions we like, provided that
they are consistent, without threatening either normalisation (be-
cause they do not compute) or canonicity (because this is ensured
by consistency). Our hard work in designing this coercion mecha-
nism to ensure the transportation of canonical values between equal
types has bought us the freedom to design the propositional frag-
ment of OTT for our convenience, within reason.

4.1 Laws for Equality
Which equational laws shall we have? We should certainly like to
recover refl and subst, so let us have

Γ ` s : S
Γ ` s :S : d(s : S) = (s : S)e

Γ ` S set Γ; x :S ` T set
Γ ` Rx :S. T : d∀y :S. ∀z :S.

(y : S) = (z : S) ⇒ T [y] = T [z] e

The former is just reflexivity for values. The latter asserts that
any set abstracting a value must preserve the value equality—any
such abstracted set thus induces a substitution operator for values.

subst[x :S. T] 7→ λy z q t. t [(Rx :S. T) y z q:T [y]=T [z] 〉
: Πy :S. Πz :S.

d(y : S) = (z : S)e → T [y] → T [z]

Note that we can now form

subst[x :S. T] s s (s :S) : T [s] → T [s]

but that the computational behaviour of this is not uniformly the
identity: it depends on the structure of T , and the value being
transported. In particular,

subst[x :2. If x Then T Else F] b b (b :2) t

is bound to get stuck if b is neutral, because we can only coerce
between canonical types. Altenkirch’s extensional model construc-
tion [4] also had this issue, losing some computational properties
of ITTs to gain some reasoning properties from ETTs. This is a big
issue: the vanishing of trivial substs is what gives elaborated Epi-
gram programs their expected computational behaviour [20, 12].
Fortunately, as you shall see later, we can recover this intensional
behaviour without further adjusting our notion of evaluation.

Of course, coherence is enough to tell us that trivial substs are
provably equal to the identity. We have not yet defined coherence,
but as it is a propositional law, we do not need to. Let us leave our
coherence operator without computational behaviour!

We should like our equalities to be equivalences. We have re-
flexivity for values; for sets, we can take

S 7→ (Rx :1. S) 〈〉 〈〉 〈〉 : S = S

We could derive symmetry and transitivity directly if our theory
was rich enough to support abstraction over sets, but even with
the restricted theory of this paper, it is enough to add that equality
respects equality, i.e.

Γ ` P : dA = Ce Γ ` Q : dB = De
Γ ` P ‖Q : ddA = Be = dC = Dee

and similarly for values, although we must be careful to consider
only equations on values between equal sets

Γ ` P : dA = Ce
Γ ` p : d(a :A) = (c :C)e

Γ ` Q : dB = De
Γ ` q : d(b :B) = (d :D)e

Γ ` P, p ‖Q, q : dd(a :A) = (b :B)e = d(c :C) = (d :D)ee

Now, if Q : X = Y , then we can derive symmetry

Q` 7→ X [Q ‖X:dX = Xe=dY = Xe〉 : dY = Xe

and if, further, Q′ : Y = Z, then we can derive transitivity

Q◦Q′ 7→ Q [X ‖Q′:dX = Y e=dX = Ze〉 : dX = Ze

with similar constructions serving for equal values in equal sets.
Further, we should like every syntactic construct to respect the

observational equality, making equal objects from equal subob-
jects. These laws already hold within OTT for each syntactic con-
struct of our base theory, and we have just added that equality re-
spects equality. We can easily use coherence to prove that coercion
respects equality. This leaves us only with the need to prove that all
of our propositional laws respect equality. We can get this in one go
by adding a proof-irrelevance law: “equal propositions have equal
proofs”.

Γ ` Po prop Γ ` P1 prop Γ ` Q : dP0e = dP1e
Irr Q : d∀p0 :dP0e. ∀p1 :dP1e. (p0 :P0) = (p1 :P1)e

Now, it is the case that many of our laws can be implemented
by ‘generic programming’ in our Agda embedding, where we have
access to recursion over ‘set’. Certainly, Irr holds by induction on
the structure of propositions. However, it is also clear that not all
such laws can be provable in Agda: we represent OTT functions
by Agda functions, but extensionality holds in OTT. To see this,
suppose FG : d∀x :S. (f x : T [x]) = (g x : T [x])e, and observe

λx y xy. FG x ◦ snd (g :Πx :S. T [x]) x y xy
: d(f : Πx :S. T [x]) = (g : Πx :S. T [x])e

Extensionality does not hold in Agda, although it is consistent
to assume it. Fortunately for us, our Agda embedding delivers all
the computational behaviour of OTT without any need to derive all
these laws. Coercion never looks at the proof, so why should we
trouble to compute it?

4.2 Consistency from the Extensional Theory
There is nothing to stop us embedding OTT into an extensional
type theory. The obvious way to achieve this is to embed our
existing intensional translation into the corresponding extensional
type theory. The latter may have poor computational properties, but
it is at least consistent, so we can prove consistency of OTT just by
finishing our homework: we must derive our propositional laws in
the extensional setting.

Let us write ≡A for the built-in propositional equality of the
extensional theory, which coincides with the definitional equality
by the conversion rule in one direction, and the equality reflection
rule in the other. The key fact is this:

LEMMA 3 (Equality Interchange). For all S0, S1 : ‘set’,

JdS0 = S1eK ⇔ S0 ≡‘set’ S1

Moreover, if S0 ≡‘set’ S1, then for all s0 : S0 and s1 : S1,

Jd(s0 : S0) = (s1 : S1)eK ⇔ s0 ≡JS0K s1

PROOF Note that we are using equality reflection even to state this
fact—the value level equation is only homogeneous because we
have a proof that the sets coincide, hence their interpretations are
definitionally equal.

We proceed by the usual variance-twisted induction on S0 and
S1. The off-diagonal cases are trivial, as are the cases for equal
ground sets.

For ‘Π’, we must show

JdS1 = S0 ∧
∀x1 :S1. ∀x0 :S0. (x1 :S1) = (x0 :S0) ⇒ T0 x0 = T1 x1eK

⇔
‘Π’ S0 T0 ≡‘set’ ‘Π’ S1 T1

Going right-to-left, injectivity of constructors allows us to identify
S0 ≡‘set’ S1 and hence T0 ≡JS0K→‘set’ T1. Using our inductive
hypothesis for the domain sets, we may deduce JdS1 = S0eK; for
the range, we can take x1 ≡JS0K x0 by the inductive hypothesis
for domain values (noting that the domains have been identified),
hence we have T0 x0 ≡‘set’ T1 x1, so, by the range inductive
hypothesis, we have JdT0 x0 = T1 x1eK.

Left-to-right, our inductive hypothesis for domain sets immedi-
ately identifies them. To deduce that T0 ≡JS0K→‘set’ T1, we may
appeal to extensionality and show

(x :S0) → T0 x ≡‘set’ T1 x

our domain value hypothesis tells us that Jd(x : S1) = (x : S0)eK,
hence we may deduce JdT0 x = T1 xeK, ready for the range
hypothesis.

On the value level, with domain and range identified, we must
show

Jd∀x0 :S. ∀x1 :S. (x0 :S) = (x1 :S) ⇒
(f0 x0 : T x0) = (f1 x1 : T x1)eK

⇔
f0 ≡(x:S)→T f1

Right-to-left, introducing the hypotheses allows us to identify
x0 ≡S x1, yielding f0 x0 ≡T x0 f1 x1, ready for the range value
hypothesis to complete the derivation. Left to right, we again appeal
to extensionality, just as we did with the range sets.

For ‘Σ’ and ‘W’ the proofs on the set-level go just as they do
for ‘Π’. On the value-level, pairs are treated componentwise and
trees require a further induction. The crux remains that whenever
we have a hypothetical equation on two values, we always know
their sets are equal, so our inductive hypotheses allow us to identify
them. �

THEOREM 4 (Consistency). There is no s such that E ` s : 0.

PROOF Inspecting our propositional laws, we have maintained the
property that values are equated only when they inhabit provably
equal sets. We may therefore appeal to the equality interchange
lemma to derive these laws in our extensional model from their
counterparts with = replaced by ≡. All these laws hold trivially
in extensional type theory. Correspondingly, every closed term in
OTT induces a closed term in ETT inhabiting the corresponding
set. As ETT is consistent, no closed OTT term can inhabit 0. �

COROLLARY 5 (Canonicity). If E ` S set then S is canonical. If
E ` s : S then s is either canonical or a proof.

A more arduous but arguably more satisfying proof would be
to complete the missing derivations of the propositional laws in
an intensional theory, consistently extended with axioms for “ex-
tensional concepts”, as proposed by Hofmann [13]. Such exten-
sions give the strength of the extensional theory, whilst retaining
the checkability of constructions. W. Swierstra has done most of
the work required, for a minor variation of the theory presented
here: his construction leaves only reflexivity unfinished, and that is
where the appeal to extensionality is required.

5. Induction for Natural Numbers
Let us now put observational equality to work, implementing the
induction principle for natural numbers defined via W-sets:

indP : P [zero] → (Πn :Nat. P [n] → P [suc n]) →
Πn :Nat. P [n]

Recall that the problem was to show that the proof of P given
for the standard implementation of a number is good for any imple-
mentation of that number. We are now ready to solve this problem.

indP 7→
λpz ps n. rec n with

λb. if b then λf h. ps (f 〈〉) (h 〈〉)
[?:P [suc (f 〈〉)]=P [ttCf] 〉

else λf h. pz [?:P [zero]=P [ffCf] 〉

To fill the holes, we can appeal to Rx :P [x] and then provide the
requisite proofs that the numbers coincide: it is trivial to show that
they have the same shape, but the child-functions are equal only up
to observation:

〈〈〉, λx y q. (f :1 → Nat) 〈〉 y 〈〉〉
: (suc (f 〈〉) : Nat) = (ttCf : Nat)

〈〈〉, λx y q. x!d(x!Nat : Nat) = (f y : Nat)e〉
: (zero : Nat) = (ffCf : Nat)

So, coercion via proofs based on extensional reasoning repairs
the derivation of the induction principle, without loss of canonicity:
2+2 is certainly a successor. We can play the same game with other
inductive sets: related work on containers [1] shows how to encode
a wide variety of structures as W-sets in an extensional setting. We
may now import all those constructions, wholesale, acquiring at
least the inductive families accepted by Luo’s schema, as used in
Epigram [10, 17].

This is progress, but, of course we want more! We want the
usual computational behaviour as well, on open terms. Unfortu-
nately

indP pz ps zero 7→ pz [· · · :P [zero]=P [zero] 〉
indP pz ps (suc n) 7→

ps n (indP pz ps n) [· · · :P [suc n]=P [suc n] 〉
If we are lucky, P will have a form which allows these coercions
to compute, but in general, they get stuck, even though the source
and target are definitionally equal sets.

Notice, of course, that this is not an inherent problem with the
observational approach, just with the computational behaviour of
higher-order encodings of data. If we add first-order presentations
of datatypes to our theory, they behave as they always did.

Even with the higher-order encodings, the fact that we lose
the computation rules because of coercions which a computer can
tell are unnecessary is somewhat ironic. Let us see how to use
computers to solve this problem!

6. Type-Directed Quotation
So far, our definitional equality has been the most basic available—
α-equivalence of β-normal forms. We can do better, by post-
processing our β-normal values in a type-directed way. In the
literature of normalisation by evaluation, this process is usually
called ‘quotation’, as it is usually the means by which semantically-
represented values are reified syntactically.

We define mutually recursive operations, S ⇑Γ v quoting values
in a known set as values, ⇓Γ n quoting neutral terms as neutral
terms and reconstructing the set which they inhabit, ⇑Γ S quoting
normal sets, ⇓Γ N quoting neutral sets. These operations perform
η-expansion, much in style of Abel et al. [3]. Moreover, they detect
the presence of propositional types and mark the corresponding

proofs with a box. We shall also make ⇓Γeliminate stuck coercions
between equal sets.

Definitional equality, ≡, for sets and for values in a set now
becomes α�-equivalence of quoted normal forms, written ≡α�.
That is, we identify quotations up to renaming of variables and
the equivalence of arbitrary boxed proofs. We now have proof
irrelevant propositions.

Quotation for normal values performs η-expansion where possi-
ble, pushes through constructors, marks inhabitants of 0 and proofs
of neutral propositions (i.e., unexpanded equations). The remaining
terms are necessarily neutral inhabitants of datatypes 2, W-sets or
some If b Then T Else F , so we change direction.

0⇑Γ z 7→ z

1⇑Γ z 7→ 〈〉
2⇑Γ tt 7→ tt
2⇑Γ ff 7→ ff

Πx :S. T ⇑Γ f 7→ λx. (T ⇑Γ;x:S f x)
Σx :S. T ⇑Γ p 7→ 〈S ⇑Γ fst p, T [fst p] ⇑Γ snd p〉
Wx :S. T ⇑Γ sCf 7→ (S ⇑Γ s)C(T [s] → Wx :S. T ⇑Γ f)

dNe ⇑Γ p 7→ p

T ⇑Γ n 7→ n′ if ⇓Γ n 7→ n′ : , otherwise

For neutral terms, we follow the typing rules

⇓Γ;x:S;Γ′
x 7→ x : S

⇓Γ z!S 7→ z !⇑Γ S : S

⇓Γ if b/x.P then t else f 7→
if 2 ⇑Γ b/x. ⇑Γ;x:2 P then P [tt] ⇑Γ t else P [ff] ⇑Γ f : P [b]

⇓Γ f s 7→ f ′ (S ⇑Γ s) : T [s]
if ⇓Γ f 7→ f ′ : Πx :S. T

⇓Γ fst p 7→ fst p′ : S
if ⇓Γ p 7→ p′ : Σx :S. T

⇓Γ snd p 7→ snd p′ : T [fst p]
if ⇓Γ p 7→ p′ : Σx :S. T

⇓Γ rec u/w.P with p 7→ rec u′/w. ⇑Γ;w:Wx:S. T P
with Π · · · ⇑Γ p

if ⇓Γ u 7→ u′ : Wx :S. T

where you can recover the missing type of the recursive method
from the typing rule for rec with . However, the real excitement is
in the quotation of neutral coercions.

⇓Γ s [Q:S =T 〉 7→ T ⇑Γ s : T
if ⇑Γ S ≡α� ⇑Γ T

7→ (S ⇑Γ s) [Q :(⇑Γ S)=(⇑Γ T)〉 : T

otherwise

This procedure eliminates stuck coercions between equal sets,
solving our problem, but does it make sense? The crucial point is
that if our coercion is stuck and the sets are equal, s must be neutral:
if s were canonical, then S would be canonical and T would be
equal to it, hence the coercion would reduce.

Quotation for sets is straightforward:

⇑Γ G 7→ G ground sets
⇑Γ Bx :S. T 7→ Bx : (⇑Γ S). (⇑Γ;x:S T) binder sets

⇑Γ N 7→⇓Γ N

⇓Γ If b Then T Else F 7→ If (2 ⇑Γ b) Then (⇑Γ T) Else (⇑Γ F)
⇓Γ dS = T e 7→ d(⇑Γ S) = (⇑Γ T)e

⇓Γ d(s :S) = (t :T)e 7→ d(S ⇑Γ s :⇑Γ S) = (T ⇑Γ t :⇑Γ T)e
What is remarkable about this is that we did not have to change

evaluation, just our equivalence on values. In particular, our dele-
tion of coercions happens only within the equational theory of neu-
tral terms. Of course, we had better check that

LEMMA 6 (Coercion Elimination).

S ≡ T implies s [Q:S =T 〉 ≡ s : T

even when the coercion is not stuck.

PROOF By induction on the quoted normal forms of S and T . For
ground sets, this is exactly the computational behaviour of coer-
cion. For neutral sets, quotation erases the coercion. The interest
lies in binder sets.

If Bx :S0. T0 ≡α� Bx :S1. T1 then S0 ≡α� S1 and T0 ≡α�

T1. Recall that in each case, the coercion operates by coercing a
domain component s [fst Q:Si = Sj〉 with i, j being 0, 1 or 1, 0,
according to variance. As SS0 ≡α� S1, we have inductively that
s [fst Q:Si = Sj〉 ≡ s, and hence that Ti[s [fst Q:Si =Sj〉] ≡
Tj [s] for either twisting. The latter guarantees inductively that the
coercion of the range component disappears. Hence the action
of coercion between equal sets is at worst η-expansion, which
certainly falls within our new equivalence. �

The effect of this extension of definitional equality is thus to re-
cover the lost computational behavour of intensional type theories.
Substitution by reflexivity is equal to the identity, and the compu-
tation rules for Nat’s induction principle hold definitionally.

7. Conclusions and Further Work
Where do we stand now, with Observational Type Theory? The ba-
sic system given in this paper has been coded in Agda 2, which
gives some evidence for its computational properties and consis-
tency. We have yet to execute our plan to code the construction in a
less convenient but more standard system.

We hope to follow Oury’s proof method to show that ETT is a
conservative extension of OTT, and we can certainly validate the
key axioms underpinning his translation of extensional derivations
to intensional terms [22]. His work gives us good reason to con-
jecture that OTT has the full reasoning power of the corresponding
extensional type theory, and hence that we really have no need to
suffer the negative computational consequences of the equality re-
flection rule in order to obtain its logical benefits.

Moreover, as we have shown, we do not need to compromise
any of the computational equalities of intensional type theory to
achieve this result. Substituting by a reflexive equation is still the
identity and induction principles compute as they should. Indeed,
we have shown that we can add proof irrelevance to an intensional
type theory without serious modification to its evaluation process.
In particular, we can now elaborate Epigram’s pattern matching to
OTT, retaining all the same computational behaviour, even on open
terms.

For a realistic implementation, it is crucial to erase equality
proofs and coercions from run-time objects. It is perfectly safe to
do so, provided we never compute under a binder. This is nothing
new: ETTs, where coercions are invisible, have always supported
weak normalisation, and program extraction from ITTs has always
supported the erasure of proofs [23].

Three key pieces of the jigsaw are still missing:

Hierarchical universes. We have illustrated the observational ap-
proach with a minimal type theory, excluding abstraction over
sets. Clearly, we need to introduce a type hierarchy [17] which
allows us to scale up. This certainly does not preclude the ex-
tension of the observational approach.

Coinductive data. As with functions, the useful notion of equality
for coinductive data is observational in character: equal codata
have equal one-step unfoldings. Of course, it is consistent to
add the propositional law that a bisimulation induces equality
on codata: as we have seen, this has no impact on the computa-
tional properties of the system.

Quotients. We should very much like to internalise setoids—sets
of values up to a programmer-supplied equivalence—as quo-
tient sets. We plan to represent quotients as abstract datatypes,
allowing you access to the element of the underlying set only
if you can prove that you respect the equivalence. Correspond-
ingly, observational equality on quotient sets should just reduce
to the given equivalence.

The potential applications of observational equality are con-
siderable. There are many constructions and developments in the
literature which have struggled to cope with the rigidity of inten-
sional equality for functions. McBride’s correctness proof for uni-
fication [18] is burdened throughout by the need to show explicitly
that predicates respect the observational equality for substitutions
represented functionally.

Moreover, we expect formalisations of categorical structure to
be greatly simplified by the ability to use sets and observational
equality rather than setoids with a hand-cranked equivalence. We
hope that Buisse and Dybjer will be able to take advantage of OTT
to streamline their recent study of categories-with-families, allow-
ing us to model the mathematical structures underlying dependent
type systems [6].

If we are to integrate real programming with proof, we need
to be able to reason effectively about effects, higher-order objects,
processes, abstract data types and the like. That means we need the
monad laws to hold; that means we need to reason by observational
congruence for processes; that means we need to exploit the equiva-
lences preserved by encapsulation. This paper shows that Observa-
tional Type Theory can provide a computational foundation for de-
pendently typed programming, integrated with a logic which steps
up to that challenge.

Acknowledgments
The authors wish to express their sincere gratitude to Peter Han-
cock, for Agda driving lessons and wise insights. Nicolas Oury has
made many helpful contributions to our work and is now the prime
force behind the implementation of OTT in Epigram 2. We should
also like to thank Thierry Coquand and Peter Dybjer for useful con-
versations, the anonymous referees for their helpful remarks, and
Ulf Norell for his spectacular new version of Agda which made
this story so much easier to tell.

References
[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers -

constructing strictly positive types. Theoretical Computer Science,
342:3–27, September 2005.

[2] Andreas Abel. A Polymorphic Lambda-Calculus with Sized Higher-
Order Types. PhD thesis, Ludwig-Maximilians-Universität München,
2006.

[3] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by
evaluation for Martin-Löf type theory with typed equality judgements.
In Logic in Computer Science, 2007.

[4] Thorsten Altenkirch. Extensional equality in intensional type theory.
In LICS 99, 1999.

[5] Lennart Augustsson. Cayenne – a language with dependent types.
In ICFP ’98: Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming, pages 239–250, 1998.

[6] Alexandre Buisse and Peter Dybjer. Formalizing categorical models
of type theory in type theory. In International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice, 2007.

[7] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F.

Smith. Implementing Mathematics with the Nuprl Development
System. Prentice-Hall, 1986.

[8] Thierry Coquand. Pattern matching with dependent types. In
B. Nordström, K. Pettersson, and G. Plotkin, editors, Informal
Proceedings Workshop on Types for Proofs and Programs, Båstad,
Sweden, 8–12 June 1992, pages 71–84. Dept. of Computing Science,
Chalmers Univ. of Technology and Göteborg Univ., 1992.

[9] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. Typed Lambda Calculi and Applications, 1581:129–146,
1999.

[10] Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type
Theory. In Gérard Huet and Gordon Plotkin, editors, Logical
Frameworks. Cambridge University Press, 1991.

[11] Conor McBride et al. Epigram, 2004. http://www.e-pig.org.

[12] Healfdene Goguen, Conor McBride, and James McKinna. Eliminat-
ing dependent pattern matching. In Kokichi Futatsugi, Jean-Pierre
Jouannaud, and José Meseguer, editors, Essays Dedicated to Joseph
A. Goguen, volume 4060 of Lecture Notes in Computer Science,
pages 521–540. Springer, 2006.

[13] Martin Hofmann. Conservativity of equality reflection over
intensional type theory. In TYPES 95, pages 153–164, 1995.

[14] Martin Hofmann. Extensional concepts in intensional type theory.
PhD thesis, Laboratory for Foundations of Computer Science,
University of Edinburgh, 1995. Available from http://www.lfcs.
informatics.ed.ac.uk/reports/95/ECS-LFCS-95-327/.

[15] Martin Hofmann and Thomas Streicher. A groupoid model refutes
uniqueness of identity proofs. In LICS 94, pages 208–212, 1994.

[16] G. Huet and A. Saı̈bi. Constructive Category Theory. MIT Press,
1998.

[17] Zhaohui Luo. Computation and Reasoning: A Type Theory for
Computer Science. Oxford University Press, 1994.

[18] Conor McBride. Dependently Typed Functional Programs and
their Proofs. PhD thesis, University of Edinburgh, 1999. Available
from http://www.lfcs.informatics.ed.ac.uk/reports/00/
ECS-LFCS-00-419/.

[19] Conor McBride. Elimination with a Motive. In Paul Callaghan,
Zhaohui Luo, James McKinna, and Robert Pollack, editors, Types for
Proofs and Programs (Proceedings of the International Workshop,
TYPES’00), volume 2277. Springer-Verlag, 2002.

[20] Conor McBride and James McKinna. The view from the left. Journal
of Functional Programming, 14(1):69–111, 2004.

[21] Ulf Norell. Agda 2. http://appserv.cs.chalmers.se/users/
ulfn/wiki/agda.php.

[22] Nicolas Oury. Extensionality in the calculus of constructions. In
TPHOL 05, pages 278–293, 2005.

[23] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the
Calculus of Constructions. In Sixteenth Annual ACM Symposium on
Principles of Prog ramming Languages, Austin, January 1989. ACM.

[24] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
GADTs. In Proceedings of the Eleventh ACM SIGPLAN International
Conference on Functional Programming, 2006.

[25] Tim Sheard. Putting Curry-Howard to work. In Haskell ’05:
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pages
74–85, 2005.

[26] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones,
and Kevin Donnelly. System f with type equality coercions. In TLDI
’07: Proceedings of the 2007 ACM SIGPLAN international workshop
on Types in languages design and implementation, pages 53–66, New
York, NY, USA, 2007. ACM Press.

[27] David A. Turner. A new formulation of constructive type theory.
In Peter Dybjer et al., editor, Proceedings of the Workshop on
Programming Logic. Programming Methodology Group, University
of Gothenburg and Chalmers University of Technology, 1989.

[28] B. Werner. Une Théorie des Constructions Inductives. PhD thesis,
Université Paris 7, 1994.

[29] Hongwei Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998.

