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Abstract: Locality-aware algorithms over distributed arrays can be very difficult
to write. Yet such algorithms are becoming more and more important as desktop
machines boast more and more processors. We show how a dependently-typed
programming language can help develop such algorithms by hosting a domain-
specific embedded language that ensures every well-typed program will only ever
access local data. Such static guarantees can help catch programming errors early
on in the development cycle and maximise the potential speedup that multicore
machines offer. At the same time, the functional specification of effects we pro-
vide facilitates the testing of and reasoning about algorithms that manipulate dis-
tributed arrays.

2.1 INTRODUCTION

Computer processors are not becoming significantly faster. To satisfy the demand
for more and more computational power, manufacturers are now assembling com-
puters with multiple microprocessors. It is hard to exaggerate the impact this will
have on software development: tomorrow’s programming languages must em-
brace parallel programming on multicore machines.

Researchers have proposed several new languages to maximise the potential
speedup that multicore processors offer [2, 6, 7, 8, 12, 18]. Although all these
languages are different, they share the central notion of a distributed array, where
the elements of an array may be distributed over separate processors or even over
separate machines. To write efficient code, programmers must ensure that proces-
sors only access local parts of a distributed array—it is much faster to access data
stored locally than remote data on another core.
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When writing such locality-aware algorithms it is all too easy to make subtle
mistakes. Programming languages such as X10 require all arrays operations to
be local [8]. Any attempt to access non-local data results in an exception. To
preclude such errors, Grothoff et al. have designed a type system, based on a
dependently-typed lambda calculus, for a small core language resembling X10
that is specifically designed to guarantee that programs only access local parts of
a distributed array [9]. Their proposed system is rather intricate and consists of a
substantial number of complicated type rules that keep track of locality informa-
tion.

In this paper, we explore an alternative avenue of research. Designing and
implementing a type system from scratch is a lot of work. New type systems
typically require extensive proofs of various meta-theoretical results. Instead, we
show how to tailor a powerful type system to enforce certain properties—resulting
in a domain-specific embedded type system. We immediately inherit all the desir-
able properties of our dependently-typed host type system, such as subject re-
duction, decidable type checking, and principle typing. Functional programmers
have studied domain-specific embedded languages for years [11]; the time is ripe
to take these ideas one step further.

In previous work [20], we described a pure specification of several parts of the
IO monad, the interface between pure functional languages such as Haskell [16]
and the ‘real world.’ By providing functional, executable specifications we can
test, debug, and reason about impure programs as if they were pure. When we
release the final version of our code, we can replace our pure specifications with
their impure, more efficient, counterparts. In the presence of dependent types,
we will show how our specifications can provide even stronger static guarantees
about our programs. To this end, we make several novel contributions:

• We begin by giving a pure specification of arrays (Section 2.3). Due to our rich
type system, the specification is total: there is no way to access unallocated
memory; there are no ‘array index out of bounds’ exceptions. As a result,
these specifications can not only be used to program with, but also facilitate
formal proofs about array algorithms.

• Distributed arrays pose more of a challenge (Section 2.4). Not only do we at-
tend to locality constraints, but we must also accommodate place-shifting op-
erators. The pure specification we present is, once again, executable and total:
it can be interpreted both as a domain-specific embedded language for writing
algorithms on distributed arrays and as an executable denotational model for
specifying and proving properties of such algorithms.

• Finally, we demonstrate how programmers may write their own locality-aware
control structures. We implement a simple distributed algorithm using these
control structures, and conclude by discussing the limitations of our approach
and directions for further research (Section 2.5).

Throughout this paper, we will use the dependently-typed programming lan-
guage Agda [1, 15] as a vehicle of explanation. In fact using lhs2TeX [13], the
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sources of this paper generate an Agda program that can be compiled and exe-
cuted.1 We will briefly introduce the syntax by means of several examples, as it
may be unfamiliar to many readers.

2.2 AN OVERVIEW OF AGDA

Data types in Agda can be defined using a similar syntax to that for Generalized
Algebraic Data Types, or GADTs, in Haskell [17]. For example, consider the
following definition of the natural numbers.

data Nat :? where
Zero : Nat
Succ : Nat → Nat

There is one important difference with Haskell. We must explicitly state the kind
of the data type that we are introducing; in particular, the declaration Nat :? states
that Nat is a base type.

We can define functions by pattern matching and recursion, just as in any other
functional language. To define addition of natural numbers, for instance, we could
write:

+ : Nat → Nat → Nat
Zero +m = m
Succ n+m = Succ (n+m)

Note that Agda uses underscores to denote the positions of arguments when defin-
ing new operators.

Polymorphic lists are slightly more interesting than natural numbers:

data List (a :?) :? where
Nil : List a
Cons : a → List a → List a

To uniformly parameterise a data type, we can write additional arguments to the
left of the copula. In this case, we add (a :?) to our data type declaration to state
that lists are type constructors, parameterised over a type variable a of kind ?.

Just as we defined addition for natural numbers, we can define an operator that
appends one list to another:

append : (a :?)→ List a → List a → List a
append a Nil ys = ys
append a (Cons x xs) ys = Cons x (append a xs ys)

The append function is polymorphic. In Agda, such polymorphism can be intro-
duced via the dependent function space, written (x : a)→ y, where the variable x
may occur in the type y. This particular example of the dependent function space
is not terribly interesting: it corresponds to parametric polymorphism. Later we
will encounter more interesting examples, where types depend on values.

One drawback of using the dependent function space for such parametric poly-

1The resulting code is available from the first author’s website.
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morphism, is that we must explicitly instantiate polymorphic functions. For exam-
ple, the recursive call to append in the Cons case takes a type as its first argument.
Fortunately, Agda allows us to mark certain arguments as implicit. Using implicit
arguments, we could also define append as in any other functional language:

append :{a :?}→ List a → List a → List a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Arguments enclosed in curly brackets, such as {a : ?}, are implicit: we do not
write a to the left of the equals sign and do not pass a type argument when we
make a recursive call. The Agda type checker will automatically instantiate this
function whenever we call it, much in the same way as type variables are auto-
matically instantiated in Haskell.

Besides polymorphic data types, Agda also supports indexed families. Like
Haskell’s GADTs, indexed families allow a data type’s constructors to have dif-
ferent codomains. Indexed families, however, are more general as they also cap-
ture data types that are indexed by values instead of types. For example, we can
define the family of finite types:

data Fin : Nat → ? where
Fz :{n : Nat}→ Fin (Succ n)
Fs :{n : Nat}→ Fin n → Fin (Succ n)

The type Fin n corresponds to a finite type with n distinct values. For example,
Fin 1 is isomorphic to the unit type; Fin 2 is isomorphic to Bool. Note that the
argument n is left implicit in both the constructors of Fin. From the types of
these constructors, it is easy to see that Fin 0 is uninhabited. For every n, the Fs
constructor embeds Fin n into Fin (Succ n); the Fz constructor, on the other hand,
adds a single new element to Fin (Succ n) that was not in Fin n. By induction it is
easy to see that Fin n does indeed have n elements.

Agda has many other features, such as records and a module system, that we
will hardly use in this paper. Although there are a few more concepts we will
need, we will discuss them as they pop up in later sections.

2.3 MUTABLE ARRAYS

With this brief Agda tutorial under our belt, we can start our specification of mu-
table arrays. We will specify three different operations on arrays: the creation
of new arrays; reading from an array; and updating a value stored in an array.
Before we can define the behaviour of these operations, however, we need to in-
troduce several data types to describe the layout and contents of memory. Using
these data types, we can proceed by defining an IO type that captures the syntax
of array operations. Finally, we will define a run function that describes how the
array operations affect the heap, assigning semantics to our syntax. This seman-
tics can be used to simulate and reason about computations on mutable arrays in
a pure functional language. When compiled, however, these operations should be
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replaced by their more efficient, low-level counterparts.
To keep things simple, we will only work with flat arrays storing natural num-

bers. This is, of course, a drastic oversimplification. The techniques we present
here, however, can be adapted to cover multidimensional arrays that may store
different types of data (Section 2.5).

To avoid confusion between numbers denoting the size of an array and the
data stored in an array, we introduce the Data type synonym. Throughout the rest
of this paper, we will use Data to refer to the data stored in arrays; the Nat type
will always refer to the size of an array.

Data :?
Data = Nat

Using the Fin type, we can give a functional specification of arrays of a fixed size
by mapping every index to the corresponding value.

Array : Nat → ?
Array n = Fin n → Data

How should we represent the heap? We need to be a bit careful—as the heap
will store arrays of different sizes, its type should explicitly state how many arrays
it stores and how large each array is. To accomplish this, we begin by introducing
a data type representing the shape of the heap:

Shape :?
Shape = List Nat

The Shape of the heap is simply a list of natural numbers, representing the size of
the arrays stored in memory.

We can now define a Heap data type that is indexed by a Shape. The Empty
constructor corresponds to an empty heap; the Alloc constructor adds an array of
size n to any heap of shape ns to build a larger heap with the layout Cons n ns.

data Heap : Shape → ? where
Empty : Heap Nil
Alloc :{n : Nat}→ {ns : Shape}→

Array n → Heap ns → Heap (Cons n ns)

Finally, we will want to model references, denoting locations in the heap. A
value of type Loc n ns corresponds to a reference to an array of size n in a heap
with shape ns. The Loc data type shares a great deal of structure with the Fin type.
Every non-empty heap has a Top reference; we can weaken any existing reference
to denote the same location in a larger heap using the Pop constructor.

data Loc : Nat → Shape → ? where
Top :{n : Nat}→ {ns : Shape}→ Loc n (Cons n ns)
Pop : forall {n k ns}→ Loc n ns → Loc n (Cons k ns)

Note that in the type signature of the Pop constructor, we omit the types of three
implicit arguments and quantify over them using the forall keyword. When we
use the forall-notation, the types of n, k, and ns are inferred from the rest of the
signature by the Agda type checker. Alternatively, we could also have written the
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more verbose:

Pop :{n : Nat}→ {k : Nat}→ {ns : Shape}→
Loc n ns → Loc n (Cons k ns)

We will occasionally use the forall-notation to make large type signatures some-
what more legible.

With these data types in place, we can define a data type capturing the syntax
of the permissible operations on arrays. Crucially, the IO type is indexed by two
shapes: a value of type IO a ns ms denotes a computation that takes a heap of shape
ns to a heap of shape ms and returns a result of type a. This pattern of indexing
operations by an initial and final ‘state’ is a common pattern in dependently-typed
programming [14].

data IO (a :?) : Shape → Shape → ? where
Return :{ns : Shape}→ a → IO a ns ns
Write : forall {n ns ms}→

Loc n ns → Fin n → Data → IO a ns ms → IO a ns ms
Read : forall {n ns ms}→

Loc n ns → Fin n → (Data → IO a ns ms)→ IO a ns ms
New : forall {ns ms}→

(n : Nat)→ (Loc n (Cons n ns)→ IO a (Cons n ns) ms)→
IO a ns ms

The IO type has four constructors. The Return constructor returns a pure value
of type a without modifying the heap. The Write constructor takes four arguments:
the location of an array of size n; an index in that array; the value to write at that
index; and the rest of the computation. Similarly, reading from an array requires
a reference to an array and an index. Instead of requiring the data to be written,
however, the last argument of the Read constructor may refer to data that has been
read. Finally, the New constructor actually changes the size of the heap. Given a
number n, it allocates an array of size n on the heap; the second argument of New
may then use this fresh reference to continue the computation in a larger heap.

The IO data type is a parameterised monad [3]—that is, a monad with return
and bind operators that satisfy certain coherence conditions with respect to the
Shape indices.

return :{a :?}→ {ns : Shape}→ a → IO a ns ns
return x = Return x

>>= : forall {a b ns ms ks}→
IO a ns ms → (a → IO b ms ks)→ IO b ns ks

Return x>>= f = f x
Write a i x wr >>= f = Write a i x (wr >>= f )
Read a i rd >>= f = Read a i (λx → rd x>>= f )
New n io>>= f = New n (λa → io a>>= f )

The return of the IO data type lifts a pure value into a computation that can
run on a heap of any size. Furthermore, return does not modify the shape of the
heap. The bind operator, >>=, can be used to compose monadic computations. To
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sequence two computations, the heap resulting from the first computation must be
a suitable starting point for the second computation. This condition is enforced
by the type of the bind operator:

To actually program using these array operations, we need to introduce smart
constructors. For example, we could define the readArray function as follows:

readArray : forall {n ns}→ Loc n ns → Fin n → IO Data ns ns
readArray a i = Read a i Return

There is a slight problem with this definition. As we allocate new memory, the
size of the heap changes; correspondingly, we must explicitly modify any existing
pointers to denote locations in a larger heap. We can achieve this by revising the
above definition slightly, applying the inj function to weaken references:

inj : forall {ms ns n}→ Loc n ns → Loc n (append ms ns)
inj {Nil} i = i
inj {Cons k ks} i = Pop (inj i)

For the purpose of this paper, however, we will ignore this technicality. The first
definition will suffice for the examples we cover. For a more comprehensive dis-
cussion, we refer to the first author’s forthcoming thesis [19].

Denotational model We have described the syntax of array computations using
the IO data type, but we have not specified how these computations behave. Recall
that we can model arrays as functions from indices to natural numbers:

Array : Nat → ?
Array n = Fin n → Data

Before specifying the behaviour of IO computations, we define several auxiliary
functions to update an array and lookup a value stored in an array.

lookup : forall {n ns}→ Loc n ns → Fin n → Heap ns → Data
lookup Top i (Alloc a ) = a i
lookup (Pop k) i (Alloc h) = lookup k i h

The lookup function takes a reference to an array l, an index i in the array at
location l, and a heap, and returns the value stored in the array at index i. It
dereferences l, resulting in a function of type Fin n → Data; the value stored at
index i is the result of applying this function to i.

Next, we define a pair of functions to update the contents of an array.

updateArray :{n : Nat}→ Fin n → Data → Array n → Array n
updateArray i d a = λ j → if i ≡ j then d else a j
updateHeap : forall {n ns}→

Loc n ns → Fin n → Data → Heap ns → Heap ns
updateHeap Top i x (Alloc a h) = Alloc (updateArray i x a) h
updateHeap (Pop k) i x (Alloc a h) = Alloc a (updateHeap k i x h)

The updateArray function overwrites the data stored at a single index. The func-
tion updateHeap updates a single index of an array stored in the heap. It proceeds
by dereferencing the location on the heap where the desired array is stored and
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updates it accordingly, leaving the rest of the heap unchanged.
We now have all the pieces in place to assign semantics to IO computations.

The run function below takes a computation of type IO a ns ms and an initial
heap of shape ns as arguments, and returns a pair consisting of the result of the
computation and the final heap of shape ms.

data Pair (a :?) (b :?) :? where
pair : a → b → Pair a b

run : forall {a ns ms}→ IO a ns ms → Heap ns → Pair a (Heap ms)
run (Return x) h = pair x h
run (Read a i rd) h = run (rd (lookup a i h)) h
run (Write a i x wr) h = run wr (updateHeap a i x h)
run (New n io) h = run (io Top) (Alloc (λ i → Zero) h)

The Return constructor simply pairs the result and heap; in the Read case, we
lookup the data from the heap and recurse with the same heap; for the Write
constructor, we recurse with an appropriately modified heap; finally, when a new
array is created, we extend the heap with a new array that stores Zero at every
index, and continue recursively. Note that, by convention, the Top constructor
always refers to the most recently created reference. Our smart constructors will
add additional Pop constructors when new memory is allocated.

We refer to this specification as a denotational model. As Agda is a program-
ming language based on type theory, may also view it as a constructive set theory.
In that sense, the run function constitutes a denotational semantics of mutable
arrays. By implementing these semantics in Agda, we build an executable deno-
tational model in Agda’s underlying type theory.

Example Using our smart constructors and the monad operators, we can now
define functions that manipulate arrays. For example, the swap function ex-
changes the value stored at two indices:

swap : forall {n ns}→ Loc n ns → Fin n → Fin n → IO () ns ns
swap a i j = readArray a i>>=λvali →

readArray a j>>=λvalj →
writeArray a i valj>>
writeArray a j vali

In a dependently-typed programming language such as Agda, we can prove
properties of our code. For example, we may want to show that swapping the
contents of any two array indices twice, leaves the heap intact :

swapProp : forall {n ns}→
(l : Loc n ns)→ (i : Fin n)→ (j : Fin n)→ (h : Heap ns)→
(h ≡ snd (run (swap l i j>> swap l i j) h))

The proof requires a lemma about how updateHeap and lookupHeap interact and
is not terribly interesting in itself. The fact that we can formalise such properties
and have our proof verified by a computer is much more exciting.
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2.4 DISTRIBUTED ARRAYS

Arrays are usually represented by a continuous block of memory. Distributed
arrays, however, can be distributed over different places—where every place may
correspond to a different core on a multiprocessor machine, a different machine
on the same network, or any other configuration of interconnected computers.

We begin by determining the type of places, where data is stored and code is
executed. Obviously, we do not want to fix the type of all possible places pre-
maturely: you may want to execute the same program in different environments.
Yet regardless of the exact number of places, there are certain operations you will
always want to perform, such as iterating over all places, or checking when two
places are equal.

We therefore choose to abstract over the number of places in the module we
will define in the coming section. Agda allows modules to be paramaterised:

module DistrArray (placeCount : Nat) where
When we import the DistrArray module, we are obliged to choose the number of
places. Typically, there will be one place for every available processor. From this
number, we can define a data type corresponding to the available places:

Place :?
Place = Fin placeCount

The key idea underlying our model of locality-aware algorithms is to index
computations by the place where they are executed. The new type declaration for
the IO monad corresponding to operations on distributed arrays will become:

data DIO (a :?) : Shape → Place → Shape → ? where
You may want to think of a value of type DIO a ns p ms as a computation that can
be executed at place p and will take a heap of shape ns to a heap of shape ms,
yielding a final value of type a.

We strive to ensure that any well-typed program written in the DIO monad
will never access data that is not local. The specification of distributed arrays now
poses a twofold problem: we want to ensure that the array manipulations from the
previous section are ‘locality-aware,’ that is, we must somehow restrict the array
indices that can be accessed from a certain place; furthermore, X10 facilitates
several place-shifting operations that change the place where certain chunks of
code are executed. As we shall see in the rest of this section, both these issues can
be resolved quite naturally.

Regions, Points, and Distributed Arrays Before we define the DIO monad, we
need to introduce several new concepts. In what follows, we will try to stick
closely to X10’s terminology for distributed arrays. Every array is said to have a
region associated with it. A region is a set of valid index points. A distribution
specifies a place for every index point in a region.

Once again, we will only treat flat arrays storing natural numbers and defer
any discussion about how to deal with more complicated data structures for the
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moment. In this simple case, a region merely determines the size of the array.

Region :?
Region = Nat

As we have seen in the previous section, we can model array indices using the Fin
data type:

Point : Region → ?
Point n = Fin n

To model distributed arrays, we now need to consider the distribution that speci-
fies where this data is stored. In line with existing work [9], we assume the exis-
tence of a fixed distribution. Agda’s postulate expression allows us to assume the
existence of a distribution, without providing its definition.

postulate
distr : forall {n ns}→ Loc n ns → Point n → Place

Although we have implemented several of X10’s combinators for defining distri-
butions, we do not have the space to cover them here.

Now that we have all the required auxiliary data types, we proceed by defining
the DIO monad. As it is a bit more complex than the data types we have seen so
far, we will discuss every constructor individually.

The Return constructor is analogous to one we have seen previously for the
IO monad: it lifts any pure value into the DIO monad.

Return :{p : Place}→ {ns : Shape}→ a → DIO a ns p ns

The Read and Write operations are more interesting. Although they correspond
closely to the operations we have seen in the previous section, their type now
keeps track of the place where they are executed. Any read or write operation to
point pt of an array l can only be executed at the place specified by the distribution.
This invariant is enforced by the types of our constructors:

Read : forall {n ns ms}→
(l : Loc n ns)→ (pt : Point n)→
(Data → DIO a ns (distr l pt) ms)→
DIO a ns (distr l pt) ms

Write : forall {n ns ms}→
(l : Loc n ns)→ (pt : Point n)→ Data →
DIO a ns (distr l pt) ms →
DIO a ns (distr l pt) ms

In contrast to Read and Write, new arrays can be allocated at any place.

New : forall {p ns ms}→
(n : Nat)→
(Loc n (Cons n ns)→ DIO a (Cons n ns) p ms)→
DIO a ns p ms

Finally, we add a constructor for a place-shifting operator. Using this At operator
lets us execute a computation at another place.
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At : forall {p ns ms ps}→
(q : Place)→ DIO () ns q ms → DIO a ms p ps → DIO a ns p ps

Note that we will discard the result of the computation that is executed at another
place. We therefore require this computation to return an element of the unit type.

We can add our smart constructors for each these operations, as we have done
in the previous section. We can also show that DIO is indeed a parameterised
monad. We have omitted the definitions of the return and bind operators for the
sake of brevity:

return : forall {ns a p}→ a → DIO a ns p ns
>>= : forall {ns ms ks a b p}→
DIO A ns p ms → (A → DIO B ms p ks)→ DIO B ns p ks

It is worth noting that the bind operator >>= can only be used to sequence opera-
tions at the same place.

Denotational model To run a computation in the DIO monad, we follow the run
function defined in the previous section closely. Our new run function, however,
must be locality-aware. Therefore, we parameterise the run function explicitly by
the place where the computation is executed.

run : forall {a ns ms}→
(p : Place)→ DIO a ns p ms → Heap ns → Pair a (Heap ms)

run p (Return x) h = pair x h
run .(distr l i) (Read l i rd) h = run (distr l i) (rd (lookup l i h)) h
run .(distr l i) (Write l i x wr) h = let h′ = updateHeap l i x h

in run (distr l i) wr h′

run p (New n io) h = run p (io Top) (Alloc (λ i → Zero) h)
run p (At q io1 io2) h = run p io2 (snd (run q io1 h))

Now we can see that the Read and Write operations may not be executed at
any place. Recall that the Read and Write constructors both return computations
at the place distr l i. When we pattern match on a Read or Write, we know exactly
what the place argument of the run function must be. Correspondingly, we do not
pattern match on the place argument—we know that the place can only be distr l i.
Agda’s syntax allows us to prefix expressions by a single period, provided we
know that there is only one possible value an argument may take. This may be
unfamiliar to many functional programmers who are used to thinking of patterns
being built-up from variables and constructors: distr l i is an expression, not a
pattern! The situation is somewhat similar to pattern matching on GADTs in
Haskell, which introduces equalities between types. The DIO monad, however,
is indexed by values. As a result, pattern matching in the presence of dependent
types may introduce equalities between values.

The other difference with respect to the previous run function, is the new case
for the At constructor. In that case, we sequence the two computations io1 and
io2. To do so, we first execute the io1 at q, but discard its result; we continue
executing the second computation io2 with the heap resulting from the execution
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of io1 at the location p. Conform to previous proposals [10], we have assumed
that io1 and io2 are performed synchronously—executing io1 before continuing
with the rest of the computation. Using techniques to model concurrency that we
have presented previously [20], we believe we could give a more refined treatment
of the X10’s globally asynchronous/locally synchronous semantics and provide
specifications for X10’s clocks, finish, and force constructs.

Locality-aware combinators Using the place-shifting operator at, we can define
several locality-aware control structures. With our first-class distribution and def-
inition of Place, we believe there is no need to define more primitive operations.

The distributed map, for example, applies a function to all the elements of a
distributed array at the place where they are stored. We define it in terms of an
auxiliary function, for, that iterates over all the indices of an array:

for : forall {n ns p}→ (Point n → DIO () ns p ns)→ DIO () ns p ns
for {Succ k} dio = dio Fz>> (for {k} (dio . Fs))
for {Zero} dio = return ()
dmap : forall {n ns p}→ (Data → Data)→ Loc n ns → DIO () ns p ns
dmap f l = for (λ i → at (distr l i) (readArray l i>>=λx →

writeArray l i (f x)))

Besides dmap, we implement two other combinators: forallplaces and ateach.
The forallplaces operation executes its argument computation at all available
places. We define it using the for function to iterate over all places. The ateach
function, on the other hand, is a generalisation of the distributed map operation.
It iterates over an array, executing its argument operation once for every index of
the array, at the place where that index is stored.

forallplaces : forall {p ns}→
((q : Place)→ DIO () ns q ns)→ DIO () ns p ns

forallplaces io = for (λ i → at i (io i))
ateach : forall {n ns p}→

(l : Loc n ns)→ ((pt : Point n)→ DIO () ns (distr l pt) ns)→
DIO () ns p ns

ateach l io = for (λ i → at (distr l i) (io i))

Example We will now show how to write a simple algorithm that sums all the
elements of a distributed array. To do so efficiently, we first locally sum all the
values at every place. To compute the total sum of all the elements of the array,
we add together all these local sums. In what follows, we will need the following
auxiliary function, increment:

increment : forall {n ns p}→
(l : Loc n ns)→ (i : Fin n)→ Nat → (distr l i ≡ p)→ DIO () ns p ns

increment l i x Refl = readArray l i>>=λy → writeArray l i (x+ y)
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Note that increment is a bit more general than strictly necessary. We could re-
turn a computation at distr l i, but instead we choose to be a little more general:
increment can be executed at any place, as long as we have a proof that this place
is equal to distr l i. The ≡-type is inhabited by single constructor Refl.

We can use the increment function to define a simple sequential sum function:

sum : forall {n ns p}→ Loc n ns → Loc 1 ns → DIO () ns p ns
sum l out = ateach l (λ i → readArray l i>>=λn →

at (distr out Fz) (increment out Fz n Refl))

The sum function takes an array as its argument, together with a reference to a
single-celled array, out. It reads every element of the array, and increments out
accordingly.

Finally, we can use both these functions to define a parallel sum:

psum : forall {n ns}→
(l : Loc n ns)→ (localSums : Loc placeCount ns)→
((i : Place)→ distr localSums i ≡ i)→
(out : Loc 1 ns)→ DIO Nat ns (distr out Fz) ns

psum l localSums locDistr out =
ateach l (λ i → (readArray l i>>=λn →

increment localSums (distr l i) n (locDistr (distr l i))))
>> sum localSums out
>> readArray out Fz

The psum function takes four arguments: the array l whose elements you would
like to sum; an array localSums that will store the intermediate sums; an assump-
tion regarding the distribution of this array; and finally, the single-celled array to
which we write the result. For every index i of the array l, we read the value stored
at index i, and increment the corresponding local sum. We then add together the
local sums using our previous sequential sum function, and return the final result.
We use our assumption about the distribution of the localSums array when call-
ing the increment function. Without this assumption, we would have to use the
place-shifting operation at to update a (potentially) non-local array index.

There are several interesting issues that these examples highlight. First of all,
as our at function only works on computations returning a unit type, the results of
intermediate computations must be collected in intermediate arrays.

More importantly, however, whenever we want to rely on properties of the
global distribution, we need to make explicit assumptions in the form of proof
arguments. This is rather unfortunate: it would be interesting to research how a
specific distribution can be associated with an array when it is created. This would
hopefully allow for a more fine-grained treatment of distributions and eliminate
the need for explicit proof arguments.
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2.5 DISCUSSION

Using a dependently-typed host language, we have shown how to implement a
domain-specific library for distributed arrays, together with an embedded type
system that guarantees all array access operations are both safe and local. In
contrast to existing work [10], we have not designed a specific set of type rules;
instead, we have shown how equivalent properties can be enforced by a general-
purpose language with dependent types. We have provided semantics for our li-
brary in the form of a total, functional specification. Although our semantics may
not take the form of deduction rules, they are no less precise or concise. Besides
these functional specifications are both executable and amenable to computer-
aided formal verification. More generally, we hope that this approach can be
extended to other domains: a dependently-typed language accommodates domain
specific libraries with their own embedded type systems.

Having said this, there are clearly several serious limitations of this work as it
stands. We have had to make several simplifying assumptions. First and foremost,
we have assumed that every array only stores natural numbers, disallowing more
complex structures such as multi-dimensional arrays. This can be easily fixed by
defining a more elaborate Shape data type. In its most general form, we could
choose our Shape data type as a list of types; a heap then corresponds to a list of
values of the right type.2 We decided to restrict ourself to this more simple case
for the purpose of presentation. We believe that there is no fundamental obstacle
preventing us from incorporating the rich region calculus offered by X10 in the
same fashion.

Furthermore, our pure model is rather naive. It would be interesting to explore
a more refined model, where every place maintains its own heap. As our example
in the previous section illustrated, assuming the presence of a global distribution
does not scale well. Decorating every array with a distribution upon its creation
should help provide locality-information when it is needed.

We have not discussed how code in the IO or DIO monad is actually com-
piled. At the moment, Agda can only be compiled to Haskell. Agda does provide
several pragmas to customise how Agda functions are translated to their Haskell
counterparts. The ongoing effort to support data parallelism in Haskell [4, 5] may
therefore provide us with a most welcome foothold.

There are many features of X10 that we have not discussed here at all. Most
notably, we have refrained from modelling many of X10’s constructs that enable
asynchronous communication between locations, even though we would like to
do so in the future.

Finally, we should emphasise that we need to explore larger examples to ac-
quire a better understanding of how this approach scales. At the moment, we
cannot predict how efficient the resulting code will be; we do not know how diffi-
cult it will be to reason about large, realistic distributed algorithms. Unfortunately,

2There are some technical details involving ‘size problems’ that are beyond the scope
of this paper. The standard technique of introducing a universe, closed under natural
numbers and arrays, should resolve these issues.



2.5. DISCUSSION II–31

we do not have the space to explore such examples further in this paper. Despite
these many limitations, however, we believe this paper provides an important first
stepping-stone for such further work.
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