
xmonad in Coq (Experience Report)
Programming a Window Manager with a Proof Assistant

Wouter Swierstra
Universiteit Utrecht
w.s.swierstra@uu.nl

Abstract
This report documents the insights gained from implementing the
core functionality of xmonad, a popular window manager written
in Haskell, in the Coq proof assistant. Rather than focus on veri-
fication, this report outlines the technical challenges involved with
incorporating Coq code in a Haskell project.

Categories and Subject Descriptors D.2.4 [Software Program
Verification]: Formal methods; D.3.2 [Programming Languages]:
Functional programming; F.4.1 [Mathematical Logic]: Lambda
calculus and related systems

Keywords Coq, dependent types, formal verification, functional
programming, Haskell, program extraction, interactive proof assis-
tants, xmonad.

1. Introduction
Starting with Martin-Löf [Martin-Löf 1982], researchers have ar-
gued that type theory, with its single language for programs, spec-
ifications, and proofs, is the perfect framework in which to write
verified software. In practice, there are very few software projects
written, specified, and verified in this fashion. The purpose of this
experience report is to try and identify some of the reasons for this
disparity between theory and practice.

This report documents how hard it is to use today’s proof as-
sistants in the verification of a real world application. Specifi-
cally, this paper documents my experience using the Coq proof
assistant [The Coq development team 2004] to implement and ver-
ify parts of the xmonad window manager [Stewart and Janssen
2007]. This code uses Coq version 8.3pl2 and xmonad version
0.10. The code described in this report is publically available from
https://github.com/wouter-swierstra/xmonad.

Coq has been used for many large proof developments, such as
the proof of the Four Color Theorem [Gonthier 2008] or construc-
tive algebra and analysis [Cruz-Filipe et al. 2004]. The challenge
that this paper tackles is not so much about doing proofs in Coq, but
rather focuses on the development of verified software. You may
know how to do proofs in Coq, but what are the technical problems
you may encounter when developing verified applications? What
links are missing from the verified programming toolchain? And
what are the best practices for engineering verified software?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’12, September 13, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1574-6/12/09. . . $10.00

Section Lists.

Variable (a : Set).

Inductive List :=
Nil : List
| Cons : a→ List→ List.

Fixpoint append (xs ys : List) : List :=
match xs with
| Nil⇒ ys
| Cons x xs⇒ Cons x (append xs ys)

end.
Infix "++" :=append
(right associativity,at level 60).

Lemma append assoc (xs ys zs : List) :
xs++(ys++ zs) = (xs++ ys)++ zs.
Proof.

induction xs as [| x xs IHxs];
[| simpl;rewrite IHxs];
reflexivity.

Qed.
End Lists.

Figure 1. Associativity of append

2. Background
Coq is an interactive proof assistant based on the calculus of induc-
tive constructions [Coquand and Huet 1988]. At its heart is a simple
functional programming language, Gallina. Furthermore, Coq pro-
vides a separate tactic language to write proofs in an interactive,
semi-automatic fashion.

All of these features are illustrated in a small example in Fig-
ure 1. The code therein defines an inductive type for lists and
a function append that appends two lists. After introducing the
usual ++ notation for the append function, we can state a lemma
append assoc, that asserts that the append function is associative.
Finally, the proof of this lemma is done using some of Coq’s tac-
tics: induction, simpl, rewrite, and reflexivity. Once Coq has type
checked and accepted this code, we can be confident that our
append function really is associative.

But how can we call this function? We can call append when
defining other functions in Gallina, but how can we integrate our
verified append function with the rest of our codebase? Coq pro-
vides an extraction mechanism [Letouzey 2003] that generates data
types and functions in Haskell, OCaml, or Scheme. For example,
extracting Haskell code from Figure 1 yields the code in Figure 2.

131

https://github.com/wouter-swierstra/xmonad

module Main where
import qualified Prelude

data List a = Nil
| Cons a (List a)

append :: (List a1)→ (List a1)→ List a1
append xs ys =

case xs of
Nil→ ys
Cons z zs→ Cons z (append zs ys)

Figure 2. Extracted Haskell code

In this fashion, you can use Coq’s extraction mechanism to
integrate verified functions into larger software projects. There are
a handful of examples of non-trivial developments written in this
fashion, the CompCert verified C compiler [Leroy 2006] being one
of the most notable examples. Most developments use OCaml as
the target language of extraction. This methodology is less popular
amongst the Haskell community.

This experience report attempts to identify some of the reasons
why this style of verification is not more widespread. It does not
aim to document the relative merits of formal verification in Coq
and existing technology for the verification of Haskell code; nor
does it aim to study the usability of proof assistants to verify
modern software. Its single purpose is to document the technical
challenges of using code extracted from Coq in a larger Haskell
codebase, and how these may be overcome.

3. The xmonad window manager
The xmonad window manager is a Haskell application that helps
organize the windows of the applications running on a machine.
It is a tiling window manager, that is, all the windows are tiled
over the screen, with (in principle) no overlap or gaps. With more
than 10,000 downloads from Hackage in 2010 alone it ranks as
one of the most popular Haskell applications ever [Stewart 2010].
It is hard to give exact figures, but based on data from Hackage
downloads and Ubuntu installs, it is safe to say that xmonad has
tens of thousands of users.

At the heart of xmonad there is a pure model of the current
list of windows, including a designated window that is currently
in focus. It should come as no surprise that this can be modeled
nicely in Haskell using a zipper on lists [Huet 1997], resulting in
the following structure called a Stack in the xmonad sources:

data Stack a = Stack { focus :: !a
,up :: [a]
,down :: [a]}

There are several functions to manipulate these zippers. For
instance, the following three functions move the focus one step
upwards, move the focus one step downwards, and reverse the stack
respectively:

focusUp :: Stack a→ Stack a
focusUp (Stack t (l : ls) rs) = Stack l ls (t : rs)
focusUp (Stack t [] rs) = Stack x xs []

where (x : xs) = reverse (t : rs)
focusDown :: Stack a→ Stack a
focusDown = reverseStack . focusUp . reverseStack
reverseStack :: Stack a→ Stack a
reverseStack (Stack t ls rs) = Stack t rs ls

Note that in contrast to the usual zipper definitions, the focusUp
function ‘wraps around’ when the first list in the Stack is empty.
This is the same behaviour that most applications and operating
systems exhibit. To select a new active window, you step through a
list of all windows; moving past the last window brings you back
to the very first window.

On top of the Stack data type, there are several other data types
representing workspaces and screens. The ‘state’ of an xmonad
session keeps track of the workspaces that are visible (and the
screen on which to display them), the workspace that is in focus,
and those windows that are not tiled but ‘float’ on top of the tiled
windows.

There are numerous functions similar to focusUp for manipu-
lating these data structures. Crucially, all these operations are de-
scribed as pure functions on Haskell data types: there is no I/O or
interaction with the X server at this point.

All these pure functions and data types are collected in a single
module, StackSet.hs, in the xmonad source. This module takes
up about one quarter of the entire codebase and weighs in at about
550 lines of code, much of which is comments and documentation.
This experience report will mostly be concerned with the StackSet
module, but we will briefly cover the rest of the xmonad architec-
ture and development methodology.

On top of this pure model, xmonad implements a complete
window manager. The central type for the rest of the application
is built up using monad transformers as follows:

newtype X a =
X (ReaderT XConf (StateT XState IO) a)

The XConf type contains configuration data such as keyboard
shortcuts and colour schemes; the XState type represents the state
of the current session, including the StackSet types. Finally, all the
interaction with the X server happens in the IO monad. The re-
maining files take care of setting up a connection to the X server
and translating user commands to operations on the StackSet and
ultimately requesting that they are executed by the X server.

The implementers of xmonad have tried hard to make the ap-
plication as stable as possible. It has been used as a testbench for
several Haskell source code analysis tools, such as Catch [Mitchell
and Runciman 2008] and hlint [Mitchell 2010]. The developers
use QuickCheck [Claessen and Hughes 2000] in tandem with
HPC [Gill and Runciman 2007] and strive to have tests covering
every line of code in the core modules. There is a strong tradition
of adopting any new technology that has the potential to uncover
new errors.

There are several reasons for choosing xmonad as the topic
of this case study. The code itself is well-documented and has
been extensively reviewed and revised. There is a clear separation
between the pure, functional core and the rest of the code. Finally,
xmonad is a real world application with a significant user base.
How much effort is it to reimplement the StackSet module in Coq?

4. Reimplementation in Coq
The goal of this project is to write a drop-in replacement for the
StackSet module that is extracted from a Coq source file. Since
Gallina is a total language, there are two obvious problems:

• Haskell code does not need to pattern match exhaustively. For
example, in the where clause of the focusUp function there is
no case branch for an empty list. The match will not fail at run-
time as reversing a non-empty list always yields a non-empty
list, yet there is work to be done to convince Coq of this fact.

• Haskell code may use general recursion. Gallina only permits
the definition of structurally recursive functions.

132

The next two subsections briefly explain how these two issues
were resolved in the context of this case study.

Pattern matching
In most cases, functions that used non-exhaustive pattern matches
could be rewritten in a way that avoided the case expression alto-
gether. For instance, the focusUp function above can be reformu-
lated in Coq as follows:

Definition focusUp (s : stack) : stack :=
match s with
| Stack t (l :: ls) rs⇒ Stack l ls (t :: rs)
| Stack t nil rs⇒

Stack (hd t (rev rs)) (tail (rev (t :: rs))) nil
end.

Instead of insisting on matching on rev (t :: rs), we use Coq’s hd
function that returns the first element of a list, but requires a default
value for the case when the argument list is empty. Although the
Coq and Haskell versions are equivalent, the Coq version is a bit
less legible.

There were a handful of cases where the pattern match was too
intricate to rewrite in this style. In those cases, there are several
alternative techniques that can be used [Chlipala 2008; McBride
1999]. One relatively simple solution is to add a local definition for
the expression on which case analysis is performed and introduce
an additional equality argument to each case branch. In our running
example, this yields the following code:

Definition focusUp (s : stack) : stack.
refine (match s with
| Stack t (l :: ls) rs⇒ Stack l ls (t :: rs)
| Stack t nil rs⇒

let revd := rev (t :: rs) in
match revd
return (revd = rev (t :: rs)→ stack) with
| nil⇒
| x :: xs⇒ fun prf ⇒ Stack x xs nil

end
end).

Here we use Coq’s tactic language to produce the desired pro-
gram. Coq’s refine tactic fills in an incomplete function definition,
generating proof goals for any parts of the definition left open using
an underscore. In this example, we end up with two subgoals: us-
ing the assumption that nil = rev (t :: rs) we rule out the possibility
of the nil branch by deriving a contradiction; the second subgoal
requires a (trivial) proof that revd = rev (t :: rs). Both of these sub-
goals are easy to discharge using Coq’s proof tactics. Upon extrac-
tion, these propositional equalities are discarded, leaving a program
that is very close to the Haskell original.

There is a danger of using too much automation when writing
programs in this style. In particular, using tactics such as auto, that
search the context for any value of the desired type, may lead to
semantically incorrect programs that are type correct. For example,
if we had left both case branches of the focusUp function open and
used tactics to discharge the remaining obligations, these tactics
could fill in Stack t nil nil in both branches. While the resulting
code would type check, the function would not behave as intended.

A third alternative, which was used during the initial prototype,
employed Coq’s Program framework [Sozeau 2007a,b]. The Pro-
gram framework automatically generates the stronger types for the
separate case branches. Using Program, a developer can mark cer-
tain case branches as unreachable and decorate a function’s argu-
ments and result with propositions, corresponding to assumptions
about arguments and guarantees about the result that a function re-
turns. The developer need only write the computational fragment

focusWindow :: (Eq s,Eq a,Eq i)⇒
a→ StackSet i l a s sd→ StackSet i l a s sd

focusWindow w s
| Just w == peek s = s
| otherwise =

maybe s id $ do
n← findTag w s
return $

until ((Just w ==).peek) focusUp (view n s)

Figure 3. The focusWindow function

of the definition; the Program framework collects a series of proof
obligations that must be fulfilled before the function definition is
complete. From the program and these proofs, the Program frame-
work generates a single function definition.

The function generated by the Program framework, however,
tends to be quite complex. Post-hoc verification of these functions
is hard. Due to proof relevance two definitions with the same
computational component, but different associated proofs, are not
equal. The functions written in this style carry around complicated
proof terms that have been generated automatically, but may not be
discarded yet.

The Program automation was very useful during development:
it automatically collects the assumptions and proof obligations for
every case branch, which makes it easier to find suitable precondi-
tions for totality. The final version of the code, however, avoids the
use of Program altogether.

General recursion
Fortunately, most functions in the StackSet module make very little
use of general recursion, but instead traverse and manipulate induc-
tive data structures in a structurally recursive fashion. Nonetheless,
there was one function, focusWindow in Figure 3, that needed to
be rewritten more drastically. The exact details are not important,
but the function’s definition is included here to give a taste of the
programming style in xmonad.

The focusWindow function tries to move the focus to an argu-
ment window. If the argument window happens to be in focus,
which is the branch checked by the first guard, nothing happens.
Otherwise the function tries to find the argument window across
the different workspaces. If this is successful, the focusUp function
is called until the desired window is in focus; otherwise, no new
window is brought in focus.

The problem with this definition is in the use of the until func-
tion, which is not structurally recursive. There is a reasonably
straightforward alternative: rather than moving up until we reach
the desired window, we adapt the findTag function to compute the
number of steps necessary to bring the desired window into focus.
The Coq version of the focusWindow function no longer needs to
use the until function, as it knows precisely how many focusUp
moves are necessary to bring the required window into focus.

5. Making it all work
It takes less than 500 lines of (uncommented) Coq code to redefine
the basics of the Haskell StackSet module. Unfortunately, the very
first version of the code that is extracted from this module is not
very satisfactory.

Custom file headers
There is no way to specify which functions and data types should
be exported from a Haskell module that is generated by extraction.

133

This is less of a problem when extracting to OCaml, as this infor-
mation is stated in a separate .mli file. When extracting to Haskell,
however, users may want to hide certain definitions or import cer-
tain libraries. As a workaround, I use a shell-script that removes
the first fifteen lines of the extracted Haskell code and splices in a
custom, hand-written Haskell header.

Using Haskell types
The extraction process generates Haskell functions and data types
for all the definitions and data types. But what if developers want
to use Haskell’s standard lists rather than the list types generated by
extraction? There are several reasons for this choice. Firstly, some
fusion rules and optimizations may be specific to Haskell’s lists
and list operations. Furthermore, generating new versions of the
booleans, lists, pairs, and many other data types from the Haskell
Prelude, produces unnecessarily verbose extracted code. Most im-
portantly, clients of the StackSet module may want to call functions
that take lists as an argument—if these functions must work on
extracted data types rather than Haskell data types, any call to the
extracted function must first convert between Haskell lists and their
extracted counterparts.

The extraction mechanism does provide hooks to customize
how functions and data types are extracted. For example, the fol-
lowing two commands change how Coq’s boolean type bool and
the Boolean conjunction are extracted:

Extract Inductive bool⇒
"Bool" ["True" "False"].

Extract Constant andb⇒ "(&&)".

Instead of generating a new data type, Coq’s bool type is mapped
to the Haskell Bool type. The first constructor of the bool type is
mapped to the Haskell constructor True; the second constructor of
the bool type is mapped to the Haskell constructor False.

This customization process is extremely fragile. If we swap the
mapping of the constructors as follows:

Extract Inductive bool⇒
"Bool" ["False" "True"].

We now map Coq’s true constructor to False and Coq’s false con-
structor to True. This error will result in extracted code that still
type checks, but will exhibit unexpected behaviour. Erroneously re-
placing andb with Haskell’s (||) function causes comparable prob-
lems. These may seem like innocent mistakes—but incorrect usage
of extraction will generate incorrect code, even if the original Coq
functions have been verified.

It is important to emphasize that, in principle, the extrac-
tion mechanism is guaranteed to preserve a program’s seman-
tics [Letouzey 2004]. Incorrect extraction customizations, however,
may lead to incorrect programs.

Superfluous coercions
The extraction process inserted several superfluous calls to the
unsafeCoerce function when it was unsure whether or not the
extracted code will typecheck. This turned out to be a bug in the
extraction mechanism [Letouzey 2011], that has been fixed in the
latest Coq release. The extracted code does not use any unsafe
Haskell functions.

Type classes
The original Haskell StackSet module defines several functions that
use type classes. For example, the member function that checks
whether or not an argument window is present in a StackSet has the
following type:

member :: Eq a⇒ a→ StackSet i l a s sd→ Bool

Although Coq has type classes [Sozeau and Oury 2008], the im-
plementation of instance resolution is completely different from
Haskell. Although it is in principle possible to use Coq’s type
classes, the extraction mechanism is oblivious to their existence.
There is no way to generate extracted code that uses type classes.
To resolve this, the Coq version of the StackSet module starts as
follows:

Variable (a : Set).
Variable eqa :

forall (x y : a),{x = y}+{x<> y}.
This declares a type variable a and assumes a decidable equality
on a. When extracting a Coq function that uses eqa, the generated
Haskell function expects an additional argument of type a→ a→
Bool that is used in place of eqa. For example, the Coq version of
the member function yields a Haskell function of type

member :: (a→ a→ Bool)→
a→ StackSet i l a s sd→ Bool

upon extraction. Functions that do not use eqa are not affected
by these declarations. To obtain the original type of the Haskell
function, we need to define additional wrapper functions that call
the extracted functions with suitable ‘dictionary’ arguments:

member :: Eq a⇒ a→ StackSet i l a s sd→ Bool
member = member (==)

These wrapper functions are all defined in the hand-written header
file mentioned previously.

Axioms
The StackSet module uses Data.Map, Haskell’s library for finite
maps. For a complete Coq version of the StackSet module, we
would need to reimplement this library in Coq. However, it is hard
to ensure that the extracted code is as efficient as the (heavily
optimized) Data.Map. Although there are Coq versions of many
OCaml data structures, such as finite sets [Filliâtre and Letouzey
2004], writing efficient Haskell code may require pragmas and
annotations that are impossible to generate through extraction from
Coq alone.

Instead, we add several axioms postulating the existence of
finite maps and operations on them:

Axiom DataMap : Set→ Set→ Set.
Axiom empty : forall k a,DataMap k a.
Axiom insert : forall (k a : Set),

k→ a→ DataMap k a→ DataMap k a.
Axiom remove : forall (k a : Set),

k→ DataMap k a→ DataMap k a.

Additional extraction commands specify how to generate Haskell
code for each of these axioms.

This approach does have its drawbacks: we cannot prove any-
thing about the functions from Data.Map. Axioms in Coq do not
compute: they have no associated definitions so there is no way
to prove anything about their behaviour. The only way to ‘prove’
properties of axioms, is by adding further axioms stating how vari-
ous operations on finite maps interact.

After postulating these axioms, there is still more work to be
done. The type of the insert function from Data.Map is actually:

insert :: Ord k⇒ k→ a→Map k a→Map k a

The type class constraint makes it slightly different from the axiom
we have postulated in Coq above. As a result, replacing the axiom
with the Haskell insert function from Data.Map leads to type
incorrect code. To fix this, we could, once again, add additional
wrapper functions. A more pragmatic solution employed in this

134

project uses the Unix sed tool to insert type class constraints in the
type signatures of a handful of functions in the extracted Haskell
code.

Patching xmonad

After completing all the above steps, the extracted code is almost
a drop-in replacement for the original StackSet module. A small
patch is still needed to the xmonad sources to compile using the
extracted code. The motivation for this patch requires a bit more
explanation about the StackSet module.

The StackSet module uses a counter to assign unique identifiers
to new windows. The type of this counter is kept abstract: it must be
an instance of the Integral class, even if it is only ever instantiated
to Int. In principle, we could parametrize our development over the
required functions from the Integral class, much in the same style
as we did for the eqa function. As the Integral class and its super-
classes support quite a few operations, the corresponding wrapper
functions would expect equally many arguments. Instead, the Coq
version simply instantiates these counters to natural numbers, that
in turn are mapped to Haskell’s Int type through extraction. As a
result, the clients of the StackSet module need to be adjusted—
the StackSet type takes one fewer argument. A simple patch to the
xmonad sources is necessary to take this into account.

6. Discussion
Verification
Having completed this development, it now becomes possible to
prove QuickCheck properties in Coq. I have already started to do.
Unfortunately, many of the QuickCheck properties are not terribly
interesting. For instance, all functions that manipulate a StackSet
should respect the invariant that every window has a unique iden-
tifier. To prove that various operations that permute the order of
the windows respect this property is somewhat wearisome, but not
conceptually challenging. Proving such properties would make an
interesting exercise in Coq, but I suspect it would not drastically
improve xmonad as QuickCheck is already quite good in this par-
ticular domain. The ‘bugs’ that I have encountered so far tend to
be problems in the specification: often a property does not hold for
every StackSet, but only those generated by the xmonad test suite.
That does not mean these properties do not hold, but rather that they
may require additional assumptions that the QuickCheck properties
do not make explicit. Although it would be interesting to complete
the verification to compare the relative merits of QuickCheck and
Coq, this is beyond the scope of this paper.

Results
The extracted code passes the xmonad testsuite and runs as well
as the original version. This is a very important sanity check. The
transcription to Coq could have introduced errors. Or the extraction
commands can introduce bugs of their own. Not all of these mis-
takes would have been caught by Haskell’s type system alone. This
goes to show that formal verification in this style can complement,
but not replace, existing software verification technology.

Did this project uncover any bugs? Yes! There was a subtle
bug in the creation of a new StackSet. The new function is roughly
structured as follows:

new l wids m | pre l wids m = ...
| otherwise = error "StackSet.new"

It makes certain assumptions about its arguments, as specified by
the precondition pre; if these assumptions are not valid, an error
is thrown. The problem uncovered by this project was that the
precondition pre was not strong enough: even if pre held, the body
of the function could still fail. This was never triggered by users

or QuickCheck tests as the only calls to new satisfied a stronger,
sufficient precondition. Even if not all QuickCheck properties have
been proven in Coq, we can now be sure that all the functions from
the StackSet module are total under certain, precisely specified
conditions. In a sense, this development proves that every function
from the StackSet module will never crash or loop unexpectedly.

Lessons learned
How hard is it to replace Haskell code with Coq in the wild? This
experience report shows that it is possible in principle, but painful
in practice. There are several predictable issues will need to be ad-
dressed: general recursion, incomplete pattern matches, and partial
functions. The surprising lesson, for me at least, was the amount of
effort it required to smooth out all the niggling issues with interfac-
ing with other Haskell libraries, realizing axioms, custom module
headers, type classes, and so forth.

The limitations of program extraction Projects like this one rely
on extraction to generate executable code. At the same time, this
study shows how tricky it can be to extract usable Haskell code
from Coq. This is, in part, because Haskell and Gallina are very
different languages. Many of the issues encountered above stem
from trying to write Gallina code that uses Haskell-specific
language features. Similar projects extracting to OCaml have
had much better results [Denney 2001; Filliâtre and Letouzey
2004; Leroy 2006]. Using extraction successfully requires a
close tie between the theorem prover and target programming
language.
If we take the idea of programming with proof assistants seri-
ously, perhaps we should compile Gallina directly to machine
code, providing an interface to other languages through a for-
eign function interface. With the exception of a few PhD the-
ses [Brady 2005; Grégoire 2003], the compilation of depen-
dently typed languages is still very much unexplored. Other
dependently typed systems, such as Agda [Norell 2007] and
Idris [Brady 2011], are more developed in this respect. They
have some form of foreign function interface and support ‘com-
pilation’ via Haskell or C. At the moment, however, these sys-
tems are still very experimental. Agda’s extraction to Haskell,
for example, introduces calls to unsafeCoerce at every node in
the abstract syntax tree. Clearly this is undesirable for any high-
assurance software development.

Engineering verified software How can we reduce the cost of
writing software in this fashion? There are several design
choices in xmonad that could be made differently to make the
shift to Coq easier: reducing the usage of type classes; using
total Haskell functions whenever possible; restricting the use of
general recursion. If the developers of xmonad had been more
aware of these issues during the initial design, the transcrip-
tion to Coq could have been less painful. Making developers
aware of how proof assistants work can facilitate the formal
verification of their code.
The seL4 kernel verification project drew a similar conclu-
sion [Derrin et al. 2006; Klein et al. 2009]. Before starting the
formal verification, the systems programmers and proof engi-
neers wrote an executable prototype in Haskell. Once the func-
tionality had been fixed, proof engineers could start the verifi-
cation and the system developers could write the actual imple-
mentation.
This approach to formally verified software would work even
better using Coq’s extraction technology. Starting with an im-
plementation of the pure xmonad core and its specification in
terms of QuickCheck properties, proof engineers can port the
Haskell code to Coq while the application developers write the

135

interface to the X server. The pure Haskell module provides a
clear interface between the worlds of the proof assistant and the
(impure) remainder of the code base.

Future work It is rather depressing to reflect on the amount of ef-
fort that is still required for such a project. Coq has a very steep
learning curve. There is no tool support to automate the transla-
tion from Haskell to Coq. There is no way to formulate Coq
lemmas from QuickCheck properties automatically, although
such a tool does exist for Isabelle [Haftmann 2010]. Further-
more, there is no tool that uses QuickCheck to test that extracted
code behaves the same as its original Haskell counterpart. There
is still much work to be done to develop tools that reduce the
cost of writing verified software.

Acknowledgments
I would like to thank Jeroen Bransen, Jelle Herold, Robbert Kreb-
bers, Pierre Letouzey, José Pedro Magalhães, Thomas van Noort,
Don Stewart, the members of the Foundations Group at the Rad-
boud University, and the numerous anonymous reviewers their
helpful feedback.

References
E. Brady. Practical Implementation of a Dependently Typed Functional

Programming Language. PhD thesis, Durham University, 2005.
E. Brady. Idris—systems programming meets full dependent types. In

PLPV’11: Proceedings of the 2011 ACM SIGPLAN Workshop on Pro-
gramming Languages meets Programming Verification, 2011.

A. Chlipala. Certified programming with dependent types. Available from
http://adam.chlipala.net/cpdt, 2008.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN
International Conference on Functional Programming, 2000.

T. Coquand and G. Huet. The calculus of constructions. Inf. Comput., 76:
95–120, February 1988.

L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-CoRN, the constructive
Coq repository at Nijmegen. In Mathematical Knowledge Management,
2004.

E. Denney. The synthesis of a Java Card tokenization algorithm. In
Proceedings of the 16th IEEE International Conference on Automated
Software Engineering, 2001.

P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty.
Running the manual: An approach to high-assurance microkernel devel-
opment. In Proceedings of the ACM SIGPLAN Haskell Workshop, 2006.

J.-C. Filliâtre and P. Letouzey. Functors for Proofs and Programs. In
Proceedings of The European Symposium on Programming, volume
2986 of Lecture Notes in Computer Science, 2004.

A. Gill and C. Runciman. Haskell Program Coverage. In Proceedings of
the ACM SIGPLAN Workshop on Haskell, 2007.

G. Gonthier. Formal proof: the four-color theorem. Notices of the AMS, 55
(11):1382–1393, 2008.

B. Grégoire. Compilation des termes de preuves: un (nouveau) mariage
entre Coq et OCaml. PhD thesis, Université Paris 7, 2003.

F. Haftmann. From higher-order logic to Haskell: there and back again. In
Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evalua-
tion and Program Manipulation, pages 155–158, 2010.

G. Huet. The zipper. Journal of Functional Programming, 7(05):549–554,
1997.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. seL4:
Formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pages 207–
220. ACM, 2009.

X. Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In Conference record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 42–54, 2006.

P. Letouzey. A new extraction for Coq. Types for Proofs and Programs,
2003.

P. Letouzey. Programmation fonctionnelle certifiée: l’extraction de pro-
grammes dans l’assistant Coq. PhD thesis, Université Paris-Sud, 2004.

P. Letouzey. Personal communication. 2011.
P. Martin-Löf. Constructive mathematics and computer programming.

Studies in Logic and the Foundations of Mathematics, 104, 1982.
The Coq development team. The Coq proof assistant reference manual.

LogiCal Project, 2004. URL http://coq.inria.fr.
C. McBride. Dependently typed functional programs and their proofs. PhD

thesis, University of Edinburgh, 1999.
N. Mitchell. HLint Manual, 2010.
N. Mitchell and C. Runciman. Not all patterns, but enough: an automatic

verifier for partial but sufficient pattern matching. In Proceedings of the
first ACM SIGPLAN Symposium on Haskell, 2008.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

M. Sozeau. Program-ing Finger Trees in Coq. In ICFP’07: Proceedings
of the 2007 ACM SIGPLAN International Conference on Functional
Programming, pages 13–24, 2007a.

M. Sozeau. Subset coercions in Coq. In T. Altenkirch and C. McBride,
editors, Types for Proofs and Programs, volume 4502 of Lecture Notes
in Computer Science, pages 237–252. Springer, 2007b.

M. Sozeau and N. Oury. First-class type classes. In Theorem Proving in
Higher Order Logics, 2008.

D. Stewart. Popular haskell packages: Q2 2010 report, June 2010. URL
http://donsbot.wordpress.com/.

D. Stewart and S. Janssen. xmonad: a tiling window manager. In Proceed-
ings of the ACM SIGPLAN Workshop on Haskell, 2007.

136

http://adam.chlipala.net/cpdt
http://coq.inria.fr
http://donsbot.wordpress.com/

	Introduction
	Background
	The xmonad window manager
	Reimplementation in Coq
	Making it all work
	Discussion

