
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Extended Abstract: Improving Error Messages for
Dependent Types

Joseph Eremondi
University of British Columbia

jeremond@cs.ubc.ca

Wouter Swierstra
Utrecht University
w.s.swierstra@uu.nl

Jurriaan Hage
Utrecht University

j.hage@uu.nl

1 Introduction
Dependently typed languages allow programmers to estab-
lish the correctness of their code, accessing the full power
of higher-order logic via the Curry-Howard correspondence.
However, a major barrier to their widespread adoption is
their complexity. Since they impose a rigid type discipline,
a significant portion of development time is spent reading,
understanding, and responding to compiler error messages.
For Hindley-Milner style functional languages, such as

Haskell or ML, several techniques have been developed to im-
prove the quality of error messages. Our work adapts these
techniques to dependently typed languages. We present re-
play graphs, which provide a representation of a unification
algorithm run as a graph, allowing for the use of heuristics
to generate error messages and repair hints, and counter-
factual unification, which makes unification resistant to
bias, so that when conflicting assumptions are encountered,
the first one is not necessarily assumed to be correct.

2 Error Message Goals and Concepts
Before describing how to improve dependently typed error
messages, we first need to look at what improvements we
are seeking to achieve.

2.1 Error Location and Cause
A major aspect of message generation is choosing one or
more source-code locations to associate with the error. We
wish to report all locations that the programmermust inspect
to make a repair. Additionally, we would like error messages
to indicate the cause of the error: the specific mistake whose
removal will cause the program to typecheck. Even better is
to suggest a repair : the change that must be made to correct
the error.
For the Agda code in Listing 1, the function myOp per-

forms arithmetic on a pair of numbers and another number.
When we try to fold myOp over a list containing number-
boolean pairs, we get a type error. The reported message
locates the error at myList. However, it is missing crucial
information, namely that we are expecting a number because
of the type of myOp. Thus, both locations are relevant to the
error. This cause is hidden by the fact that this constraint is
induced by the implicit arguments to foldr.

TYDE’18, September 27, 2018, St. Louis, MO, United States
2018.

foldr : {A : Set} {B : Set} → (A → B → B) → B → List A → B

myOp : N × N→ N→ N
myList : List (N × Bool)
myVal : N

myVal = foldr myOp 0 myList

--Bool !=< N of type Set

--when checking that the expression myList has type List (N × N)

Listing 1. Error with multiple relevant locations

myZipWith : {A B : Set} → ((A × A) → B) → List A → List A → List B

myVal1 = myZipWith proj1 (1 :: 2 :: []) (true :: false :: [] )

-- Bool !=< N of type Set

-- when checking that the expression true has type N

myVal2 = myZipWith proj1 (true :: false :: [] ) (1 :: 2 :: [])

-- N !=< Bool of type Set

-- when checking that the expression 1 has type Bool

Listing 2. Bias in error messages

2.2 Left to Right Bias
Another cause of unsatisfactory messages is bias. When pro-
gram points imply different types for an expression, whichever
the typechecker sees first is often assumed to be correct, re-
gardless of which is more likely to be the correct type.

Consider the Agda code in Listing 2. In the first example,
true is reported as ill-typed, and the correct type is assumed
to be a number, even though switching the types of either
list will remove the error. When the order of the lists is
changed, instead 1 is the error location, and the correct type
is assumed to be Bool, showing bias.

3 Higher Order Unification
Type inference plays a key role in the usability of depen-
dent types. For example, most dependently typed languages
have no explicit parametric polymorphism. The familiar
type ∀X .T is instead simulated with the dependent type
(X : Set) → T . To enable hygenic use of polymorphism,
functions are explicitly instantiated with program metavari-
ables, holes whose value is determined during compilation.
Typechecking becomes a constraint satisfaction problem.

To solve these constraints, we need a higher-order unifica-
tion algorithm. A higher-order unification problem consists
of a set of metavariables α1 . . . αn and a set of problems of
the form ∀Γ. S ≡ T , where S and T are terms, and Γ stores a
list of typed free program variables. In a dependently typed
language, types and values depend on each other: S and T
need not be types, but may contain functions, applications,
and any other terms from our language. A solution consists

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

TYDE’18, September 27, 2018, St. Louis, MO, United States Joseph Eremondi, Wouter Swierstra, and Jurriaan Hage

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

α

Eq 0 0 Eq (Succ 0) 0

0
0

Eq
0

Eq

Succ 0

Succ 0

HEAD
2Eq 1Eq

HEAD

2Eq

1Eq

HEAD 1Succ

(a) Replay graph for {α ≡ Eq 0 0,α ≡ Eq (Succ 0) 0}. Dashed
edges are implied by equality paths, and the crossed-out edges
are a possible diagnosis.

α 3 4α x y α

87x + y λx . x + y
solution

initial sub/eval initial
depends

depends

(b) Replay graph for {∀x ,y. α x y ≡ x + y,α 3 4 ≡ 8}. Inver-
sion gives α := λx . x + y, so α 3 4 gets an evaluation edge to
7. The crossed-out edges are a possible diagnosis.

Figure 1. Example replay graphs

of a value for each αi such that the sides of each equation
are equal up to βη reduction. While higher order unification
is undecidable in general, algorithms exist [1, 4, 5] deciding
large enough fragments that it can be used in practice.

4 Dependent Type Error Strategies
4.1 Replay Graphs
Helium [6–8] is a Haskell compiler that facilitates high qual-
ity error message generation through constraint graphs. Each
subterm is represented by a node in the graph, with undi-
rected edges denoting equality. Directed edges connect terms
and their subterms, and implicit edges are added between the
subterms of connected terms (e.g. {S → S ′,T → T ′} induces
edges {S, S ′} and {T ,T ′}).
This allows us to diagnose an error by choosing edges

whose removal disconnects all non-equal nodes in the graph.
Each edge corresponds to a source location, and the graph
is not biased by the order in which constraints are added.
Heuristics can be used to generate error messages, consider-
ing all relevant program points, and the graph can be easily
edited, so that heuristics can search for potential repairs.
This approach addresses the issues from Section 2, but it

fails in a dependently-typed setting. Typechecking involves
evaluation of terms, and higher order problems often must be
transformed before they can be solved. The graph approach
handles injective constructors, but if, for example, we have,
(λx . λy. 0) 0 0 ≡ (λx . λy. x) 0 1, then we cannot conclude
that (λx . λy. 0) ≡ (λx . λy. x), or that 1 ≡ 0.

plus :: Nat -> Nat -> Nat

pNPlus0isN :: forall n :: Nat . Eq Nat (plus n 0) n

let succPlus = (\n -> pNPlus0isN (Succ n))

:: forall n::Nat. Eq Nat (Succ n) (plus (Succ n) 0)

-- HINT: Rearrange arguments to match

-- Eq Nat (Succ x) (plus (Succ x) 0)

-- to Eq Nat (plus (Succ x) 0) (Succ x)

Listing 3. Message with repair hint

To account for these difficulties, we compromise. Con-
straints are solved using a higher-order unification algo-
rithm, which decomposes problems, performs substitution
and evaluation, and emits metavariable solutions. For each
intermediate problem S ≡ T or solution α := T , we add the
corresponding edge to our graph.
To account for evaluation, terms containing function ab-

stractions or applications are stored in our graph. If a term
T is in our graph, and α is a metavariable in T , then when
a solution α := S is emitted, we add a new node T ′ for the
evaluated form of [X Z⇒ S]T , and add an edge {T ,T ′}. Thus,
we obtain a path between T and its successive evaluations
as more solutions are discovered.

When typechecking is complete, we are left with a replay
graph tracing the steps unification took. This can be analyzed
using the same techniques as Helium, allowing for error
messages and repair hints to be generated. Example replay
graphs are shown in Figure 1.

4.2 Counter-Factual Unification
Some bias is still present in replay graphs. Because dependent
typechecking performs evaluation at compile-time, when a
solution α := t is generated, t is substituted for all occur-
rences of α . Since the first possible solution for α is the only
one substituted, we are biased by the order in which we
process constraints.

To rectify this, we employ counter-factual unification, based
on the concepts of counter-factual typing [2] and the choice
calculus [3] to concisely represent sets of terms.

The core idea is, wheneverα := t is generated as a solution,
we instead generate α := C ⟨t ,α ′⟩, where α ′ is fresh. Here,
C ⟨t ,α ′⟩ is the variational expression with choices t and α ′.
After solving, α ′ will contain the value α would have been
assigned if t had not been chosen as a solution. Thus, we
explore all combinations of constraints, regardless of order.

5 Results
We implemented our techniques by combining the existing
implementations of Helium and Gundry-McBride Unifica-
tion [5] in the LambdaPi programming language [9], along
with a small set of proof-of-concept heuristics. In many cases,
our heuristics are able to generate helpful repair hints. We
show an example of this in Listing 3: when an equality proof
is used in the wrong direction, our heuristics can notify the
user of this.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Improving Error Messages for Dependent Types TYDE’18, September 27, 2018, St. Louis, MO, United States

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Acknowledgments
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada and the Utrecht Excel-
lence Scholarship.

References
[1] Andreas Abel and Brigitte Pientka. 2011. Higher-Order Dynamic Pattern

Unification for Dependent Types and Records. In Typed Lambda Calculi
and Applications, Luke Ong (Ed.). Lecture Notes in Computer Science,
Vol. 6690. Springer Berlin Heidelberg, 10–26. https://doi.org/10.1007/
978-3-642-21691-6_5

[2] Sheng Chen and Martin Erwig. 2014. Counter-factual Typing for De-
bugging Type Errors. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’14). ACM,
New York, NY, USA, 583–594. https://doi.org/10.1145/2535838.2535863

[3] Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A
Representation for Software Variation. ACM Trans. Softw. Eng. Methodol.
21, 1, Article 6 (Dec. 2011), 27 pages. https://doi.org/10.1145/2063239.
2063245

[4] Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D.
Dissertation. University of Strathclyde. hhttp://adam.gundry.co.uk/
pub/thesis/thesis-2013-12-03.pdf

[5] Adam Gundry and Conor McBride. 2013. A tutorial implementation
of dynamic pattern unification. Unpublished draft (2013). http://adam.
gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf

[6] Jurriaan Hage and Bastiaan Heeren. 2007. Implementation and Ap-
plication of Functional Languages: 18th International Symposium, IFL
2006, Budapest, Hungary, September 4-6, 2006, Revised Selected Papers.
Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Heuristics for
Type Error Discovery and Recovery, 199–216. https://doi.org/10.1007/
978-3-540-74130-5_12

[7] Bastiaan Heeren, Jurriaan Hage, and S Doaitse Swierstra. 2003. Con-
straint based type inferencing in Helium. Immediate Applications of
Constraint Programming (ACP) (2003), 57.

[8] Bastiaan J Heeren. 2005. Top quality type error messages. IPA Disserta-
tion Series; (2005).

[9] Andres Löh, Conor McBride, and Wouter Swierstra. 2010. A Tutorial
Implementation of a Dependently Typed Lambda Calculus. Fundam.
Inf. 102, 2 (April 2010), 177–207. http://dl.acm.org/citation.cfm?id=
1883634.1883637

3

https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/2063239.2063245
https://doi.org/10.1145/2063239.2063245
hhttp://adam.gundry.co.uk/pub/thesis/thesis-2013-12-03.pdf
hhttp://adam.gundry.co.uk/pub/thesis/thesis-2013-12-03.pdf
http://adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
http://adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf
https://doi.org/10.1007/978-3-540-74130-5_12
https://doi.org/10.1007/978-3-540-74130-5_12
http://dl.acm.org/citation.cfm?id=1883634.1883637
http://dl.acm.org/citation.cfm?id=1883634.1883637

	1 Introduction
	2 Error Message Goals and Concepts
	2.1 Error Location and Cause
	2.2 Left to Right Bias

	3 Higher Order Unification
	4 Dependent Type Error Strategies
	4.1 Replay Graphs
	4.2 Counter-Factual Unification

	5 Results
	Acknowledgments
	References

