
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

From algebra to abstract machine: a verified generic
construction

Carlos Tomé Cortiñas
Department of Information and Computing Sciences

Utrecht University
The Netherlands

c.tomecortinas@students.uu.nl

Wouter Swierstra
Department of Information and Computing Sciences

Utrecht University
The Netherlands

w.s.swierstra@uu.nl

Abstract
Many functions over algebraic datatypes can be expressed in
terms of a fold. Doing so, however, has one notable drawback:
folds are not tail-recursive. As a result, a function defined in
terms of a fold may raise a stack overflow when executed.
This paper defines a datatype generic, tail-recursive higher-
order function that is guaranteed to produce the same result
as the fold. Doing so combines the compositional nature of
folds and the performance benefits of a hand-written tail-
recursive function in a single setting.

Keywords datatype generic programming, catamorphisms,
dissection, dependent types, Agda, well-founded recursion

1 Introduction
Folds, or catamorphisms, are a pervasive programming pat-
tern. Folds generalize many simple traversals over algebraic
data types. Functions implemented by means of a fold are
both compositional and structurally recursive. Consider, for
instance, the following expression datatype, written in the
programming language Agda [Norell 2007]:

data Expr : Set where
Val : N → Expr
Add : Expr → Expr → Expr

We can write a simple evaluator, mapping expressions to
natural numbers, as follows:

eval : Expr → N

eval (Val n) = n
eval (Add e1 e2) = eval e1 + eval e2

In the case for Add e1 e2, the eval function makes two re-
cursive calls and sums their results. Such a function can be
implemented using a fold, passing the addition and identity
functions as the argument algebra.

fold : (N → X) → (X → X → X) → Expr → X
fold ϕ1 ϕ2 (Val n) = ϕ1 n
fold ϕ1 ϕ2 (Add e1 e2) = ϕ2 (fold ϕ1 ϕ2 e1) (fold ϕ1 ϕ2 e2)

eval : Expr → N

eval = fold id _+_

TyDe’18, September 23–29, 2018, St. Louis, MO, USA
2018.

Unfortunately, not everything in the garden is rosy. The
operator _+_ needs both of its parameters to be fully evalu-
ated before it can reduce further. As a result, the size of the
stack used during execution grows linearly with the size of
the input, potentially leading to a stack overflow on large
inputs.
To address this problem, we can manually rewrite the

evaluator to be tail-recursive. Modern compilers typically
map tail-recursive functions to machine code that runs in
constant memory. To write such a tail-recursive function, we
need to introduce an explicit stack storing both intermediate
results and the subtrees that have not yet been evaluated.
data Stack : Set where

Top : Stack
Left : Expr → Stack → Stack
Right : N → Stack → Stack

We can define a tail-recursive evaluation function bymeans
of a pair of mutually recursive functions, load and unload.
The load function traverses the expressions, pushing sub-
trees on the stack; the unload function unloads the stack,
while accumulating a (partial) result.
mutual

load : Expr → Stack → N

load (Val n) stk = unload+ n stk

load (Add e1 e2) stk = load e1 (Left e2 stk)

unload+ : N → Stack → N

unload v Top = v

unload v (Right v’ stk) = unload+ (v’ + v) stk

unload v (Left r stk) = load r (Right v stk)

We can now define a tail-recursive version of eval by call-
ing load with an initially empty stack:
tail-rec-eval : Expr → N

tail-rec-eval e = load e Top

Implementing this tail-recursive evaluator comes at a
price: Agda’s termination checker flags the load and unload
functions as potentially non-terminating by highlighting
them orange . Indeed, in the very last clause of the unload
function a recursive call is made to arguments that are not
syntactically smaller. Furthermore, it is not clear at all that
the tail-recursive evaluator produces the same result as our
original one. It is precisely these issues that this paper tackles
by making the following novel contributions:

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

TyDe’18, September 23–29, 2018, St. Louis, MO, USA Carlos Tomé Cortiñas and Wouter Swierstra

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

• We give a verified proof of termination of tail-rec-eval
using a carefully chosen well-founded relation (Sec-
tions 2 and 3). After redefining tail-rec-eval using this
relation, we can prove the two evaluators equal in
Agda.

• We generalize this relation and its corresponding proof
of well-foundedness, inspired by McBride’s work on
dissections [McBride 2008], to show how to calculate an
abstract machine from an algebra. To do so, we define
a universe of algebraic data types and a generic fold
operation (Section 4). Subsequently we show how to
turn any structurally recursive function defined using
a fold into its tail-recursive counterpart.

• Finally, we present how our proofs of termination and
semantics preservation from our example are general-
ized to the generic fold (Sections 4.6 and 4.7).

Together these results give a verified function that computes
a tail-recursive traversal from any algebra for any algebraic
datatype. All the constructions and proofs presented in this
paper have been implemented in and checked by Agda. The
corresponding code is freely available online.1

2 Termination and tail-recursion
Before tackling the generic case, we will present the termi-
nation and correctness proof for the tail-recursive evaluator
presented in the introduction in some detail.
The problematic call for Agda’s termination checker is

the last clause of the unload function, that calls load on the
expression stored on the top of the stack. From the definition
of load, it is clear that we only ever push subtrees of the
input on the stack. However, the termination checker has
no reason to believe that the expression at the top of the
stack is structurally smaller in any way. Indeed, if we were
to redefine load as follows:

load (Add e1 e2) stk = load e1 (Left (f e2) stk)

we might use some function f : Expr → Expr to push
arbitrary expressions on the stack, potentially leading to
non-termination.

The functions load and unload use the stack to store sub-
trees and partial results while folding the input expression.
Thus, every node in the original tree is visited twice dur-
ing the execution: first when the function load traverses the
tree, until it finds the leftmost leaf; second when unload in-
spects the stack in searching of an unevaluated subtree. This
process is depicted in Figure 1.
As there are finitely many nodes on a tree, the depicted

traversal using load and unload must terminate – but how
can we convince Agda’s termination checker of this?

As a first approximation, we revise the definitions of load
and unload. Rather than consuming the entire input in one

1https://github.com/carlostome/Dissection-thesis

Add

Add

Val 3 Add

Val 7 Val 1

Add

Val 2 Val 0

Figure 1. Traversing a tree with load and unload

go with a pair of mutually recursive functions, we rewrite
them to compute one ‘step’ of the fold.

The function unload is defined by recursion over the stack
as before, but with one crucial difference. Instead of always
returning the final result, it may also2 return a new configu-
ration of our abstract machine, that is, a pair N × Stack:
unload : N → Stack → (N × Stack) ⊎ N

unload v Top = inj2 v
unload v (Right v’ stk) = unload (v’ + v) stk
unload v (Left r stk) = load r (Right v stk)

The other key difference arises in the definition of load:
load : Expr → Stack → (N × Stack) ⊎ N

load (Val n) stk = inj1 (n , stk)
load (Add e1 e2) stk = load e1 (Left e2 stk)

Rather than calling unload upon reaching a value, it returns
the current stack and the value of the leftmost leaf. Even
though the function never returns an inj2, its type is aligned
with the type of unload so the definition of both functions
resembles an an abstract machine more closely.

Both these functions are now accepted by Agda’s termina-
tion checker as they are clearly structurally recursive.We can
use both these functions to define the following evaluator3:
tail-rec-eval : Expr → N

tail-rec-eval e with load e Top
... | inj1 (n , stk) = rec (n , stk)
where

rec : (N × Stack) → N

rec (n , stk) with unload n stk
... | inj1 (n’ , stk’) = rec (n’ , stk’)
... | inj2 r = r

Here we use load to compute the initial configuration of
our machine – that is, it finds the leftmost leaf in our initial
expression and its associated stack.We proceed by repeatedly
calling unload until it returns a value. This version of our
evaluator, however, does not pass the termination checker.
The new state, (n’ , stk’), is not structurally smaller than the
initial state (n , stk). If wework under the assumption that we
2⊎ is Agda’s type of disjoint union.
3We ignore load’s impossible case, it can always be discharged with
⊥-elim : ∀ {X : Set } → ⊥ → X.

2

https://github.com/carlostome/Dissection-thesis

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

From algebra to abstract machine: a verified generic construction TyDe’18, September 23–29, 2018, St. Louis, MO, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

have a relation between the states N × Stack that decreases
after every call to unload and a proof that the relation is well-
founded – we know this function will terminate eventually.
We now define the following version of the tail-recursive
evaluator:

tail-rec-eval : Expr → N

tail-rec-eval e with load e Top

... | inj1 (n , stk) = rec (n , stk)
e

1

where
rec : (c : N × Stack) → Acc _<_ c → N

rec (n , stk) (acc rs) with unload n stk

... | inj1 (n’ , stk’) = rec (n’ , stk’) (rs
e

2)

... | inj2 r = r

To complete this definition, we still need to define a suit-
able relation _<_ between configurations of type N × Stack,
prove the relation to bewell-founded (

e
1 : Acc _<_ (n , stk))

and show that the calls to unload produce ‘smaller’ states
(
e

2 : (n’ , stk’) < (n , stk)). In the next section, we will
define such a relation and prove it is well-founded.

3 Well-founded tree traversals
The type of configurations of our abstract machine can be
seen as a variation of Huet’s zippers [1997]. The zipper asso-
ciated with an expression e : Expr is pair of a (sub)expression
of e and its context. As demonstrated by McBride [2008], the
zippers can be generalized further to dissections, where the
values to the left and right of the current subtree may have
different types. It is precisely this observation that we will ex-
ploit when considering the generic tail-recursive traversals
in the later sections; for now, however, we will only rely on
the intuition that the configurations of our abstract machine,
given by the type N × Stack, are an instance of dissections,
corresponding to a partially evaluated expression:

Config : Set
Config = N × Stack

These configurations, are more restrictive than dissections
in general. In particular, the configurations presented in
the previous section only ever denote a leaf in the input
expression.
The tail-recursive evaluator, tail-rec-eval processes the

leaves of the input expression in a left-to-right fashion. The
leftmost leaf – that is the first leaf found after the initial
call to load – is the greatest element; the rightmost leaf is
the smallest. In our example expression from Section 1, we
would number the leaves as follows:

This section aims to formalize the relation that orders
elements of the Config type (that is, the configurations of
the abstract machine) and prove it is well-founded. However,
before doing so there are two central problems with our
choice of Config datatype:

Add

Add

Val 3

5

Add

Val 7

4

Val 1

3

Add

Val 2

2

Val 0

1

Figure 2. Numbered leaves of the tree

1. The Config datatype is too liberal. As we evaluate our
input expression the configuration of our abstract ma-
chine changes constantly, but satisfies one important
invariant: each configuration is a decomposition of the
original input. Unless this invariant is captured, we
will be hard pressed to prove the well-foundedness of
any relation defined on configurations.

2. The choice of the Stack datatype, as a path from the
leaf to the root is convenient to define the tail-recursive
machine, but impractical when defining the coveted
order relation. The top of a stack stores information
about neighbouring nodes, but to compare two leaves
we need global information about their positions rela-
tive to the root.

We will now address these limitations one by one. Firstly,
by refining the type of Config, we will show how to capture
the desired invariant (Section 3.1). Secondly, we explore a
different representation of stacks, as paths from the root,
that facilitates the definition of the desired order relation
(Section 3.2). Finally we will define the relation over con-
figurations, Section 3.3, and sketch the proof that it is well-
founded.

3.1 Invariant preserving configurations
A value of type Config denotes a leaf in our input expression.
In the previous example, the following Config corresponds
to the third leaf:
As we observed previously, we would like to refine the

typeConfig to capture the invariant that execution preserves:
every Config denotes a unique leaf in our input expression,
or equivalently, a state of the abstract machine that computes
the fold. There is one problem still: the Stack datatype stores
the values of the subtrees that have been evaluated, but
does not store the subtrees themselves. In the example in
Figure 3, when the traversal has reached the third leaf, all
the subexpressions to its left have been evaluated.

In order to record the necessary information, we redefine
the Stack type as follows:

data Stack+ : Set where
Left : Expr → Stack+ → Stack+

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

TyDe’18, September 23–29, 2018, St. Louis, MO, USA Carlos Tomé Cortiñas and Wouter Swierstra

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Add

Add

Val 3

5

Add

Val 7

4

Val 1

3

Add

Val 2

2

Val 0

1

Right 7, Right 3, Left1 ,
Add

Val 2 Val 0

Figure 3. Example: Configuration of leaf number 3

Right : (n : N) → (e : Expr) → eval e ≡ n → Stack+ → Stack+

Top : Stack+

The Right constructor now not only stores the value n, but
also records the subexpression e and the proof that e evalu-
ates to n. Although we are modifying the definition of the
Stack data type, we claim that the expression e and equal-
ity are not necessary at run-time, but only required for the
proof of well-foundedness – a point we will return to in our
discussion (Section 5). From now onwards, the type Config
uses Stack+ as its right component:
Config = N × Stack+

The function unload was previously defined by induction
over the stack (Section 2), thus, it needs to be modified to
work over the new type of stacks, Stack+:
unload+ : (n : N) → (e : Expr) → eval e ≡ n → Stack+

→ Config ⊎ N

unload+ n e eq Top = inj2 n
unload+ n e eq (Left e′ stk) = load e′ (Right n e eq stk)
unload+ n e eq (Right n’ e′ eq′ stk)
= unload+ (n’ + n) (Add e′ e) (cong2 _+_ eq′ eq) stk

A value of type Config contains enough information to
recover the input expression. This is analogous to the plug
operation on zippers:
plug⇑ : Expr → Stack+ → Expr
plug⇑ e Top = e
plug⇑ e (Left t stk) = plug⇑ (Add e t) stk
plug⇑ e (Right t stk) = plug⇑ (Add t e) stk

plugC⇑ : Config → Expr
plugC⇑ (n , stk) = plug⇑ (Val n) stk

Any two terms of type Configmay still represent states of
a fold over two entirely different expressions. As we aim to
define an order relation comparing configurations during the
fold of the input expression, we need to ensure that we only
ever compare configurations within the same expression.
We can statically enforce such requirement by defining a
new wrapper data type over Config that records the original
input expression:

data Config⇑ (e : Expr) : Set where
, : (c : Config) → plugC⇑ c ≡ e → Config⇑ e

For a given expression e : Expr, any two terms of type
Config⇑ e are configurations of the same abstract machine
during the tail-recursive fold over the expression e.

3.2 Up and down configurations
Next, we would like to formalize the left-to-right order on
the configurations of our abstract machine. The Stack in the
Config represents a path upwards, from the leaf to the root
of the input expression. This is useful when navigating to
neighbouring nodes, but makes it harder to compare the
relative positions of two configurations. We now consider
the value of Config corresponding to leaves with numbers 3
and 4 in our running example:

Right 7, Right 3, Left1 ,
Add

Val 2 Val 0

Left Right 3, Left7 ,
Add

Val 2 Val 0
Val 1,

Figure 4. Comparison of configurations for leaves 3 and 4

The natural way to define the desired order relation is
by induction over the Stack. However, there is a problem.
The first element of both stacks does not provide us with
sufficient information to decide which position is ‘smaller.’
The top of the stack only stores information about the lo-
cation of the leaf with respect to its parent node. This kind
of local information cannot be used to decide which one of
the leaves is located in a position further to the right in the
original input expression.
Instead, we would like to compare the last elements of

both stacks. The common suffix of the stacks shows that both
positions are in the left subtree of the root. Once these paths
– read from right to left – diverge, we have found the exact
node Add where one of the positions is in the left subtree
and the other in the right.
When comparing two Stacks, we therefore want to con-

sider them as paths from the root. Fortunately, this obser-
vation does not require us to change our definition of the
Stack type; instead, we can define a variant of the plug⇑
function that interprets our contexts top-down rather than
bottom-up:

plug⇓ : Expr → Stack+ → Expr
plug⇓ e Top = e
plug⇓ e (Left t stk) = Add (plug⇓ e stk) t
plug⇓ e (Right t stk) = Add t (plug⇓ e stk)

plugC⇓ : Config → Expr
plugC⇓ (n , stk) = plug⇓ (Val n) stk

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

From algebra to abstract machine: a verified generic construction TyDe’18, September 23–29, 2018, St. Louis, MO, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

We can convert freely between these two interpretations by
reversing the stack. Furthermore, this conversion satisfies the
plug⇓-to-plug⇑ property, relating the two variants of plug:
convert : Config → Config
convert (n , s) = (n , reverse s)

plug⇓-to-plug⇑ : ∀ (c : Config)
→ plugC⇓ c ≡ plugC⇑ (convert c)

As before, we can create a wrapper around Config that en-
forces that our Config denotes a leaf in the input expression
e:
data Config⇓ (e : Expr) : Set where
, : (c : Config) → plugC⇓ c ≡ e → Config⇓ e

As a corollary of the plug⇓-to-plug⇑ property, we can define
a pair of functions to switch between Config⇑ and Config⇓:
Config⇓-to-Config⇑ : (e : Expr) → Config⇓ e → Config⇑ e

Config⇑-to-Config⇓ : (e : Expr) → Config⇑ e → Config⇓ e

3.3 Ordering configurations
Finally, we can define the ordering relation over values of
type Config⇓. Even if the Config⇑ is still used during execu-
tion of our tail-recursive evaluator, the Config⇓ type will be
used to prove its termination.

The ⌞_⌟_<_ type defined below relates two configurations
of type Config⇓ e, that is, two states of the abstract machine
evaluating the input expression e:
data ⌞_⌟_<_ : (e : Expr) → Config⇓ e → Config⇓ e → Set where
<-StepR : ⌞ r ⌟ ((t1 , s1) , ...) < ((t2 , s2) , ...)

→ ⌞ Add l r ⌟ ((t1 , Right l n eq s1) , eq1) < ((t2 , Right l n eq s2) , eq2)
<-StepL : ⌞ l ⌟ ((t1 , s1) , ...) < ((t2 , s2) , ...)

→ ⌞ Add l r ⌟ ((t1 , Left r s1) , eq1) < ((t2 , Left r s2) , eq2)

<-Base : (eq1 : Add e1 e2 ≡ Add e1 (plugC⇓ t1 s1))
→ (eq2 : Add e1 e2 ≡ Add (plugC⇓ t2 s2) e2)
→ ⌞ Add e1 e2 ⌟ ((t1 , Right n e1 eq s1) , eq1) < ((t2 , Left e2 s2) , eq2)

Despite the apparent complexity, the relation is straight-
forward. The constructors <-StepR and <-StepL cover the
inductive cases, consuming the shared path from the root.
When the paths diverge, the <-Base constructor states that
the positions in the right subtree are ‘smaller than’ those in
the left subtree.

Nowwe turn into showing that the relation iswell-founded.
We sketch the proof below:
<-WF : ∀ (e : Expr) → Well-founded (⌞ e ⌟_<_)
<-WF e x = acc (aux e x)

where
aux : ∀ (e : Expr) (x y : Config⇓ e)

→ ⌞ e ⌟ y < x → Acc (⌞ e ⌟_<_) y
aux = ...

The proof follows the standard schema4 of most proofs of
well-foundedness. It uses an auxiliary function, aux, that
proves every configuration smaller than x is accessible.
4Most well-founded proofs in Agda standard library follow this pattern.

The proof proceeds initially by induction over our rela-
tion. The inductive cases, corresponding to the <-StepR and
<-StepL constructors, recurse on the relation. In the base
case, <-Base, we cannot recurse further on the relation. We
then proceed by recursing over the original expression e;
without the type index, the subexpressions to the left e1 and
right e2 are not syntactically related thus a recursive call is
not possible. This step in the proof relies on only compar-
ing configurations arising from traversing the same initial
expression e.

3.4 A terminating and correct tail-recursive
evaluator

We now have almost all the definitions in place to revise
our tail-recursive fold, tail-rec-eval. However, we are miss-
ing one essential ingredient: we still need to show that the
configuration decreases after a call to the unload+ function.

Unfortunately, the function unload+ and the relation that
we have defined work on ‘different’ versions of the Stack: the
relation compares stacks top-down; the unload+ function
manipulates stacks bottom-up. Furthermore, the function
unload+ as defined previously manipulates elements of the
Config type directly, with no further type-level constraints
relating these to the original input expression.
In the remainder of this section, we will reconcile these

differences, complete the definition of our tail-recursive eval-
uator and finally prove its correctness.

Decreasing recursive calls To define our tail-recursive
evaluator, we will begin by defining an auxiliary step func-
tion that performs a single step of computation. We will
define the desired evaluator by iterating the step function,
proving that it decreases in each iteration.

The step function calls unload+ to produce a new config-
uration, if it exists. If the unload+ function returns a natural
number, inj2 v, the entire input tree has been processed and
the function terminates:

step : (e : Expr) → Config⇑ e → Config⇑ e ⊎ N

step e ((n , stk) , eq)
with unload+ n (Val n) refl stk
... | inj1 (n’ , stk’) = inj1 ((n’ , stk’) , ...)
... | inj2 v = inj2 v

We have omitted the second component of the result re-
turned in the first branch, corresponding to a proof that
plugC⇑ (n’ , stk’) ≡ e. The crucial lemma that we need to
show to complete this proof, demonstrates that the unload+
function respects our invariant:

unload+-plug⇑ :
∀ (n : N) (e : Expr) (eq : eval e ≡ x) (s : Stack+) (c : Config)
→ unload+ n e eq s ≡ inj1 c
→ ∀ (e′ : Expr) → plug⇑ e s ≡ e′ → plugC⇑ c ≡ e′

Finally, we can define the theorem stating that the step
function always returns a smaller configuration:

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

TyDe’18, September 23–29, 2018, St. Louis, MO, USA Carlos Tomé Cortiñas and Wouter Swierstra

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

step-< : ∀ (e : Expr) → (c c’ : Config⇑ e) → step e c ≡ inj1 c’
→ ⌞ e ⌟ Config⇑-to-Config⇓ c’ < Config⇑-to-Config⇓ c

Proving this statement directly is tedious, as there are many
cases to cover and the expression e occurring in the types
makes it difficult to identify and prove lemmas covering
the individual cases. Therefore, we instead define another
relation over non type-indexed configurations directly, and
prove that there is an injection between both relations under
suitable assumptions:
data _<_ : Config → Config → Set where

<-StepR : (t1 , s1) < (t2 , s2)
→ (t1 , Right l n eq s1) < (t2 , Right l n eq s2)

<-StepL : (t1 , s1) < (t2 , s2)
→ (t1 , Left r s1) < (t2 , Left r s2)

<-Base : (e1 ≡ plugC⇓ t2 s2) → (e2 ≡ plugC⇓ t1 s1)
→ (t1 , Right n e1 eq s1) < (t2 , Left e2 s2)

to : (e : Expr) (c1 c2 : Config)
→ (eq1 : plugC⇓ c1 ≡ e) (eq2 : plugC⇓ c2 ≡ e)
→ c1 < c2 → ⌞ e ⌟ (c1 , eq1) < (c2 , eq2)

Thus to complete the previous theorem, it is sufficient to
show that the function unload+ delivers a smaller Config:
unload+-< : ∀ (n : N) (s : Stack+) (e : Expr) (s’ : Stack+)

→ unload+ n (Val n) refl s ≡ inj1 (t ′ , s’)
→ (t ′ , reverse s’) < (n , reverse s)

The proof is done by induction over the stack supported; the
complete proof requires some bookkeeping, covering around
200 lines of code, but is conceptually not complicated.

The function tail-rec-eval is now completed as follows5:
rec : (e : Expr) → (c : Config⇑ e)

→ Acc (⌞ e ⌟_<_) (Config⇑-to-Config⇓ c) → Config⇑ e ⊎ N

rec e c (acc rs) = with step e c | inspect (step e) c
... | inj2 n | = inj2 n
... | inj1 c’ | [Is]
= rec e c’ (rs (Config⇑-to-Config⇓ c’) (step-< e c c’ Is))

tail-rec-eval : Expr → N

tail-rec-eval e with load e Top
... | inj1 c = rec e (c , ...) (<-WF e c)

Agda’s termination checker now accepts that the repeated
calls to rec are on strictly smaller configurations.

3.5 Correctness
As we have indexed our configuration datatypes with the in-
put expression, proving correctness of it is relatively straight-
forward. The type of the function step guarantees that the
configuration returned points to a leaf in the input expres-
sion.

Proving the function tail-rec-eval correct amounts to show
that the auxiliary function, rec, that is iterated until a value
is produced, will behave the same as the original evaluator,
eval. This is expressed by the following lemma, proven by
induction over the accessibility predicate:
5inspect is an Agda idiom needed to remember that c’ is the result of the
call step e c.

rec-correct : ∀ (e : Expr) → (c : Config⇑ e)
→ (ac : Acc (⌞ e ⌟_<_) (Config⇑-to-Config⇓ c))
→ eval e ≡ rec e c ac

rec-correct e c (acc rs)
with step e c | inspect (step e) c

... | inj1 c’ | [Is]
= rec-correct e c’ (rs (Config⇑-to-Config⇓ c’) (step-< e c c’ Is))

... | inj2 n | [Is] = step-correct n e eq c

At this point, we still need to prove the step-correct lemma
that it is repeatedly applied. As the step function is defined as
a wrapper around the unload+ function, it suffices to prove
the following property of unload+:
unload+-correct : ∀ (n : N) (e : Expr) (eq : eval e ≡ n) (s : Stack+)

∀ (m : N) → unload+ n e eq s ≡ inj2 m
→ eval (plug⇑ e s) ≡ m

This proof follows immediately by induction over s : Stack+.
The main correctness theorem now states that eval and

tail-rec-eval are equal for all inputs:
correctness : ∀ (e : Expr) → eval e ≡ tail-rec-eval e
correctness e with load e Top
... | inj1 c = rec-correct e (c , ...) (<-WF e c)
... | inj2 = ⊥-elim ...

This finally completes the definition and verification of a
tail-recursive evaluator.

4 A generic tail-recursive traversal
The previous section showed how to prove that our hand-
written tail-recursive evaluation function was both termi-
nating and equal to our original evaluator. In this section,
we will show how we can generalize this construction to
compute a tail-recursive equivalent of any function that can
be written as a fold over a simple algebraic datatype. In
particular, we generalize the following:

• The kind of datatypes, and their associated fold, that
our tail-recursive evaluator supports, Section 4.1.

• The type of configurations of the abstract machine
that computes the generic fold, Sections 4.2 and 4.3.

• The functions load and unload such that they work
over our choice of generic representation, Section 4.4.

• The ‘smaller than’ relation to handle generic configu-
rations, and its well-foundedness proof, Section 4.5.

• The tail-recursive evaluator, Section 4.6.
• The proof that the generic tail-recursive function is
correct, Section 4.7.

Before we can define any such datatype generic construc-
tions, however, we need to fix our universe of discourse.

4.1 The regular universe
In a dependently typed programming language such as Agda,
we can represent a collection of types closed under cer-
tain operations as a universe [Altenkirch and McBride 2003;
Martin-Löf 1984], that is, a data type U : Set describing
the inhabitants of our universe together with its semantics,

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

From algebra to abstract machine: a verified generic construction TyDe’18, September 23–29, 2018, St. Louis, MO, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

el : U → Set, mapping each element of U to its corre-
sponding type. We have chosen the following universe of
regular types [Morris et al. 2006; Noort et al. 2008]:
data Reg : Set1 where

0 : Reg
1 : Reg
I : Reg
K : (A : Set) → Reg
⊕ : (R Q : Reg) → Reg
⊗ : (R Q : Reg) → Reg

Types in this universe are formed from the empty type (0),
unit type (1), and constant types (K A); the I constructor
is used to refer to recursive subtrees. Finally, the universe
is closed under both coproducts (_⊕_) and products (_⊗_).
We could represent the pattern functor corresponding to the
Expr type in this universe as follows:
exprF : Reg
exprF = K N ⊕ (I ⊗ I)

Note that as the constant functor K takes an arbitrary type A
as its argument, the entire datatype lives in Set1. This could
easily be remedied by stratifying this universe explicitly and
parametrising our development by a base universe.
We can interpret the inhabitants of Reg as a functor of

type Set → Set:
J_K : Reg → Set → Set
J 0 K X = ⊥

J 1 K X = ⊤

J I K X = X
J (K A) K X = A
J (R ⊕ Q) K X = J R K X ⊎ J Q K X
J (R ⊗ Q) K X = J R K X × J Q K X

To show that this interpretation is indeed functorial, we
define the following fmap operation:
fmap : (R : Reg) → (X → Y) → J R K X → J R K Y
fmap 0 f ()
fmap 1 f tt = tt
fmap I f x = f x
fmap (K A) f x = x
fmap (R ⊕ Q) f (inj1 x) = inj1 (fmap R f x)
fmap (R ⊕ Q) f (inj2 y) = inj2 (fmap Q f y)
fmap (R ⊗ Q) f (x , y) = fmap R f x , fmap Q f y

Finally, we can tie the recursive knot, taking the least fixpoint
of the functor associated with the elements of our universe:
data µ (R : Reg) : Set where
In : J R K (µ R) → µ R

Next, we can define a generic fold, or catamorphism, to work
on the inhabitants of the regular universe. For each code
R : Reg, the cata R function takes an algebra of type
J R K X → X as argument. This algebra assigns semantics
to the ‘constructors’ of R. Folding over a tree of type µ R
corresponds to recursively folding over each subtree and
assembling the results using the argument algebra:

cata : (R : Reg) → (J R K X → X) → µ R → X

cata R ψ (In r) = ψ (fmap R (cata R ψ) r)

Unfortunately, Agda’s termination checker does not accept
this definition. The problem, once again, is that the recursive
calls to cata are not made to structurally smaller trees, but
rather cata is passed as an argument to the higher-order
function fmap.

To address this, we fuse the fmap and cata functions into
a single map-fold function [Norell 2008]:
map-fold : (R Q : Reg) → (J Q K X → X) → J R K (µ Q) → J R K X
map-fold 0 Q ψ ()

map-fold 1 Q ψ tt = tt
map-fold I Q ψ (In x) = ψ (map-fold Q Q ψ x)
map-fold (K A) Q ψ x = x
map-fold (R ⊕ Q) P ψ (inj1 x) = inj2 (map-fold R P ψ x)
map-fold (R ⊕ Q) P ψ (inj2 y) = inj2 (map-fold Q P ψ y)
map-fold (R ⊗ Q) P ψ (x , y) = map-fold R P ψ x , map-fold Q P ψ y

We can now define cata in terms of map-fold as follows:
cata : (R : Reg) (J R K X → X) → µ R → X
cata R ψ (In r) = map-fold R R ψ r

This definition is indeed accepted by Agda’s termination
checker.

Example We can now revisit our example evaluator from
the introduction. To define the evaluator using the generic
cata function, we instantiate the catamorphism to work on
the expressions and pass the desired algebra:
eval : µ exprF → N

eval = cata exprF ϕ
where ϕ : J exprF K N → N

ϕ (inj1 n) = n
ϕ (inj2 (n , n’)) = n + n’

In the remainder of this paper, we will develop an alter-
native traversal that maps any algebra to a tail-recursive
function that is guaranteed to terminate and produce the
same result as the corresponding call to cata.

4.2 Dissection
As we mentioned in the previous section, the configurations
of our abstract machine from the introduction are instances
of McBride’s dissections [2008]. We briefly recap this con-
struction, showing how to calculate the type of abstract
machine configurations for any type in our universe. The
key definition, ∇, computes a bifunctor for each element of
our universe:
∇ : (R : Reg) → (Set → Set → Set)
∇ 0 X Y = ⊥

∇ 1 X Y = ⊥

∇ I X Y = ⊤

∇ (K A) X Y = ⊥

∇ (R ⊕ Q) X Y = ∇ R X Y ⊎ ∇ Q X Y
∇ (R ⊗ Q) X Y = (∇ R X Y × J Q K Y)

⊎ (J R K X × ∇ Q X Y)

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

TyDe’18, September 23–29, 2018, St. Louis, MO, USA Carlos Tomé Cortiñas and Wouter Swierstra

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

This operation generalizes the zippers, by defining a bifunc-
tor ∇ R X Y. You may find it useful to think of the special
case, ∇ R X (µ R) as a configuration of an abstract machine
traversing a tree of type µ R to produce a result of type X.
The last clause of the definition of ∇ is of particular interest:
to dissect a product, we either dissect the left component
pairing it with the second component interpreted over the
second variable Y; or we dissect the second component and
pair it with the first interpreted over X.

A dissection is formally defined as the pair of the one-hole
context and the missing value that can fill the context.

D : (R : Reg) → (X Y : Set) → Set
D R X Y = ∇ R X Y × Y

We can reconstruct Huet’s zipper for generic trees of type
µ R by instantiating both X and Y to µ R.
Given a dissection, we can define a plug operation that

assembles the context and current value in focus to produce
a value of type J R K Y:

plug : (R : Reg) → (X → Y) → D R X Y → J R K Y
plug 0 η (() , x)
plug 1 η (() , x)
plug I η (tt , x) = x
plug (K A) η (() , x)
plug (R ⊕ Q) η (inj1 r , x) = inj1 (plug R η (r , x))
plug (R ⊕ Q) η (inj2 q , x) = inj2 (plug Q η (q , x))
plug (R ⊗ Q) η (inj1 (dr , q) , x) = (plug R η (dr , x) , q)
plug (R ⊗ Q) η (inj2 (r , dq) , x) = (fmap R η r , plug Q η (dq , x))

In the last clause of the definition, the dissection is over the
right component of the pair leaving a value r : J R K X to
the left. In that case, it is only possible to reconstruct a value
of type J R K Y, if we have a function η to recover Ys from
Xs.

In order to ease things later, we bundle a dissection together
with the functor to which it plugs as a type-indexed type.

data Dx (R : Reg) (X Y : Set) (η : X → Y) (tx : J R K Y) : Set where
, : (d : D R X Y) → plug R η d ≡ tx → Dx R X Y η tx

4.3 Generic configurations
While the dissection computes the bifunctor underlying our
configurations, we still need to take a fixpoint of this bifunc-
tor. Each configuration consists of a list of dissections and the
current subtree in focus. To the left of the current subtree in
focus, we store the partial results arising from the subtrees
that we have already processed; on the right, we store the
subtrees that still need to be visited.
As we did for the Stack+ datatype from the introduction,

we also choose to store the original subtrees that have been
visited and their corresponding correctness proofs:

record Computed (R : Reg) (X : Set) (ψ : J R K X → X) : Set where
constructor _,_,_
field

Tree : µ R

Value : X
Proof : cata R ψ Tree ≡ Value

StackG : (R : Reg) → (X : Set) → (ψ : J R K X → X) → Set
StackG R X ψ = List (∇ R (Computed R X ψ) (µ R))

A stack is a list of dissections. To the left we have theComputed
results; to the right, we have the subtrees of type µ R. Note
that the StackG datatype is parametrised by the algebra ψ ,
as the Proof field of the Computed record refers to it.

As we saw in Section 3.5, we can define two different plug
operations on these stacks:

plug-µ⇓ : (R : Reg) → {ψ : J R K X → X }

→ µ R → StackG R X ψ → µ R
plug-µ⇓ R t [] = t
plug-µ⇓ R t (h :: hs) = In (plug R Computed.Tree h (plug-µ⇓ R t hs))

plug-µ⇑ : (R : Reg) → {ψ : J R K X → X }

→ µ R → StackG R X ψ → µ R
plug-µ⇑ R t [] = t
plug-µ⇑ R t (h :: hs) = plug-µ⇑ R (In (plug R Computed.Tree h t)) hs

Both functions use the projection, Computed.Tree, as an
argument to plug to extract the subtrees that have already
been processed.
To define the configurations of our abstract machine, we

are interested in any path through our initial input, but want
to restrict ourselves to those paths that lead to a leaf. But
what constitutes a leaf in this generic setting?

To describe leaves, we introduce the following predicate
NonRec, stating when a tree of type J R K X does not refer
to the variable X, that will be used to represent recursive
subtrees:

data NonRec : (R : Reg) → J R K X → Set where
NonRec-1 : NonRec 1 tt
NonRec-K : (B : Set) → (b : B) → NonRec (K B) b
NonRec-⊕1 : (R Q : Reg) → (r : J R K X)

→ NonRec R r → NonRec (R ⊕ Q) (inj1 r)
NonRec-⊕2 : (R Q : Reg) → (q : J Q K X)

→ NonRec Q q → NonRec (R ⊕ Q) (inj2 q)
NonRec-⊗ : (R Q : Reg) → (r : J R K X) → (q : J Q K X)

→ NonRec R r → NonRec Q q → NonRec (R ⊗ Q) (r , q)

As an example, in the pattern functor for the Expr type,
K N ⊕ (I ⊗ I), terms built using the left injection are non-
recursive:

Val-NonRec : ∀ (n : N) → NonRec (K N ⊕ (I ⊗ I)) (inj1 n)
Val-NonRec : n = NonRec-⊕1 (K N) (I ⊗ I) n (NonRec-K N n)

This corresponds to the idea that the constructor Val is a leaf
in a tree of type Expr.

On the other hand, we cannot prove the predicateNonRec
for terms using the right injection. The occurences of recur-
sive positions disallow us from framing the proof (The type
NonRec does not have a constructor such as NonRec-I : (x :
X) → NonRec I x).

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

From algebra to abstract machine: a verified generic construction TyDe’18, September 23–29, 2018, St. Louis, MO, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

This example also shows how ‘generic‘ leaves can be re-
cursive. As long as the recursion only happens in the functor
layer (code ⊕) and not in the fixpoint level (code I).

Crucially, any non-recursive subtree is independent of X –
as is exhibited by the following coercion function:
coerce : (R : Reg) → (x : J R K X) → NonRec R x → J R K Y

Whose definition is not worth including as it follows directly
by induction over the predicate.
We can now define the notion of leaf generically, as a

substructure without recursive subtrees:
Leaf : Reg → Set → Set
Leaf R X = Σ (J R K X) (NonRec R)

Just as we saw previously, a configuration is now given by
the current leaf in focus and the stack, given by a dissection,
storing partial results and unprocessed subtrees:
ConfigG : (R : Reg) → (X : Set) → (ψ : J R K X → X) → Set
ConfigG R X ψ = Leaf R X × StackG R X ψ

Finally, we can recompute the original tree using a plug
function as before:
plugC-µ⇓ : (R : Reg) {ψ : J R K X → X }

→ ConfigG R X ψ → µ R → Set
plugC-µ⇓ R ((l , isl) , s) t = plug-µ⇓ R (In (coerce l isl)) s t

Note that the coerce function is used to embed a leaf into a
larger tree. A similar function can be defined for the ‘bottom-
up’ zippers, that work on a reversed stack.

4.4 One step of a catamorphism
In order to write a tail-recursive catamorphism, we start by
defining the generic operations that correspond to the func-
tions load and unload given in the introduction (Section 2).

Load The function loadG traverses the input term to find
its leftmost leaf. Any other subtrees the loadG function en-
counters are stored on the stack. Once the loadG function
encounters a constructor without subtrees, it is has found
the desired leaf.
We write loadG by appealing to an ancillary definition

first-cps, that uses continuation-passing style to keep the
definition tail-recursive and obviously structurally recursive.
If we were to try to define loadG by recursion directly, we
would need to find the leftmost subtree and recurse on it –
but this subtree may not be obviously syntactically smaller.

The type of our first-cps function is daunting at first:
first-cps : (R Q : Reg) {ψ : J Q K X → X }

→ J R K (µ Q)
→ (∇ R (Computed Q X ψ) (µ Q) → (∇ Q (Computed Q X ψ) (µ Q)))
→ (Leaf R X → StackG Q X ψ → ConfigG Q X ψ ⊎ X)
→ StackG Q X ψ
→ ConfigG Q X ψ ⊎ X

The first two arguments are codes of type Reg. The code Q
represents the datatype for which we are defining a traversal;
the code R is the code on which we pattern match. In the

initial call to first-cps these two codes will be equal. As we
define our function, we pattern match on R, recursing over
the codes in (nested) pairs or sums – yet we still want to
remember the original code for our data type, Q.

The next argument of type J R K (µ Q) is the data we aim to
traverse. Note that the ‘outermost’ layer is of type R, but the
recursive subtrees are of type µ Q. The next two arguments
are two continuations: the first is used to gradually build the
dissection of R; the second continues on another branch once
one of the leaves have been reached. The last argument of
type StackG Q X ψ is the current stack. The entire function
will compute the initial configuration of our machine of type
ConfigG Q X ψ 6:

loadG : (R : Reg) {ψ : J R K X → X } → µ R
→ StackG R X ψ → ConfigG R X ψ ⊎ X

loadG R (In t) s = first-cps R R t id (λ l → inj1 ◦ _,_ l) s

We shall fill the definition of first-cps by cases. The clauses
for the base cases are as expected. In 0 there is nothing to be
done. The 1 and K A codes consist of applying the second
continuation to the tree and the stack.
first-cps 0 Q ()

first-cps 1 Q x k f s = f (tt , NonRec-1) s
first-cps (K A) Q x k f s = f (x , NonRec-K A x) s

The recursive case, constructor I, corresponds to the occur-
rence of a subtree. The function first-cps is recursively called
over that subtree with the stack incremented by a new ele-
ment that corresponds to the dissection of the functor layer
up to that point. The second continuation is replaced with
the initial one.
first-cps I Q (In x) k f s = first-cps Q Q x id (λ c → inj1 ◦ _,_ c) (k tt :: s)

In the coproduct, both cases are similar, just having to ac-
count for the use of different constructors in the continua-
tions.
first-cps (R ⊕ Q) P (inj1 x) k f s = first-cps R P x (k ◦ inj1) cont s

where cont (l , isl) = f ((inj1 l) , NonRec-⊕1 R Q l isl)
first-cps (R ⊕ Q) P (inj2 y) k f s = first-cps Q P y (k ◦ inj2) cont s

where cont (l , isl) = f ((inj1 l) , NonRec-⊕2 R Q l isl)

The interesting clause is the one that deals with the product.
First the function first-cps is recursively called on the left
component of the pair trying to find a subtree to recurse
over. However, it may be the case that there are no subtrees
at all, thus it is passed as the first continuation a call to
first-cps over the right component of the product. In case
the continuation fails to to find a subtree, it returns the leaf
as it is.
first-cps (R ⊗ Q) P (r , q) k f s = first-cps R P r (k ◦ inj1 ◦ (, q)) cont s

where cont (l , isl) = first-cps Q P q (k ◦ inj2 ◦ _,_ (coerce l isl)) cont’
where cont’ (l’ , isl’) = f (l , l’) (NonRec-⊗ R Q l l’ isl isl’)

6As in the introduction, we use a sum type ⊎ to align its type with that of
unloadG .

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

TyDe’18, September 23–29, 2018, St. Louis, MO, USA Carlos Tomé Cortiñas and Wouter Swierstra

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Unload Armedwith loadG we turn our attention to unloadG .
First of all, it is necessary to define an auxiliary function,
right, that given a dissection and a value (of the type of the
left variables), either finds a dissection D R X Y or it shows
that there are no occurrences of the variable left. In the latter
case, it returns the functor interpreted over Y, J R K Y.

right : (R : Reg) → ∇ R X Y → X → J R K X ⊎ D R X Y

Its definition is simply by induction over the code R, with
the special case of the product that needs to use another
ancillary definition to look for the leftmost occurrence of
the variable position within J R K X.
The function unloadG is defined by induction over the

stack. If the stack is empty the job is done and a final value
is returned. In case the stack has at least one dissection in
its head, the function right is called to check whether there
are any more holes left. If there are none, a recursive call to
unloadG is dispatched, otherwise, if there is still a subtree to
be processed the function loadG is called.

unloadG : (R : Reg)
→ (ψ : J R K X → X)
→ (t : µ R) → (x : X) → cata R ψ t ≡ x
→ StackG R X ψ
→ ConfigG R X ψ ⊎ X

unloadG R ψ t x eq [] = inj2 x
unloadG R ψ t x eq (h :: hs) with right R h (t , x , eq)
unloadG R ψ t x eq (h :: hs) | inj1 r with compute R R r
... | (rx , rr) , eq’ = unloadG R ψ (In rp) (ψ rx) (cong ψ eq’) hs
unloadG R ψ t x eq (h :: hs) | inj2 (dr , q) = loadG R q (dr :: hs)

When the function right returns a inj1 it means that there
are not any subtrees left in the dissection. If we take a closer
look, the type of the r in inj1 r is J R K (Computed R X ψ).
The functor J R K is storing at its variable positions both
values, subtrees and proofs.

However, what is needed for the recursive call is: first, the
functor interpreted over values, J R K X, in order to apply
the algebra; second, the functor interpreted over subtrees,
J R K (µ R), to keep the original subtree where the value
came from; Third, the proof that the value equals to applying
a cata over the subtree. The function computemassages r to
adapt the arguments for the recursive call to unloadG .

4.5 Relation over generic configurations
We can engineer a well-founded relation over elements of
type ConfigG

⇓
t, for some concrete tree t : µ R, by explicitly

separating the functorial layer from the recursive layer in-
duced by the fixed point. At the functor level, we impose the
order over dissections of R, while at the fixed point level we
define the order by induction over the stacks.
To reduce clutter in the definition, we give a non type-

indexed relation over terms of type ConfigG . We can later
use the same technique as in Section 3.4 to recover a fully
type-indexed relation over elements of type ConfigG

⇓
t by re-

quiring that the zippers respect the invariant, plugC-µ⇓ c ≡ t.

The relation is defined by induction over the StackG part of
the zippers as follows.

data _<C_ : ConfigG R X ψ → ConfigG R X ψ → Set where
Step : (t1 , s1) <C (t2 , s2) → (t1 , h :: s1) <C (t2 , h :: s2)

Base : plugC-µ⇓ R (t1 , s1) ≡ e1 → plugC-µ⇓ R (t2 , s2) ≡ e1
→ (h1 , e1) <∇ (h2 , e2) → (t1 , h1 :: s1) <C (t2 , h2 :: s2)

This relation has two constructors:
• The Step constructor covers the inductive case. When
the head of both stacks is the same, i.e., both ConfigGs
share the same prefix, it recurses directly on tail of
both stacks.

• The constructor Base accounts for the case when the
head of the stacks is different. This means that the
paths given by the configuration denotes different sub-
trees of the same node. In that case, the relation we are
defining relies on an auxiliary relation ⌞_⌟_<∇_ that
orders dissections of typeD R (Computed R X ψ) (µ R).

We can define this relation on dissections directly, without
having to consider the recursive nature of our datatypes. We
define the required relation over dissections interpreted on
any sets X and Y as follows:

data ⌞_⌟_<∇_ : (R : Reg) → D R X Y → D R X Y → Set where
step-⊕1 : ⌞ R ⌟ (r , t1) <∇ (r’ , t2)

→ ⌞ R ⊕ Q ⌟ (inj1 r , t1) <∇ (inj1 r’ , t2)

step-⊕2 : ⌞ Q (q , t2) <∇ (q’ , t2)
→ ⌞ R ⊕ Q ⌟ (inj2 q , t1) <∇ (inj2 q’ , t2)

step-⊗1 : ⌞ R ⌟ (dr , t1) <∇ (dr’ , t2)
→ ⌞ R ⊗ Q ⌟ (inj1 (dr , q) , t1) <∇ (inj1 (dr’ , q) , t2)

step-⊗2 : ⌞ Q ⌟ (dq , t1) <∇ (dq’ , t2)
→ ⌞ R ⊗ Q ⌟ (inj2 (r , dq) , t1) <∇ (inj2 (r , dq’) , t2)

base-⊗ : ⌞ R ⊗ Q ⌟ (inj2 (r , dq) , t1) <∇ (inj1 (dr , q) , t2)

The idea is that we order the elements of a dissection in a
left-to-right fashion. All the constructors except for base-⊗
simply follow the structure of the dissection. To define the
base case, base-⊗, recall that the dissection of the product of
two functors, R ⊗ Q, has two possible values. It is either a
term of type ∇ R X Y × J Q K Y, such as inj1 (dr , q) or a
term of type J R K X × ∇ Q X Y like inj2 (r , dq). The former
denotes a position in the left component of the pair while
the latter denotes a position in the right component. The
base-⊗ constructor states that positions in right are smaller
than those in the left.
This completes the order relation on configurations; we

still need to prove our relation is well-founded. To prove this,
we write a type-indexed version of each relation. The first
relation, _<C_, has to be type-indexed by the tree of type
µ R to which both zipper recursively plug through plugC-µ⇓.
The auxiliary relation, ⌞_⌟_<∇_, needs to be type-indexed
by the functor of type J R K X to which both dissections plug:

data ⌞_⌟⌞_⌟_<∇_ {X Y : Set } {η : X → Y } : (R : Reg) → (tx : J R K Y)
→ Dx R X Y η tx → Dx R X Y η tx → Set where

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

From algebra to abstract machine: a verified generic construction TyDe’18, September 23–29, 2018, St. Louis, MO, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

data ⌞_⌟⌞_⌟_<C⇓
_ {X : Set } (R : Reg) {ψ : J R K X → X } : (t : µ R)

→ ConfigG
⇓

R X ψ t → ConfigG
⇓

R X ψ t → Set where

The proof ofwell-foundedness of ⌞_⌟⌞_⌟_<C
⇓

_ is a straight-
forward generalization of proof given for the example in
Section 3.3. The full proof of the following statement can
found in the accompanying code:
<C-WF : (R : Reg) → (t : µ R) → Well-founded (⌞ R ⌟⌞ t ⌟_<C⇓

_)

4.6 A generic tail-recursive machine
We are now ready to define a generic tail-recursive machine.
To do so we now assemble the generic machinery we have
defined so far. We follow the same outline as in Section 3.4.
The first point is to build a wrapper around the function

unloadG that performs one step of the catamorphism. The
function stepG statically enforces that the input tree remains
the same both in its argument and in its result.
stepG : (R : Reg) → (ψ : J R K X → X) → (t : µ R)

→ ConfigG
⇑

R X ψ t → ConfigG
⇑

R X ψ t ⊎ X

We omit the full definition. The function stepG performs
a call to unloadG , coercing the leaf of type J R K X in the
ConfigG

⇓
argument to a generic tree of type J R K (µ R).

We show that unloadG preserves the invariant, by proving
the following lemma:
unload-plugG

⇑
: ∀ (R : Reg) {ψ : J R K X → X }

→ (t : µ R) (x : X) (eq : cata R ψ t ≡ x) (s : StackG R X ψ)

→ (c : ConfigG R X ψ)

→ ∀ (e : µ R) → plug-µ⇑ R t s ≡ e
→ unloadG R ψ t x eq s ≡ inj1 c → plug-µ⇑ R c ≡ e

Next, we show that applying the function stepG to a con-
figuration of the abstract machine produces a smaller config-
uration. As the function stepG is a wrapper over the unloadG
function, we only have to prove that the property holds for
unloadG .
The unloadG function does two things. First, it calls the

function right to check whether the dissection has any more
recursive subtrees to the right that still have to be processed.
It then dispatches to either loadG , if there is, or recurses
otherwise. When there is a hole left, a new dissection is re-
turned by right. Thus showing that the new configuration
is smaller amounts to show that the dissection returned by
right is smaller by ⌞_⌟_<∇_. This amounts to proving the
following lemma:
right-< : right R dr (t , y , eq) ≡ inj2 (dr’ , t’)

→ ⌞ R ⌟ ((dr’ , t’)) <∇ ((dr , t))

We have simplified the type signature, leaving out the uni-
versally quantified variables and their types.

Extending this result to show that the function unloadG

delivers a smaller value is straightforward. By induction over
the input stack we check if the traversal is done or not. If it
is not yet done, there is at least one dissection in the top of
the stack. The function right applied to that element returns
either a smaller dissection or a tree with all values on the

leaves. If we obtain a new dissection, we use the right-<
lemma; in the latter case, we continue by induction over the
stack. In this fashion, we can prove the following statement
that our traversal decreases:
stepG -< : (R : Reg) (ψ : J R K X → X) → (t : µ R)

→ (c1 c2 : ConfigG
⇑

R X ψ t)
→ stepG R ψ t c1 ≡ inj1 c2 → ⌞ R ⌟⌞ t ⌟ c2 _<C_ c1

Finally, we canwrite the tail-recursivemachine, tail-rec-cata,
as the combination of an auxiliary recursor over the acces-
sibility predicate and a top-level function that initiates the
computation with suitable arguments:
rec : (R : Reg) (ψ : J R K X → X) (t : µ R)

→ (c : ConfigG
⇑

R X ψ t)
→ Acc (⌞ R ⌟⌞ t ⌟_<C⇓

_) (ConfigG
⇑
-to-ConfigG

⇓
c) → X

rec R ψ t c (acc rs) with stepG R ψ t c | inspect (stepG R ψ t) c
... | inj1 z′ | [Is] = rec R ψ t z′ (rs z′ (stepG -< R ψ t c z′ Is))
... | inj2 x | [] = x

tail-rec-cata : (R : Reg) → (ψ : J R K X → X) → µ R → X
tail-rec-cata R ψ x with loadG R ψ x []
... | inj1 c = rec R ψ (c , ...) (<C-WF R c)

4.7 Correctness, generically
To prove our tail-recursive evaluator produces the same out-
put as the catamorphism is straight-forward. As we did in
the tail-rec-eval example (Section 3.5), we perform induction
over the accessibility predicate in the auxiliary recursor. In
the base case, when the function stepG returns a ground
value of type X, we have to show that such value is the result
of applying the catamorphism to the input. Recall that stepG
is a wrapper around unloadG , hence it suffices to prove the
following lemma:
unloadG -correct : ∀ (R : Reg) (ψ : J R K X → X)

(t : µ R) (x : X) (eq : cata R ψ t ≡ x)
(s : StackG R X ψ) (y : X)

→ unloadG R ψ t x eq s ≡ inj2 y
→ ∀ (e : µ R) → plug-µ⇑ R t s ≡ e → cata R ψ e ≡ y

Our generic correctness result is an immediate consequence:
correctnessG : ∀ (R : Reg) (ψ : J R K X → X) (t : µ R)

→ cata R ψ t ≡ tail-rec-cata R ψ t

4.8 Example
To conclude, we show how to generically implement the ex-
ample from the introduction (Section 1), and how the generic
construction gives us a correct tail-recursive machine for free.
First, we recap the pattern functor underlying the type Expr:
exprF : Reg
exprF = K N ⊕ (I ⊗ I)

The Expr type is then isomorphic to tying the knot over
exprF:
ExprG : Set
ExprG = µ exprF

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

TyDe’18, September 23–29, 2018, St. Louis, MO, USA Carlos Tomé Cortiñas and Wouter Swierstra

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

The function eval is equivalent to instantiating the catamor-
phism with an appropriate algebra:
ψ : exprF N → N

ψ (inj1 n) = n
ψ (inj2 (e1 , e2)) = e1 + e2

eval : ExprG → N

eval = cata exprF ψ

Finally, a tail-recursive machine equivalent to the one we
derived in Section 3.4, tail-rec-eval, is given by:
tail-rec-evalG : ExprG → N

tail-rec-evalG = tail-rec-cata exprF ψ

5 Discussion
There is a long tradition of calculating abstract machines
from an evaluator, dating back as far as early work on the
abstract machines for the evaluation of lambda calculus
terms [Landin 1964]. In particular, Danvy[Ager et al. 2003;
Danvy 2009] has published many examples showing how ab-
stract machines arise from defunctionalizing an interpreter
written in continuation-passing style. This work in turn, in-
spired McBride’s work on dissections [2008], that defines
the key constructions on which this paper builds. McBride’s
work, however, does not give a proof of termination or cor-
rectness.
The universe of regular types used in this paper is some-

what restricted: we cannot represent mutually recursive
types [Yakushev et al. 2009], nested data types [Bird and
Meertens 1998], indexed families [Dybjer 1994], or inductive-
recursive types [Dybjer and Setzer 1999]. Fortunately, there
is a long tradition of generic programming with universes in
Agda, arguably dating back to Martin-Löf [1984]. It would
be worthwhile exploring how to extend our construction
to more general universes, such as the context-free types [Al-
tenkirch et al. 2007], containers [Abbott et al. 2005; Altenkirch
et al. 2015], or the ‘sigma-of-sigma’ universe [Chapman et al.
2010; Oury and Swierstra 2008]. Doing so would allow us to
exploit dependent types further in the definition of our eval-
uators. For example, we might then define an interpreter for
the well-typed lambda terms and derive a tail recursive eval-
uator automatically, rather than verifying the construction
by hand [Swierstra 2012].

The termination proofwe have given defines awell-founded
relation and shows that this decreases during execution.
There are other techniques for writing functions that are not
obviously structurally recursive, such as the Bove-Capretta
method [Bove and Capretta 2005], partiality monad [Daniels-
son 2012], or coinductive traces [Nakata and Uustalu 2009].
In contrast to the well-founded recursion used in this paper,
however, these methods do not yield an evaluator that is
directly executable, but instead defer the termination proof.
Given that we can – and indeed have – shown termination of
our tail-recursive abstract machines, the abstract machines
are executable directly in Agda.

One drawback of our construction is that the stacks now
not only store the value of evaluating previously visited sub-
trees, but also records the subtrees themselves. Clearly this
is undesirable for an efficient implementation. It would be
worth exploring if these subtrees may be made computation-
ally irrelevant – as they are not needed during execution, but
only used to show termination and correctness. One viable
approach might be porting the development to Coq, where it
is possible to make a clearer distinction between values used
during execution and the propositions that may be erased.

References
Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers:

constructing strictly positive types. Theoretical Computer Science 342, 1
(2005), 3–27.

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and JanMidtgaard. 2003. A
Functional Correspondence Between Evaluators and Abstract Machines.
In Proceedings of the 5th ACM SIGPLAN International Conference on
Principles and Practice of Declaritive Programming (PPDP ’03). ACM, New
York, NY, USA, 8–19. https://doi.org/10.1145/888251.888254

Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter
Morris. 2015. Indexed containers. Journal of Functional Programming 25
(2015).

Thorsten Altenkirch and Conor McBride. 2003. Generic programming
within dependently typed programming. In Generic Programming.
Springer, 1–20.

Thorsten Altenkirch, Conor Mcbride, and Peter Morris. 2007. Generic
Programming with Dependent Types. In Spring School on Datatype-
Generic Programming, Roland Backhouse, Jeremy Gibbons, Ralf Hinze,
and Johan Jeuring (Eds.). LNCS, Vol. 4719. Springer-Verlag.

Richard Bird and Lambert Meertens. 1998. Nested datatypes. In International
Conference on Mathematics of Program Construction. Springer, 52–67.

Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in
type theory. Mathematical Structures in Computer Science 15, 4 (2005),
671–708.

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris.
2010. The Gentle Art of Levitation. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP
’10). ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/1863543.
1863547

Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality
Monad. In Proceedings of the 17th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’12). ACM, New York, NY, USA, 127–
138. https://doi.org/10.1145/2364527.2364546

Olivier Danvy. 2009. From Reduction-Based to Reduction-Free Normalization.
Springer Berlin Heidelberg, Berlin, Heidelberg, 66–164. https://doi.org/
10.1007/978-3-642-04652-0_3

Peter Dybjer. 1994. Inductive families. Formal Aspects of Computing 6, 4 (01
Jul 1994), 440–465. https://doi.org/10.1007/BF01211308

Peter Dybjer and Anton Setzer. 1999. A Finite Axiomatization of Inductive-
Recursive Definitions. In Typed Lambda Calculi and Applications, Jean-
Yves Girard (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 129–
146.

Gérard Huet. 1997. The zipper. Journal of functional programming 7, 5
(1997), 549–554.

Peter J Landin. 1964. The mechanical evaluation of expressions. Comput. J.
6, 4 (1964), 308–320.

Per Martin-Löf. 1984. Intuitionistic type theory. Vol. 9. Bibliopolis Napoli.
Conor McBride. 2008. Clowns to the Left of Me, Jokers to the Right

(Pearl): Dissecting Data Structures. In Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’08). ACM, New York, NY, USA, 287–295. https://doi.org/

12

https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1007/978-3-642-04652-0_3
https://doi.org/10.1007/978-3-642-04652-0_3
https://doi.org/10.1007/BF01211308
https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1145/1328438.1328474

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

From algebra to abstract machine: a verified generic construction TyDe’18, September 23–29, 2018, St. Louis, MO, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

10.1145/1328438.1328474
Peter Morris, Thorsten Altenkirch, and Conor McBride. 2006. Explor-

ing the Regular Tree Types. In Types for Proofs and Programs (TYPES
2004) (Lecture Notes in Computer Science), Christine Paulin-Mohring
Jean-Christophe Filliatre and Benjamin Werner (Eds.).

Keiko Nakata and Tarmo Uustalu. 2009. Trace-based coinductive operational
semantics for while. In International Conference on Theorem Proving in
Higher Order Logics. Springer, 375–390.

Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring,
and Bastiaan Heeren. 2008. A Lightweight Approach to Datatype-generic
Rewriting. In Proceedings of the ACM SIGPLAN Workshop on Generic
Programming (WGP ’08). ACM, New York, NY, USA, 13–24. https://doi.
org/10.1145/1411318.1411321

Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Ph.D. Dissertation. Chalmers University of Technology.

Ulf Norell. 2008. Dependently typed programming in Agda. In International
School on Advanced Functional Programming. Springer, 230–266.

Nicolas Oury and Wouter Swierstra. 2008. The Power of Pi. In Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’08). ACM, New York, NY, USA, 39–50. https:
//doi.org/10.1145/1411204.1411213

Wouter Swierstra. 2012. From Mathematics to Abstract Machine: A
formal derivation of an executable Krivine machine. In Proceedings
Fourth Workshop on Mathematically Structured Functional Program-
ming, MSFP@ETAPS 2012, Tallinn, Estonia, 25 March 2012. 163–177.
https://doi.org/10.4204/EPTCS.76.10

Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan
Jeuring. 2009. Generic Programming with Fixed Points for Mutually Re-
cursive Datatypes. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’09). ACM, New York, NY,
USA, 233–244. https://doi.org/10.1145/1596550.1596585

13

https://doi.org/10.1145/1328438.1328474
https://doi.org/10.1145/1411318.1411321
https://doi.org/10.1145/1411318.1411321
https://doi.org/10.1145/1411204.1411213
https://doi.org/10.1145/1411204.1411213
https://doi.org/10.4204/EPTCS.76.10
https://doi.org/10.1145/1596550.1596585

	Abstract
	1 Introduction
	2 Termination and tail-recursion
	3 Well-founded tree traversals
	3.1 Invariant preserving configurations
	3.2 Up and down configurations
	3.3 Ordering configurations
	3.4 A terminating and correct tail-recursive evaluator
	3.5 Correctness

	4 A generic tail-recursive traversal
	4.1 The regular universe
	4.2 Dissection
	4.3 Generic configurations
	4.4 One step of a catamorphism
	4.5 Relation over generic configurations
	4.6 A generic tail-recursive machine
	4.7 Correctness, generically
	4.8 Example

	5 Discussion
	References

