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Abstract
Many functions over algebraic datatypes can be expressed in
terms of a fold. Doing so, however, has one notable drawback:
folds are not tail-recursive. As a result, a function defined in
terms of a fold may raise a stack overflow when executed.
This paper defines a datatype generic, tail-recursive higher-
order function that is guaranteed to produce the same result
as the fold. Doing so combines the compositional nature of
folds and the performance benefits of a hand-written tail-
recursive function in a single setting.

Keywords datatype generic programming, catamorphisms,
dissection, dependent types, Agda, well-founded recursion

1 Introduction
Folds, or catamorphisms, are a pervasive programming pat-
tern. Folds generalize many simple traversals over algebraic
data types. Functions implemented by means of a fold are
both compositional and structurally recursive. Consider, for
instance, the following expression datatype, written in the
programming language Agda [Norell 2007]:

data Expr : Set where
Val : N → Expr
Add : Expr → Expr → Expr

We can write a simple evaluator, mapping expressions to
natural numbers, as follows:

eval : Expr → N

eval (Val n) = n
eval (Add e1 e2) = eval e1 + eval e2

In the case for Add e1 e2, the eval function makes two re-
cursive calls and sums their results. Such a function can be
implemented using a fold, passing the addition and identity
functions as the argument algebra.

fold : (N → X) → (X → X → X) → Expr → X
fold ϕ1 ϕ2 (Val n) = ϕ1 n
fold ϕ1 ϕ2 (Add e1 e2) = ϕ2 (fold ϕ1 ϕ2 e1) (fold ϕ1 ϕ2 e2)

eval : Expr → N

eval = fold id _+_

TyDe’18, September 23–29, 2018, St. Louis, MO, USA
2018.

Unfortunately, not everything in the garden is rosy. The
operator _+_ needs both of its parameters to be fully evalu-
ated before it can reduce further. As a result, the size of the
stack used during execution grows linearly with the size of
the input, potentially leading to a stack overflow on large
inputs.
To address this problem, we can manually rewrite the

evaluator to be tail-recursive. Modern compilers typically
map tail-recursive functions to machine code that runs in
constant memory. To write such a tail-recursive function, we
need to introduce an explicit stack storing both intermediate
results and the subtrees that have not yet been evaluated.
data Stack : Set where

Top : Stack
Left : Expr → Stack → Stack
Right : N → Stack → Stack

We can define a tail-recursive evaluation function bymeans
of a pair of mutually recursive functions, load and unload.
The load function traverses the expressions, pushing sub-
trees on the stack; the unload function unloads the stack,
while accumulating a (partial) result.
mutual

load : Expr → Stack → N

load (Val n) stk = unload+ n stk

load (Add e1 e2) stk = load e1 (Left e2 stk)

unload+ : N → Stack → N

unload v Top = v

unload v (Right v’ stk) = unload+ (v’ + v) stk

unload v (Left r stk) = load r (Right v stk)

We can now define a tail-recursive version of eval by call-
ing load with an initially empty stack:
tail-rec-eval : Expr → N

tail-rec-eval e = load e Top

Implementing this tail-recursive evaluator comes at a
price: Agda’s termination checker flags the load and unload
functions as potentially non-terminating by highlighting
them orange . Indeed, in the very last clause of the unload
function a recursive call is made to arguments that are not
syntactically smaller. Furthermore, it is not clear at all that
the tail-recursive evaluator produces the same result as our
original one. It is precisely these issues that this paper tackles
by making the following novel contributions:

1
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• We give a verified proof of termination of tail-rec-eval
using a carefully chosen well-founded relation (Sec-
tions 2 and 3). After redefining tail-rec-eval using this
relation, we can prove the two evaluators equal in
Agda.

• We generalize this relation and its corresponding proof
of well-foundedness, inspired by McBride’s work on
dissections [McBride 2008], to show how to calculate an
abstract machine from an algebra. To do so, we define
a universe of algebraic data types and a generic fold
operation (Section 4). Subsequently we show how to
turn any structurally recursive function defined using
a fold into its tail-recursive counterpart.

• Finally, we present how our proofs of termination and
semantics preservation from our example are general-
ized to the generic fold (Sections 4.6 and 4.7).

Together these results give a verified function that computes
a tail-recursive traversal from any algebra for any algebraic
datatype. All the constructions and proofs presented in this
paper have been implemented in and checked by Agda. The
corresponding code is freely available online.1

2 Termination and tail-recursion
Before tackling the generic case, we will present the termi-
nation and correctness proof for the tail-recursive evaluator
presented in the introduction in some detail.
The problematic call for Agda’s termination checker is

the last clause of the unload function, that calls load on the
expression stored on the top of the stack. From the definition
of load, it is clear that we only ever push subtrees of the
input on the stack. However, the termination checker has
no reason to believe that the expression at the top of the
stack is structurally smaller in any way. Indeed, if we were
to redefine load as follows:

load (Add e1 e2) stk = load e1 (Left (f e2) stk)

we might use some function f : Expr → Expr to push
arbitrary expressions on the stack, potentially leading to
non-termination.

The functions load and unload use the stack to store sub-
trees and partial results while folding the input expression.
Thus, every node in the original tree is visited twice dur-
ing the execution: first when the function load traverses the
tree, until it finds the leftmost leaf; second when unload in-
spects the stack in searching of an unevaluated subtree. This
process is depicted in Figure 1.
As there are finitely many nodes on a tree, the depicted

traversal using load and unload must terminate – but how
can we convince Agda’s termination checker of this?

As a first approximation, we revise the definitions of load
and unload. Rather than consuming the entire input in one

1https://github.com/carlostome/Dissection-thesis

Add

Add

Val 3 Add

Val 7 Val 1

Add

Val 2 Val 0

Figure 1. Traversing a tree with load and unload

go with a pair of mutually recursive functions, we rewrite
them to compute one ‘step’ of the fold.

The function unload is defined by recursion over the stack
as before, but with one crucial difference. Instead of always
returning the final result, it may also2 return a new configu-
ration of our abstract machine, that is, a pair N × Stack:
unload : N → Stack → (N × Stack) ⊎ N

unload v Top = inj2 v
unload v (Right v’ stk) = unload (v’ + v) stk
unload v (Left r stk) = load r (Right v stk)

The other key difference arises in the definition of load:
load : Expr → Stack → (N × Stack) ⊎ N

load (Val n) stk = inj1 (n , stk)
load (Add e1 e2) stk = load e1 (Left e2 stk)

Rather than calling unload upon reaching a value, it returns
the current stack and the value of the leftmost leaf. Even
though the function never returns an inj2, its type is aligned
with the type of unload so the definition of both functions
resembles an an abstract machine more closely.

Both these functions are now accepted by Agda’s termina-
tion checker as they are clearly structurally recursive.We can
use both these functions to define the following evaluator3:
tail-rec-eval : Expr → N

tail-rec-eval e with load e Top
... | inj1 (n , stk) = rec (n , stk)
where

rec : (N × Stack) → N

rec (n , stk) with unload n stk
... | inj1 (n’ , stk’) = rec (n’ , stk’)
... | inj2 r = r

Here we use load to compute the initial configuration of
our machine – that is, it finds the leftmost leaf in our initial
expression and its associated stack.We proceed by repeatedly
calling unload until it returns a value. This version of our
evaluator, however, does not pass the termination checker.
The new state, (n’ , stk’), is not structurally smaller than the
initial state (n , stk). If wework under the assumption that we
2⊎ is Agda’s type of disjoint union.
3We ignore load’s impossible case, it can always be discharged with
⊥-elim : ∀ {X : Set } → ⊥ → X.

2
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have a relation between the states N × Stack that decreases
after every call to unload and a proof that the relation is well-
founded – we know this function will terminate eventually.
We now define the following version of the tail-recursive
evaluator:

tail-rec-eval : Expr → N

tail-rec-eval e with load e Top

... | inj1 (n , stk) = rec (n , stk)
e

1

where
rec : (c : N × Stack) → Acc _<_ c → N

rec (n , stk) (acc rs) with unload n stk

... | inj1 (n’ , stk’) = rec (n’ , stk’) (rs
e

2 )

... | inj2 r = r

To complete this definition, we still need to define a suit-
able relation _<_ between configurations of type N × Stack,
prove the relation to bewell-founded (

e
1 : Acc _<_ (n , stk))

and show that the calls to unload produce ‘smaller’ states
(
e

2 : (n’ , stk’) < (n , stk)). In the next section, we will
define such a relation and prove it is well-founded.

3 Well-founded tree traversals
The type of configurations of our abstract machine can be
seen as a variation of Huet’s zippers [1997]. The zipper asso-
ciated with an expression e : Expr is pair of a (sub)expression
of e and its context. As demonstrated by McBride [2008], the
zippers can be generalized further to dissections, where the
values to the left and right of the current subtree may have
different types. It is precisely this observation that we will ex-
ploit when considering the generic tail-recursive traversals
in the later sections; for now, however, we will only rely on
the intuition that the configurations of our abstract machine,
given by the type N × Stack, are an instance of dissections,
corresponding to a partially evaluated expression:

Config : Set
Config = N × Stack

These configurations, are more restrictive than dissections
in general. In particular, the configurations presented in
the previous section only ever denote a leaf in the input
expression.
The tail-recursive evaluator, tail-rec-eval processes the

leaves of the input expression in a left-to-right fashion. The
leftmost leaf – that is the first leaf found after the initial
call to load – is the greatest element; the rightmost leaf is
the smallest. In our example expression from Section 1, we
would number the leaves as follows:

This section aims to formalize the relation that orders
elements of the Config type (that is, the configurations of
the abstract machine) and prove it is well-founded. However,
before doing so there are two central problems with our
choice of Config datatype:

Add

Add

Val 3

5

Add

Val 7

4

Val 1

3

Add

Val 2

2

Val 0

1

Figure 2. Numbered leaves of the tree

1. The Config datatype is too liberal. As we evaluate our
input expression the configuration of our abstract ma-
chine changes constantly, but satisfies one important
invariant: each configuration is a decomposition of the
original input. Unless this invariant is captured, we
will be hard pressed to prove the well-foundedness of
any relation defined on configurations.

2. The choice of the Stack datatype, as a path from the
leaf to the root is convenient to define the tail-recursive
machine, but impractical when defining the coveted
order relation. The top of a stack stores information
about neighbouring nodes, but to compare two leaves
we need global information about their positions rela-
tive to the root.

We will now address these limitations one by one. Firstly,
by refining the type of Config, we will show how to capture
the desired invariant (Section 3.1). Secondly, we explore a
different representation of stacks, as paths from the root,
that facilitates the definition of the desired order relation
(Section 3.2). Finally we will define the relation over con-
figurations, Section 3.3, and sketch the proof that it is well-
founded.

3.1 Invariant preserving configurations
A value of type Config denotes a leaf in our input expression.
In the previous example, the following Config corresponds
to the third leaf:
As we observed previously, we would like to refine the

typeConfig to capture the invariant that execution preserves:
every Config denotes a unique leaf in our input expression,
or equivalently, a state of the abstract machine that computes
the fold. There is one problem still: the Stack datatype stores
the values of the subtrees that have been evaluated, but
does not store the subtrees themselves. In the example in
Figure 3, when the traversal has reached the third leaf, all
the subexpressions to its left have been evaluated.

In order to record the necessary information, we redefine
the Stack type as follows:

data Stack+ : Set where
Left : Expr → Stack+ → Stack+

3
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Right 7, Right 3, Left1 ,
Add

Val 2 Val 0

Figure 3. Example: Configuration of leaf number 3

Right : (n : N) → (e : Expr) → eval e ≡ n → Stack+ → Stack+

Top : Stack+

The Right constructor now not only stores the value n, but
also records the subexpression e and the proof that e evalu-
ates to n. Although we are modifying the definition of the
Stack data type, we claim that the expression e and equal-
ity are not necessary at run-time, but only required for the
proof of well-foundedness – a point we will return to in our
discussion (Section 5). From now onwards, the type Config
uses Stack+ as its right component:
Config = N × Stack+

The function unload was previously defined by induction
over the stack (Section 2), thus, it needs to be modified to
work over the new type of stacks, Stack+:
unload+ : (n : N) → (e : Expr) → eval e ≡ n → Stack+

→ Config ⊎ N

unload+ n e eq Top = inj2 n
unload+ n e eq (Left e′ stk) = load e′ (Right n e eq stk)
unload+ n e eq (Right n’ e′ eq′ stk)
= unload+ (n’ + n) (Add e′ e) (cong2 _+_ eq′ eq) stk

A value of type Config contains enough information to
recover the input expression. This is analogous to the plug
operation on zippers:
plug⇑ : Expr → Stack+ → Expr
plug⇑ e Top = e
plug⇑ e (Left t stk) = plug⇑ (Add e t ) stk
plug⇑ e (Right t stk) = plug⇑ (Add t e) stk

plugC⇑ : Config → Expr
plugC⇑ (n , stk) = plug⇑ (Val n) stk

Any two terms of type Configmay still represent states of
a fold over two entirely different expressions. As we aim to
define an order relation comparing configurations during the
fold of the input expression, we need to ensure that we only
ever compare configurations within the same expression.
We can statically enforce such requirement by defining a
new wrapper data type over Config that records the original
input expression:

data Config⇑ (e : Expr) : Set where
_,_ : (c : Config) → plugC⇑ c ≡ e → Config⇑ e

For a given expression e : Expr, any two terms of type
Config⇑ e are configurations of the same abstract machine
during the tail-recursive fold over the expression e.

3.2 Up and down configurations
Next, we would like to formalize the left-to-right order on
the configurations of our abstract machine. The Stack in the
Config represents a path upwards, from the leaf to the root
of the input expression. This is useful when navigating to
neighbouring nodes, but makes it harder to compare the
relative positions of two configurations. We now consider
the value of Config corresponding to leaves with numbers 3
and 4 in our running example:

Right 7, Right 3, Left1 ,
Add

Val 2 Val 0

Left Right 3, Left7 ,
Add

Val 2 Val 0
Val 1,

Figure 4. Comparison of configurations for leaves 3 and 4

The natural way to define the desired order relation is
by induction over the Stack. However, there is a problem.
The first element of both stacks does not provide us with
sufficient information to decide which position is ‘smaller.’
The top of the stack only stores information about the lo-
cation of the leaf with respect to its parent node. This kind
of local information cannot be used to decide which one of
the leaves is located in a position further to the right in the
original input expression.
Instead, we would like to compare the last elements of

both stacks. The common suffix of the stacks shows that both
positions are in the left subtree of the root. Once these paths
– read from right to left – diverge, we have found the exact
node Add where one of the positions is in the left subtree
and the other in the right.
When comparing two Stacks, we therefore want to con-

sider them as paths from the root. Fortunately, this obser-
vation does not require us to change our definition of the
Stack type; instead, we can define a variant of the plug⇑
function that interprets our contexts top-down rather than
bottom-up:

plug⇓ : Expr → Stack+ → Expr
plug⇓ e Top = e
plug⇓ e (Left t stk) = Add (plug⇓ e stk) t
plug⇓ e (Right t stk) = Add t (plug⇓ e stk)

plugC⇓ : Config → Expr
plugC⇓ (n , stk) = plug⇓ (Val n) stk

4
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We can convert freely between these two interpretations by
reversing the stack. Furthermore, this conversion satisfies the
plug⇓-to-plug⇑ property, relating the two variants of plug:
convert : Config → Config
convert (n , s) = (n , reverse s)

plug⇓-to-plug⇑ : ∀ (c : Config)
→ plugC⇓ c ≡ plugC⇑ (convert c)

As before, we can create a wrapper around Config that en-
forces that our Config denotes a leaf in the input expression
e:
data Config⇓ (e : Expr) : Set where
_,_ : (c : Config) → plugC⇓ c ≡ e → Config⇓ e

As a corollary of the plug⇓-to-plug⇑ property, we can define
a pair of functions to switch between Config⇑ and Config⇓:
Config⇓-to-Config⇑ : (e : Expr) → Config⇓ e → Config⇑ e

Config⇑-to-Config⇓ : (e : Expr) → Config⇑ e → Config⇓ e

3.3 Ordering configurations
Finally, we can define the ordering relation over values of
type Config⇓. Even if the Config⇑ is still used during execu-
tion of our tail-recursive evaluator, the Config⇓ type will be
used to prove its termination.

The ⌞_⌟_<_ type defined below relates two configurations
of type Config⇓ e, that is, two states of the abstract machine
evaluating the input expression e:
data ⌞_⌟_<_ : (e : Expr) → Config⇓ e → Config⇓ e → Set where
<-StepR : ⌞ r ⌟ ((t1 , s1) , ...) < ((t2 , s2) , ...)

→ ⌞ Add l r ⌟ ((t1 , Right l n eq s1) , eq1) < ((t2 , Right l n eq s2) , eq2)
<-StepL : ⌞ l ⌟ ((t1 , s1) , ...) < ((t2 , s2) , ...)

→ ⌞ Add l r ⌟ ((t1 , Left r s1) , eq1) < ((t2 , Left r s2) , eq2)

<-Base : (eq1 : Add e1 e2 ≡ Add e1 (plugC⇓ t1 s1))
→ (eq2 : Add e1 e2 ≡ Add (plugC⇓ t2 s2) e2)
→ ⌞ Add e1 e2 ⌟ ((t1 , Right n e1 eq s1) , eq1) < ((t2 , Left e2 s2) , eq2)

Despite the apparent complexity, the relation is straight-
forward. The constructors <-StepR and <-StepL cover the
inductive cases, consuming the shared path from the root.
When the paths diverge, the <-Base constructor states that
the positions in the right subtree are ‘smaller than’ those in
the left subtree.

Nowwe turn into showing that the relation iswell-founded.
We sketch the proof below:
<-WF : ∀ (e : Expr) → Well-founded (⌞ e ⌟_<_)
<-WF e x = acc (aux e x)

where
aux : ∀ (e : Expr) (x y : Config⇓ e)

→ ⌞ e ⌟ y < x → Acc (⌞ e ⌟_<_) y
aux = ...

The proof follows the standard schema4 of most proofs of
well-foundedness. It uses an auxiliary function, aux, that
proves every configuration smaller than x is accessible.
4Most well-founded proofs in Agda standard library follow this pattern.

The proof proceeds initially by induction over our rela-
tion. The inductive cases, corresponding to the <-StepR and
<-StepL constructors, recurse on the relation. In the base
case, <-Base, we cannot recurse further on the relation. We
then proceed by recursing over the original expression e;
without the type index, the subexpressions to the left e1 and
right e2 are not syntactically related thus a recursive call is
not possible. This step in the proof relies on only compar-
ing configurations arising from traversing the same initial
expression e.

3.4 A terminating and correct tail-recursive
evaluator

We now have almost all the definitions in place to revise
our tail-recursive fold, tail-rec-eval. However, we are miss-
ing one essential ingredient: we still need to show that the
configuration decreases after a call to the unload+ function.

Unfortunately, the function unload+ and the relation that
we have defined work on ‘different’ versions of the Stack: the
relation compares stacks top-down; the unload+ function
manipulates stacks bottom-up. Furthermore, the function
unload+ as defined previously manipulates elements of the
Config type directly, with no further type-level constraints
relating these to the original input expression.
In the remainder of this section, we will reconcile these

differences, complete the definition of our tail-recursive eval-
uator and finally prove its correctness.

Decreasing recursive calls To define our tail-recursive
evaluator, we will begin by defining an auxiliary step func-
tion that performs a single step of computation. We will
define the desired evaluator by iterating the step function,
proving that it decreases in each iteration.

The step function calls unload+ to produce a new config-
uration, if it exists. If the unload+ function returns a natural
number, inj2 v, the entire input tree has been processed and
the function terminates:

step : (e : Expr) → Config⇑ e → Config⇑ e ⊎ N

step e ((n , stk) , eq)
with unload+ n (Val n) refl stk
... | inj1 (n’ , stk’) = inj1 ((n’ , stk’) , ...)
... | inj2 v = inj2 v

We have omitted the second component of the result re-
turned in the first branch, corresponding to a proof that
plugC⇑ (n’ , stk’) ≡ e. The crucial lemma that we need to
show to complete this proof, demonstrates that the unload+
function respects our invariant:

unload+-plug⇑ :
∀ (n : N) (e : Expr) (eq : eval e ≡ x) (s : Stack+) (c : Config)
→ unload+ n e eq s ≡ inj1 c
→ ∀ (e′ : Expr) → plug⇑ e s ≡ e′ → plugC⇑ c ≡ e′

Finally, we can define the theorem stating that the step
function always returns a smaller configuration:

5
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step-< : ∀ (e : Expr) → (c c’ : Config⇑ e) → step e c ≡ inj1 c’
→ ⌞ e ⌟ Config⇑-to-Config⇓ c’ < Config⇑-to-Config⇓ c

Proving this statement directly is tedious, as there are many
cases to cover and the expression e occurring in the types
makes it difficult to identify and prove lemmas covering
the individual cases. Therefore, we instead define another
relation over non type-indexed configurations directly, and
prove that there is an injection between both relations under
suitable assumptions:
data _<_ : Config → Config → Set where

<-StepR : (t1 , s1) < (t2 , s2)
→ (t1 , Right l n eq s1) < (t2 , Right l n eq s2)

<-StepL : (t1 , s1) < (t2 , s2)
→ (t1 , Left r s1) < (t2 , Left r s2)

<-Base : (e1 ≡ plugC⇓ t2 s2) → (e2 ≡ plugC⇓ t1 s1)
→ (t1 , Right n e1 eq s1) < (t2 , Left e2 s2)

to : (e : Expr) (c1 c2 : Config)
→ (eq1 : plugC⇓ c1 ≡ e) (eq2 : plugC⇓ c2 ≡ e)
→ c1 < c2 → ⌞ e ⌟ (c1 , eq1) < (c2 , eq2)

Thus to complete the previous theorem, it is sufficient to
show that the function unload+ delivers a smaller Config:
unload+-< : ∀ (n : N) (s : Stack+) (e : Expr) (s’ : Stack+)

→ unload+ n (Val n) refl s ≡ inj1 (t ′ , s’)
→ (t ′ , reverse s’) < (n , reverse s)

The proof is done by induction over the stack supported; the
complete proof requires some bookkeeping, covering around
200 lines of code, but is conceptually not complicated.

The function tail-rec-eval is now completed as follows5:
rec : (e : Expr) → (c : Config⇑ e)

→ Acc (⌞ e ⌟_<_) (Config⇑-to-Config⇓ c) → Config⇑ e ⊎ N

rec e c (acc rs) = with step e c | inspect (step e) c
... | inj2 n | = inj2 n
... | inj1 c’ | [ Is ]
= rec e c’ (rs (Config⇑-to-Config⇓ c’) (step-< e c c’ Is))

tail-rec-eval : Expr → N

tail-rec-eval e with load e Top
... | inj1 c = rec e (c , ...) (<-WF e c)

Agda’s termination checker now accepts that the repeated
calls to rec are on strictly smaller configurations.

3.5 Correctness
As we have indexed our configuration datatypes with the in-
put expression, proving correctness of it is relatively straight-
forward. The type of the function step guarantees that the
configuration returned points to a leaf in the input expres-
sion.

Proving the function tail-rec-eval correct amounts to show
that the auxiliary function, rec, that is iterated until a value
is produced, will behave the same as the original evaluator,
eval. This is expressed by the following lemma, proven by
induction over the accessibility predicate:
5inspect is an Agda idiom needed to remember that c’ is the result of the
call step e c.

rec-correct : ∀ (e : Expr) → (c : Config⇑ e)
→ (ac : Acc (⌞ e ⌟_<_) (Config⇑-to-Config⇓ c))
→ eval e ≡ rec e c ac

rec-correct e c (acc rs)
with step e c | inspect (step e) c

... | inj1 c’ | [ Is ]
= rec-correct e c’ (rs (Config⇑-to-Config⇓ c’) (step-< e c c’ Is))

... | inj2 n | [ Is ] = step-correct n e eq c

At this point, we still need to prove the step-correct lemma
that it is repeatedly applied. As the step function is defined as
a wrapper around the unload+ function, it suffices to prove
the following property of unload+:
unload+-correct : ∀ (n : N) (e : Expr) (eq : eval e ≡ n) (s : Stack+)

∀ (m : N) → unload+ n e eq s ≡ inj2 m
→ eval (plug⇑ e s) ≡ m

This proof follows immediately by induction over s : Stack+.
The main correctness theorem now states that eval and

tail-rec-eval are equal for all inputs:
correctness : ∀ (e : Expr) → eval e ≡ tail-rec-eval e
correctness e with load e Top
... | inj1 c = rec-correct e (c , ...) (<-WF e c)
... | inj2 = ⊥-elim ...

This finally completes the definition and verification of a
tail-recursive evaluator.

4 A generic tail-recursive traversal
The previous section showed how to prove that our hand-
written tail-recursive evaluation function was both termi-
nating and equal to our original evaluator. In this section,
we will show how we can generalize this construction to
compute a tail-recursive equivalent of any function that can
be written as a fold over a simple algebraic datatype. In
particular, we generalize the following:

• The kind of datatypes, and their associated fold, that
our tail-recursive evaluator supports, Section 4.1.

• The type of configurations of the abstract machine
that computes the generic fold, Sections 4.2 and 4.3.

• The functions load and unload such that they work
over our choice of generic representation, Section 4.4.

• The ‘smaller than’ relation to handle generic configu-
rations, and its well-foundedness proof, Section 4.5.

• The tail-recursive evaluator, Section 4.6.
• The proof that the generic tail-recursive function is
correct, Section 4.7.

Before we can define any such datatype generic construc-
tions, however, we need to fix our universe of discourse.

4.1 The regular universe
In a dependently typed programming language such as Agda,
we can represent a collection of types closed under cer-
tain operations as a universe [Altenkirch and McBride 2003;
Martin-Löf 1984], that is, a data type U : Set describing
the inhabitants of our universe together with its semantics,

6
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el : U → Set, mapping each element of U to its corre-
sponding type. We have chosen the following universe of
regular types [Morris et al. 2006; Noort et al. 2008]:
data Reg : Set1 where

0 : Reg
1 : Reg
I : Reg
K : (A : Set) → Reg
_⊕_ : (R Q : Reg) → Reg
_⊗_ : (R Q : Reg) → Reg

Types in this universe are formed from the empty type (0),
unit type (1), and constant types (K A); the I constructor
is used to refer to recursive subtrees. Finally, the universe
is closed under both coproducts (_⊕_) and products (_⊗_).
We could represent the pattern functor corresponding to the
Expr type in this universe as follows:
exprF : Reg
exprF = K N ⊕ (I ⊗ I)

Note that as the constant functor K takes an arbitrary type A
as its argument, the entire datatype lives in Set1. This could
easily be remedied by stratifying this universe explicitly and
parametrising our development by a base universe.
We can interpret the inhabitants of Reg as a functor of

type Set → Set:
J_K : Reg → Set → Set
J 0 K X = ⊥

J 1 K X = ⊤

J I K X = X
J (K A) K X = A
J (R ⊕ Q) K X = J R K X ⊎ J Q K X
J (R ⊗ Q) K X = J R K X × J Q K X

To show that this interpretation is indeed functorial, we
define the following fmap operation:
fmap : (R : Reg) → (X → Y) → J R K X → J R K Y
fmap 0 f ()
fmap 1 f tt = tt
fmap I f x = f x
fmap (K A) f x = x
fmap (R ⊕ Q) f (inj1 x) = inj1 (fmap R f x)
fmap (R ⊕ Q) f (inj2 y) = inj2 (fmap Q f y)
fmap (R ⊗ Q) f (x , y) = fmap R f x , fmap Q f y

Finally, we can tie the recursive knot, taking the least fixpoint
of the functor associated with the elements of our universe:
data µ (R : Reg) : Set where
In : J R K (µ R) → µ R

Next, we can define a generic fold, or catamorphism, to work
on the inhabitants of the regular universe. For each code
R : Reg, the cata R function takes an algebra of type
J R K X → X as argument. This algebra assigns semantics
to the ‘constructors’ of R. Folding over a tree of type µ R
corresponds to recursively folding over each subtree and
assembling the results using the argument algebra:

cata : (R : Reg) → (J R K X → X) → µ R → X

cata R ψ (In r) = ψ (fmap R (cata R ψ ) r)

Unfortunately, Agda’s termination checker does not accept
this definition. The problem, once again, is that the recursive
calls to cata are not made to structurally smaller trees, but
rather cata is passed as an argument to the higher-order
function fmap.

To address this, we fuse the fmap and cata functions into
a single map-fold function [Norell 2008]:
map-fold : (R Q : Reg) → (J Q K X → X) → J R K (µ Q) → J R K X
map-fold 0 Q ψ ()

map-fold 1 Q ψ tt = tt
map-fold I Q ψ (In x) = ψ (map-fold Q Q ψ x)
map-fold (K A) Q ψ x = x
map-fold (R ⊕ Q) P ψ (inj1 x) = inj2 (map-fold R P ψ x)
map-fold (R ⊕ Q) P ψ (inj2 y) = inj2 (map-fold Q P ψ y)
map-fold (R ⊗ Q) P ψ (x , y) = map-fold R P ψ x , map-fold Q P ψ y

We can now define cata in terms of map-fold as follows:
cata : (R : Reg) (J R K X → X) → µ R → X
cata R ψ (In r) = map-fold R R ψ r

This definition is indeed accepted by Agda’s termination
checker.

Example We can now revisit our example evaluator from
the introduction. To define the evaluator using the generic
cata function, we instantiate the catamorphism to work on
the expressions and pass the desired algebra:
eval : µ exprF → N

eval = cata exprF ϕ
where ϕ : J exprF K N → N

ϕ (inj1 n) = n
ϕ (inj2 (n , n’)) = n + n’

In the remainder of this paper, we will develop an alter-
native traversal that maps any algebra to a tail-recursive
function that is guaranteed to terminate and produce the
same result as the corresponding call to cata.

4.2 Dissection
As we mentioned in the previous section, the configurations
of our abstract machine from the introduction are instances
of McBride’s dissections [2008]. We briefly recap this con-
struction, showing how to calculate the type of abstract
machine configurations for any type in our universe. The
key definition, ∇, computes a bifunctor for each element of
our universe:
∇ : (R : Reg) → (Set → Set → Set)
∇ 0 X Y = ⊥

∇ 1 X Y = ⊥

∇ I X Y = ⊤

∇ (K A) X Y = ⊥

∇ (R ⊕ Q) X Y = ∇ R X Y ⊎ ∇ Q X Y
∇ (R ⊗ Q) X Y = (∇ R X Y × J Q K Y )

⊎ (J R K X × ∇ Q X Y)

7
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This operation generalizes the zippers, by defining a bifunc-
tor ∇ R X Y. You may find it useful to think of the special
case, ∇ R X (µ R) as a configuration of an abstract machine
traversing a tree of type µ R to produce a result of type X.
The last clause of the definition of ∇ is of particular interest:
to dissect a product, we either dissect the left component
pairing it with the second component interpreted over the
second variable Y; or we dissect the second component and
pair it with the first interpreted over X.

A dissection is formally defined as the pair of the one-hole
context and the missing value that can fill the context.

D : (R : Reg) → (X Y : Set) → Set
D R X Y = ∇ R X Y × Y

We can reconstruct Huet’s zipper for generic trees of type
µ R by instantiating both X and Y to µ R.
Given a dissection, we can define a plug operation that

assembles the context and current value in focus to produce
a value of type J R K Y:

plug : (R : Reg) → (X → Y) → D R X Y → J R K Y
plug 0 η (() , x)
plug 1 η (() , x)
plug I η (tt , x) = x
plug (K A) η (() , x)
plug (R ⊕ Q) η (inj1 r , x) = inj1 (plug R η (r , x))
plug (R ⊕ Q) η (inj2 q , x) = inj2 (plug Q η (q , x))
plug (R ⊗ Q) η (inj1 (dr , q) , x) = (plug R η (dr , x) , q)
plug (R ⊗ Q) η (inj2 (r , dq) , x) = (fmap R η r , plug Q η (dq , x))

In the last clause of the definition, the dissection is over the
right component of the pair leaving a value r : J R K X to
the left. In that case, it is only possible to reconstruct a value
of type J R K Y, if we have a function η to recover Ys from
Xs.

In order to ease things later, we bundle a dissection together
with the functor to which it plugs as a type-indexed type.

data Dx (R : Reg) (X Y : Set) (η : X → Y) (tx : J R K Y) : Set where
_,_ : (d : D R X Y) → plug R η d ≡ tx → Dx R X Y η tx

4.3 Generic configurations
While the dissection computes the bifunctor underlying our
configurations, we still need to take a fixpoint of this bifunc-
tor. Each configuration consists of a list of dissections and the
current subtree in focus. To the left of the current subtree in
focus, we store the partial results arising from the subtrees
that we have already processed; on the right, we store the
subtrees that still need to be visited.
As we did for the Stack+ datatype from the introduction,

we also choose to store the original subtrees that have been
visited and their corresponding correctness proofs:

record Computed (R : Reg) (X : Set) (ψ : J R K X → X) : Set where
constructor _,_,_
field

Tree : µ R

Value : X
Proof : cata R ψ Tree ≡ Value

StackG : (R : Reg) → (X : Set) → (ψ : J R K X → X) → Set
StackG R X ψ = List (∇ R (Computed R X ψ ) (µ R))

A stack is a list of dissections. To the left we have theComputed
results; to the right, we have the subtrees of type µ R. Note
that the StackG datatype is parametrised by the algebra ψ ,
as the Proof field of the Computed record refers to it.

As we saw in Section 3.5, we can define two different plug
operations on these stacks:

plug-µ⇓ : (R : Reg) → {ψ : J R K X → X }

→ µ R → StackG R X ψ → µ R
plug-µ⇓ R t [] = t
plug-µ⇓ R t (h :: hs) = In (plug R Computed.Tree h (plug-µ⇓ R t hs))

plug-µ⇑ : (R : Reg) → {ψ : J R K X → X }

→ µ R → StackG R X ψ → µ R
plug-µ⇑ R t [] = t
plug-µ⇑ R t (h :: hs) = plug-µ⇑ R (In (plug R Computed.Tree h t)) hs

Both functions use the projection, Computed.Tree, as an
argument to plug to extract the subtrees that have already
been processed.
To define the configurations of our abstract machine, we

are interested in any path through our initial input, but want
to restrict ourselves to those paths that lead to a leaf. But
what constitutes a leaf in this generic setting?

To describe leaves, we introduce the following predicate
NonRec, stating when a tree of type J R K X does not refer
to the variable X, that will be used to represent recursive
subtrees:

data NonRec : (R : Reg) → J R K X → Set where
NonRec-1 : NonRec 1 tt
NonRec-K : (B : Set) → (b : B) → NonRec (K B) b
NonRec-⊕1 : (R Q : Reg) → (r : J R K X)

→ NonRec R r → NonRec (R ⊕ Q) (inj1 r)
NonRec-⊕2 : (R Q : Reg) → (q : J Q K X)

→ NonRec Q q → NonRec (R ⊕ Q) (inj2 q)
NonRec-⊗ : (R Q : Reg) → (r : J R K X) → (q : J Q K X)

→ NonRec R r → NonRec Q q → NonRec (R ⊗ Q) (r , q)

As an example, in the pattern functor for the Expr type,
K N ⊕ (I ⊗ I), terms built using the left injection are non-
recursive:

Val-NonRec : ∀ (n : N) → NonRec (K N ⊕ (I ⊗ I)) (inj1 n)
Val-NonRec : n = NonRec-⊕1 (K N) (I ⊗ I) n (NonRec-K N n)

This corresponds to the idea that the constructor Val is a leaf
in a tree of type Expr.

On the other hand, we cannot prove the predicateNonRec
for terms using the right injection. The occurences of recur-
sive positions disallow us from framing the proof (The type
NonRec does not have a constructor such as NonRec-I : (x :
X) → NonRec I x).

8
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This example also shows how ‘generic‘ leaves can be re-
cursive. As long as the recursion only happens in the functor
layer (code ⊕) and not in the fixpoint level (code I).

Crucially, any non-recursive subtree is independent of X –
as is exhibited by the following coercion function:
coerce : (R : Reg) → (x : J R K X) → NonRec R x → J R K Y

Whose definition is not worth including as it follows directly
by induction over the predicate.
We can now define the notion of leaf generically, as a

substructure without recursive subtrees:
Leaf : Reg → Set → Set
Leaf R X = Σ (J R K X) (NonRec R)

Just as we saw previously, a configuration is now given by
the current leaf in focus and the stack, given by a dissection,
storing partial results and unprocessed subtrees:
ConfigG : (R : Reg) → (X : Set) → (ψ : J R K X → X) → Set
ConfigG R X ψ = Leaf R X × StackG R X ψ

Finally, we can recompute the original tree using a plug
function as before:
plugC-µ⇓ : (R : Reg) {ψ : J R K X → X }

→ ConfigG R X ψ → µ R → Set
plugC-µ⇓ R ((l , isl) , s) t = plug-µ⇓ R (In (coerce l isl)) s t

Note that the coerce function is used to embed a leaf into a
larger tree. A similar function can be defined for the ‘bottom-
up’ zippers, that work on a reversed stack.

4.4 One step of a catamorphism
In order to write a tail-recursive catamorphism, we start by
defining the generic operations that correspond to the func-
tions load and unload given in the introduction (Section 2).

Load The function loadG traverses the input term to find
its leftmost leaf. Any other subtrees the loadG function en-
counters are stored on the stack. Once the loadG function
encounters a constructor without subtrees, it is has found
the desired leaf.
We write loadG by appealing to an ancillary definition

first-cps, that uses continuation-passing style to keep the
definition tail-recursive and obviously structurally recursive.
If we were to try to define loadG by recursion directly, we
would need to find the leftmost subtree and recurse on it –
but this subtree may not be obviously syntactically smaller.

The type of our first-cps function is daunting at first:
first-cps : (R Q : Reg) {ψ : J Q K X → X }

→ J R K (µ Q)
→ (∇ R (Computed Q X ψ ) (µ Q) → (∇ Q (Computed Q X ψ ) (µ Q)))
→ (Leaf R X → StackG Q X ψ → ConfigG Q X ψ ⊎ X)
→ StackG Q X ψ
→ ConfigG Q X ψ ⊎ X

The first two arguments are codes of type Reg. The code Q
represents the datatype for which we are defining a traversal;
the code R is the code on which we pattern match. In the

initial call to first-cps these two codes will be equal. As we
define our function, we pattern match on R, recursing over
the codes in (nested) pairs or sums – yet we still want to
remember the original code for our data type, Q.

The next argument of type J R K (µ Q) is the data we aim to
traverse. Note that the ‘outermost’ layer is of type R, but the
recursive subtrees are of type µ Q. The next two arguments
are two continuations: the first is used to gradually build the
dissection of R; the second continues on another branch once
one of the leaves have been reached. The last argument of
type StackG Q X ψ is the current stack. The entire function
will compute the initial configuration of our machine of type
ConfigG Q X ψ 6:

loadG : (R : Reg) {ψ : J R K X → X } → µ R
→ StackG R X ψ → ConfigG R X ψ ⊎ X

loadG R (In t) s = first-cps R R t id (λ l → inj1 ◦ _,_ l) s

We shall fill the definition of first-cps by cases. The clauses
for the base cases are as expected. In 0 there is nothing to be
done. The 1 and K A codes consist of applying the second
continuation to the tree and the stack.
first-cps 0 Q ()

first-cps 1 Q x k f s = f (tt , NonRec-1) s
first-cps (K A) Q x k f s = f (x , NonRec-K A x) s

The recursive case, constructor I, corresponds to the occur-
rence of a subtree. The function first-cps is recursively called
over that subtree with the stack incremented by a new ele-
ment that corresponds to the dissection of the functor layer
up to that point. The second continuation is replaced with
the initial one.
first-cps I Q (In x) k f s = first-cps Q Q x id (λ c → inj1 ◦ _,_ c) (k tt :: s)

In the coproduct, both cases are similar, just having to ac-
count for the use of different constructors in the continua-
tions.
first-cps (R ⊕ Q) P (inj1 x) k f s = first-cps R P x (k ◦ inj1) cont s

where cont (l , isl) = f ((inj1 l) , NonRec-⊕1 R Q l isl)
first-cps (R ⊕ Q) P (inj2 y) k f s = first-cps Q P y (k ◦ inj2) cont s

where cont (l , isl) = f ((inj1 l) , NonRec-⊕2 R Q l isl)

The interesting clause is the one that deals with the product.
First the function first-cps is recursively called on the left
component of the pair trying to find a subtree to recurse
over. However, it may be the case that there are no subtrees
at all, thus it is passed as the first continuation a call to
first-cps over the right component of the product. In case
the continuation fails to to find a subtree, it returns the leaf
as it is.
first-cps (R ⊗ Q) P (r , q) k f s = first-cps R P r (k ◦ inj1 ◦ (, q)) cont s

where cont (l , isl) = first-cps Q P q (k ◦ inj2 ◦ _,_ (coerce l isl)) cont’
where cont’ (l’ , isl’) = f (l , l’) (NonRec-⊗ R Q l l’ isl isl’)

6As in the introduction, we use a sum type ⊎ to align its type with that of
unloadG .
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Unload Armedwith loadG we turn our attention to unloadG .
First of all, it is necessary to define an auxiliary function,
right, that given a dissection and a value (of the type of the
left variables), either finds a dissection D R X Y or it shows
that there are no occurrences of the variable left. In the latter
case, it returns the functor interpreted over Y, J R K Y.

right : (R : Reg) → ∇ R X Y → X → J R K X ⊎ D R X Y

Its definition is simply by induction over the code R, with
the special case of the product that needs to use another
ancillary definition to look for the leftmost occurrence of
the variable position within J R K X.
The function unloadG is defined by induction over the

stack. If the stack is empty the job is done and a final value
is returned. In case the stack has at least one dissection in
its head, the function right is called to check whether there
are any more holes left. If there are none, a recursive call to
unloadG is dispatched, otherwise, if there is still a subtree to
be processed the function loadG is called.

unloadG : (R : Reg)
→ (ψ : J R K X → X)
→ (t : µ R) → (x : X) → cata R ψ t ≡ x
→ StackG R X ψ
→ ConfigG R X ψ ⊎ X

unloadG R ψ t x eq [] = inj2 x
unloadG R ψ t x eq (h :: hs) with right R h (t , x , eq)
unloadG R ψ t x eq (h :: hs) | inj1 r with compute R R r
... | (rx , rr) , eq’ = unloadG R ψ (In rp) (ψ rx) (cong ψ eq’) hs
unloadG R ψ t x eq (h :: hs) | inj2 (dr , q) = loadG R q (dr :: hs)

When the function right returns a inj1 it means that there
are not any subtrees left in the dissection. If we take a closer
look, the type of the r in inj1 r is J R K (Computed R X ψ ).
The functor J R K is storing at its variable positions both
values, subtrees and proofs.

However, what is needed for the recursive call is: first, the
functor interpreted over values, J R K X, in order to apply
the algebra; second, the functor interpreted over subtrees,
J R K (µ R), to keep the original subtree where the value
came from; Third, the proof that the value equals to applying
a cata over the subtree. The function computemassages r to
adapt the arguments for the recursive call to unloadG .

4.5 Relation over generic configurations
We can engineer a well-founded relation over elements of
type ConfigG

⇓
t, for some concrete tree t : µ R, by explicitly

separating the functorial layer from the recursive layer in-
duced by the fixed point. At the functor level, we impose the
order over dissections of R, while at the fixed point level we
define the order by induction over the stacks.
To reduce clutter in the definition, we give a non type-

indexed relation over terms of type ConfigG . We can later
use the same technique as in Section 3.4 to recover a fully
type-indexed relation over elements of type ConfigG

⇓
t by re-

quiring that the zippers respect the invariant, plugC-µ⇓ c ≡ t.

The relation is defined by induction over the StackG part of
the zippers as follows.

data _<C_ : ConfigG R X ψ → ConfigG R X ψ → Set where
Step : (t1 , s1) <C (t2 , s2) → (t1 , h :: s1) <C (t2 , h :: s2)

Base : plugC-µ⇓ R (t1 , s1) ≡ e1 → plugC-µ⇓ R (t2 , s2) ≡ e1
→ (h1 , e1) <∇ (h2 , e2) → (t1 , h1 :: s1) <C (t2 , h2 :: s2)

This relation has two constructors:
• The Step constructor covers the inductive case. When
the head of both stacks is the same, i.e., both ConfigGs
share the same prefix, it recurses directly on tail of
both stacks.

• The constructor Base accounts for the case when the
head of the stacks is different. This means that the
paths given by the configuration denotes different sub-
trees of the same node. In that case, the relation we are
defining relies on an auxiliary relation ⌞_⌟_<∇_ that
orders dissections of typeD R (Computed R X ψ ) (µ R).

We can define this relation on dissections directly, without
having to consider the recursive nature of our datatypes. We
define the required relation over dissections interpreted on
any sets X and Y as follows:

data ⌞_⌟_<∇_ : (R : Reg) → D R X Y → D R X Y → Set where
step-⊕1 : ⌞ R ⌟ (r , t1) <∇ (r’ , t2)

→ ⌞ R ⊕ Q ⌟ (inj1 r , t1) <∇ (inj1 r’ , t2)

step-⊕2 : ⌞ Q (q , t2) <∇ (q’ , t2)
→ ⌞ R ⊕ Q ⌟ (inj2 q , t1) <∇ (inj2 q’ , t2)

step-⊗1 : ⌞ R ⌟ (dr , t1) <∇ (dr’ , t2)
→ ⌞ R ⊗ Q ⌟ (inj1 (dr , q) , t1) <∇ (inj1 (dr’ , q) , t2)

step-⊗2 : ⌞ Q ⌟ (dq , t1) <∇ (dq’ , t2)
→ ⌞ R ⊗ Q ⌟ (inj2 (r , dq) , t1) <∇ (inj2 (r , dq’) , t2)

base-⊗ : ⌞ R ⊗ Q ⌟ (inj2 (r , dq) , t1) <∇ (inj1 (dr , q) , t2)

The idea is that we order the elements of a dissection in a
left-to-right fashion. All the constructors except for base-⊗
simply follow the structure of the dissection. To define the
base case, base-⊗, recall that the dissection of the product of
two functors, R ⊗ Q, has two possible values. It is either a
term of type ∇ R X Y × J Q K Y, such as inj1 (dr , q) or a
term of type J R K X × ∇ Q X Y like inj2 (r , dq). The former
denotes a position in the left component of the pair while
the latter denotes a position in the right component. The
base-⊗ constructor states that positions in right are smaller
than those in the left.
This completes the order relation on configurations; we

still need to prove our relation is well-founded. To prove this,
we write a type-indexed version of each relation. The first
relation, _<C_, has to be type-indexed by the tree of type
µ R to which both zipper recursively plug through plugC-µ⇓.
The auxiliary relation, ⌞_⌟_<∇_, needs to be type-indexed
by the functor of type J R K X to which both dissections plug:

data ⌞_⌟⌞_⌟_<∇_ {X Y : Set } {η : X → Y } : (R : Reg) → (tx : J R K Y)
→ Dx R X Y η tx → Dx R X Y η tx → Set where

10
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data ⌞_⌟⌞_⌟_<C⇓
_ {X : Set } (R : Reg) {ψ : J R K X → X } : (t : µ R)

→ ConfigG
⇓

R X ψ t → ConfigG
⇓

R X ψ t → Set where

The proof ofwell-foundedness of ⌞_⌟⌞_⌟_<C
⇓

_ is a straight-
forward generalization of proof given for the example in
Section 3.3. The full proof of the following statement can
found in the accompanying code:
<C-WF : (R : Reg) → (t : µ R) → Well-founded (⌞ R ⌟⌞ t ⌟_<C⇓

_)

4.6 A generic tail-recursive machine
We are now ready to define a generic tail-recursive machine.
To do so we now assemble the generic machinery we have
defined so far. We follow the same outline as in Section 3.4.
The first point is to build a wrapper around the function

unloadG that performs one step of the catamorphism. The
function stepG statically enforces that the input tree remains
the same both in its argument and in its result.
stepG : (R : Reg) → (ψ : J R K X → X) → (t : µ R)

→ ConfigG
⇑

R X ψ t → ConfigG
⇑

R X ψ t ⊎ X

We omit the full definition. The function stepG performs
a call to unloadG , coercing the leaf of type J R K X in the
ConfigG

⇓
argument to a generic tree of type J R K (µ R).

We show that unloadG preserves the invariant, by proving
the following lemma:
unload-plugG

⇑
: ∀ (R : Reg) {ψ : J R K X → X }

→ (t : µ R) (x : X) (eq : cata R ψ t ≡ x) (s : StackG R X ψ )

→ (c : ConfigG R X ψ )

→ ∀ (e : µ R) → plug-µ⇑ R t s ≡ e
→ unloadG R ψ t x eq s ≡ inj1 c → plug-µ⇑ R c ≡ e

Next, we show that applying the function stepG to a con-
figuration of the abstract machine produces a smaller config-
uration. As the function stepG is a wrapper over the unloadG
function, we only have to prove that the property holds for
unloadG .
The unloadG function does two things. First, it calls the

function right to check whether the dissection has any more
recursive subtrees to the right that still have to be processed.
It then dispatches to either loadG , if there is, or recurses
otherwise. When there is a hole left, a new dissection is re-
turned by right. Thus showing that the new configuration
is smaller amounts to show that the dissection returned by
right is smaller by ⌞_⌟_<∇_. This amounts to proving the
following lemma:
right-< : right R dr (t , y , eq) ≡ inj2 (dr’ , t’)

→ ⌞ R ⌟ ((dr’ , t’)) <∇ ((dr , t))

We have simplified the type signature, leaving out the uni-
versally quantified variables and their types.

Extending this result to show that the function unloadG

delivers a smaller value is straightforward. By induction over
the input stack we check if the traversal is done or not. If it
is not yet done, there is at least one dissection in the top of
the stack. The function right applied to that element returns
either a smaller dissection or a tree with all values on the

leaves. If we obtain a new dissection, we use the right-<
lemma; in the latter case, we continue by induction over the
stack. In this fashion, we can prove the following statement
that our traversal decreases:
stepG -< : (R : Reg) (ψ : J R K X → X) → (t : µ R)

→ (c1 c2 : ConfigG
⇑

R X ψ t)
→ stepG R ψ t c1 ≡ inj1 c2 → ⌞ R ⌟⌞ t ⌟ c2 _<C_ c1

Finally, we canwrite the tail-recursivemachine, tail-rec-cata,
as the combination of an auxiliary recursor over the acces-
sibility predicate and a top-level function that initiates the
computation with suitable arguments:
rec : (R : Reg) (ψ : J R K X → X) (t : µ R)

→ (c : ConfigG
⇑

R X ψ t)
→ Acc (⌞ R ⌟⌞ t ⌟_<C⇓

_) (ConfigG
⇑
-to-ConfigG

⇓
c) → X

rec R ψ t c (acc rs) with stepG R ψ t c | inspect (stepG R ψ t) c
... | inj1 z′ | [ Is ] = rec R ψ t z′ (rs z′ (stepG -< R ψ t c z′ Is))
... | inj2 x | [ ] = x

tail-rec-cata : (R : Reg) → (ψ : J R K X → X) → µ R → X
tail-rec-cata R ψ x with loadG R ψ x []
... | inj1 c = rec R ψ (c , ...) (<C-WF R c)

4.7 Correctness, generically
To prove our tail-recursive evaluator produces the same out-
put as the catamorphism is straight-forward. As we did in
the tail-rec-eval example (Section 3.5), we perform induction
over the accessibility predicate in the auxiliary recursor. In
the base case, when the function stepG returns a ground
value of type X, we have to show that such value is the result
of applying the catamorphism to the input. Recall that stepG
is a wrapper around unloadG , hence it suffices to prove the
following lemma:
unloadG -correct : ∀ (R : Reg) (ψ : J R K X → X)

(t : µ R) (x : X) (eq : cata R ψ t ≡ x)
(s : StackG R X ψ ) (y : X)

→ unloadG R ψ t x eq s ≡ inj2 y
→ ∀ (e : µ R) → plug-µ⇑ R t s ≡ e → cata R ψ e ≡ y

Our generic correctness result is an immediate consequence:
correctnessG : ∀ (R : Reg) (ψ : J R K X → X) (t : µ R)

→ cata R ψ t ≡ tail-rec-cata R ψ t

4.8 Example
To conclude, we show how to generically implement the ex-
ample from the introduction (Section 1), and how the generic
construction gives us a correct tail-recursive machine for free.
First, we recap the pattern functor underlying the type Expr:
exprF : Reg
exprF = K N ⊕ (I ⊗ I)

The Expr type is then isomorphic to tying the knot over
exprF:
ExprG : Set
ExprG = µ exprF

11
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The function eval is equivalent to instantiating the catamor-
phism with an appropriate algebra:
ψ : exprF N → N

ψ (inj1 n) = n
ψ (inj2 (e1 , e2)) = e1 + e2

eval : ExprG → N

eval = cata exprF ψ

Finally, a tail-recursive machine equivalent to the one we
derived in Section 3.4, tail-rec-eval, is given by:
tail-rec-evalG : ExprG → N

tail-rec-evalG = tail-rec-cata exprF ψ

5 Discussion
There is a long tradition of calculating abstract machines
from an evaluator, dating back as far as early work on the
abstract machines for the evaluation of lambda calculus
terms [Landin 1964]. In particular, Danvy[Ager et al. 2003;
Danvy 2009] has published many examples showing how ab-
stract machines arise from defunctionalizing an interpreter
written in continuation-passing style. This work in turn, in-
spired McBride’s work on dissections [2008], that defines
the key constructions on which this paper builds. McBride’s
work, however, does not give a proof of termination or cor-
rectness.
The universe of regular types used in this paper is some-

what restricted: we cannot represent mutually recursive
types [Yakushev et al. 2009], nested data types [Bird and
Meertens 1998], indexed families [Dybjer 1994], or inductive-
recursive types [Dybjer and Setzer 1999]. Fortunately, there
is a long tradition of generic programming with universes in
Agda, arguably dating back to Martin-Löf [1984]. It would
be worthwhile exploring how to extend our construction
to more general universes, such as the context-free types [Al-
tenkirch et al. 2007], containers [Abbott et al. 2005; Altenkirch
et al. 2015], or the ‘sigma-of-sigma’ universe [Chapman et al.
2010; Oury and Swierstra 2008]. Doing so would allow us to
exploit dependent types further in the definition of our eval-
uators. For example, we might then define an interpreter for
the well-typed lambda terms and derive a tail recursive eval-
uator automatically, rather than verifying the construction
by hand [Swierstra 2012].

The termination proofwe have given defines awell-founded
relation and shows that this decreases during execution.
There are other techniques for writing functions that are not
obviously structurally recursive, such as the Bove-Capretta
method [Bove and Capretta 2005], partiality monad [Daniels-
son 2012], or coinductive traces [Nakata and Uustalu 2009].
In contrast to the well-founded recursion used in this paper,
however, these methods do not yield an evaluator that is
directly executable, but instead defer the termination proof.
Given that we can – and indeed have – shown termination of
our tail-recursive abstract machines, the abstract machines
are executable directly in Agda.

One drawback of our construction is that the stacks now
not only store the value of evaluating previously visited sub-
trees, but also records the subtrees themselves. Clearly this
is undesirable for an efficient implementation. It would be
worth exploring if these subtrees may be made computation-
ally irrelevant – as they are not needed during execution, but
only used to show termination and correctness. One viable
approach might be porting the development to Coq, where it
is possible to make a clearer distinction between values used
during execution and the propositions that may be erased.
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