
Plug-and-play attribute grammars

Wouter Swierstra
wouter@swierstra.net

Universiteit Utrecht

August 21, 2004

Beyond the UUAG

The UUAG works nicely, but is far from perfect.

I Typing deferred to Haskell compiler

I Occassional tweaking of generated code

I Fixed functionality

I Limited abstractions

The next step. . .

I First-class attribute grammars (Oege de Moor, Kevin Backhouse,
Doaitse Swierstra)

I Fighting TREX (Doaitse Swierstra and Pablo Azero)

I Template Haskell wizardry

I Embedded attribute grammars

Fantasy syntax - I

data Tree = Leaf Int | Node Tree Tree
data Root = Root Tree

valSyn f = aspect
| (Leaf i) lhs.val = i
| (Node l r) lhs.val = f @l .val @r .val

compMaxAG = valSyn max
compMax = knit compMaxAG

Fantasy syntax - II

minInh = aspect
| (Node l r) l .min = @lhs.min

r .min = @lhs.min
| (Root t) t.min = @t.val

resSyn = aspect
| (Leaf i) lhs.res = Leaf @lhs.min
| (Node l r) lhs.res = Node @l .res @r .res

repMinAG = valSyn min ‘plug ‘ minInh ‘plug ‘ resSyn
repMin = knit repMinAG

Goals

We want to:

I define a semantic rule - that refers to other attributes.

I plug aspects together.

I generate semantic functions.

Taking into account that:

I all attribute definition are well-typed

I no missing attribute definitions

I no undefined attributes

I no multiple attribute definitions

The theory of qualified types

I A general framework for type systems

I Generalization of Haskell’s type classes

I Qualified types have the form π ⇒ τ

I You get to introduce predicates π . . .

I . . . and show how to solve them

I . . . and get soundness and completeness for free.

Extendible records

I Extendible records (Gaster and Jones)
I Rows are a special kind:

• {||} ::: row
• {| l :: | |} ::: ∗ → row → row
• Rec ::: row → ∗

I Rows have their own unification rules:
• {| l1 :: τ1, l2 :: τ2 |} = {| l2 :: τ2, l1 :: τ1 |}

I A special predicate to describe when a label is not present: r\a
I Functions for extending records and selecting fields:

• (l = |) :: r\l ⇒ a → Rec r → Rec {| l :: a | r |}
• (.l) :: r\l ⇒ Rec {| l :: a | r |} → a

Attribute grammars

I Rows represent attribute grammar definitions.

| Prod t.attr = e

I Labels contain information about:
• production
• attribute name
• synthesized vs. inherited

I Functions similar to record extension define a single semantic
rule.

I Separate wrapper around rows:
• Aspect ::: row → ∗

Built-in predicates

πG ::= r def syn attr :: τ on nt
| r def inh attr :: τ on nt

Note that:

I r is a row defining an attribute

I τ is the type of the attribute

I nt is the non-terminal that is attributed

Predicates

π ::= r\attr r lacks the field attr
| r1 r2 partition r r can be partitioned in r1 and r2
| knit r to nt i s r defines a semantic function from i

to s on the non-terminal nt

I Now we have to define predicate entailment. . .

Predicate entailment - lacks

P, π `̀ π

P `̀ {||}\attr

P `̀ attr ′ 6= attr P `̀ r\attr
P `̀ {| attr ′ :: τ | r |}\attr

Predicate entailment - partition

P `̀ {||} r partition r

P `̀ r1\attr P `̀ r2\attr P `̀ r3\attr P `̀ r1 r2 partition r3
P `̀ {| attr :: τ | r1 |} r2 partition {| attr :: τ | r3 |}

Predicate entailment - knitting - I

knit {||} to nt {||} {||}

d def syn a :: τ on nt d r partition ag knit r to nt i s

knit ag to nt i {| a :: τ | s |}

d def inh a :: τ on nt d r partition ag knit r to nt i s

knit ag to nt {| a :: τ | i |} s

Predicate entailment - knitting - II

d def syn a :: τ on nt ′ d r partition ag knit r to nt i s

knit ag to nt i s

d def inh a :: τ on nt ′ d r partition ag knit r to nt i s

knit ag to nt i s

Eat the elephant a bite at a time!

Predicate entailment - knitting - II

d def syn a :: τ on nt ′ d r partition ag knit r to nt i s

knit ag to nt i s

d def inh a :: τ on nt ′ d r partition ag knit r to nt i s

knit ag to nt i s

Eat the elephant a bite at a time!

Plug-and-play attribute grammars

I It is now easy to type plug and knit!

plug :: r1 r2 partition r ⇒ Aspect r1 → Aspect r2 → Aspect r

knit :: ag knit nt i s ⇒ Aspect ag → nt → Rec i → Rec s

What I haven’t talked about

I Undefined attributes

I How to define attributes

I Attributing polymorphic data-structures

I Predicate improvement

I Quality of error messages

I Compilation

I Defining copy-rules and other extensions

I Not everything is first-class

Conclusions

I Embedded attribute grammars are within grasp!
I Work in progress:

• Currently being implemented in EH compiler
• Paper for Science of Computer Programming

I Future work:
• Still some issues to smooth out
• Include copy rules and other UUAG features
• Relation with dependent types and generic programming

