
A Principled Approach to
Version Control

Wouter Swierstra
November 16, 2006

Version control is a real
problem...

... and most tools are
unpredictable.

Edit
Fun, 16/11 Fun, 16/11

TFP, 19/04

Observation Interpretation

1. Fun, 16/11
1. Fun, 16/11

2. TFP, 19/04

Patch

add line 2

Fun, 16/11
Fun, 16/11
TFP, 19/04

Edit
Fun, 16/11 Fun, 16/11

TFP, 19/04

Observation Interpretation

Patch

replace contents

Fun 16/11
Fun 16/11
TFP 19/04

Patch

Edit
Fun, 16/11 Fun, 16/11

TFP, 19/04

Observation Interpretation

add row

Goal

A general theory of version control,
abstracting over any possible design choice.

Example: binary files

• Let’s design a version control tool for
managing binary files.

• What is a repository?

• What operations change the repository?

Internal Representation

f = c

∀c, c′ ∈ Bits.f = c ∈ R ∧ f = c′ ∈ R ⇒ c = c′

F

which state that a file 	

has contents .c ∈ Bits

f ∈ F

• Suppose is a set of file names.

• A repository is set of predicates:

• Of course, we need to enforce an invariant:

Repository operations

• We want to allow three operations on
repositories:

add f r = r ∪ {f = ε}

delete f c r = r − {f = c}

modify f c d r = (r − {f = c}) ∪ {f = d}

Why patches?

• Adding files may break the repository
invariant.

• You can delete non-existing files.

• Reasoning about arbitrary functions can be
arbitrarily difficult.

• Is there a general notion capable of
describing all repository operations?

Simple patches

• A simple patch is a pair of sets, called the
source and target respectively:

• Such a patch deletes from the repository,
and adds

• To apply this patch to a repository, must be
present and must be absent.

S

T

S

T − S

S !→ T

Example patches

• Deleting a file

• Modifying a file

• Adding a file

• This can still break repository invariants...

delete f c = {f = c} !→ ∅

modify f c d = {f = c} !→ {f = d}

create f = ∅ "→ {f = ε}

Invertible
operations on points

• Present before, absent after.

• Present before, present after.

• Absent before, present after.

• Absent before, absent after.

Patches

• A patch is a triple of sets:

• Where is a superset of both and

• A patch can be applied to a set when

• We use when some points must be absent.

• We still write when

S !− E → T

S TE

X

X ∩ E = S

S !→ T S ∪ T = E

E

Creation revisited

• We can now define file creation as:

• The extension guarantees that no existing
file can be added to the repository

• Different design choices do exist, but now
we now have the means to express them!

create f = ∅ "− {f = c | c ∈ Bits} → {f = ε}

Patch composition

• Given simple patches and
we build their composition:

• The general formula is a bit more
complicated.

• Composition is associative.

S !→ T T !→ U

S !− S ∪ T ∪ U → U

Commutation and
inverses

• All patches ‘commute’ in a certain sense.

• When and both exist and
are applicable to then

• Every patch has an inverse
patch

p1 · p2 p2 · p1

X

(p1 · p2)(X) = (p2 · p1)(X)

S !− E → T

T !− E → S

Beyond binary files

• Line based text files

• Directory structure

• File moves and renaming

• Structured data and structured operations

• Tagging versions

• Patch meta-data

Repositories

• A repository is a multiset of patches.

• A repository is consistent if its constituent
patches can be composed and applied to the
empty set.

Communicating change

• Give repositories and , a pull of a
multiset to consists of a multiset

such that and is a
consistent repository.

• In general, we are only interested in minimal
pulls.

R S

P ⊆ R S

P
′ ⊆ (R − S)

P ⊆ P
′

S ∪ P
′

Conflicts

• Sometimes there is no way to successful pull
a desirable multiset of patches.

• Adding the patches is said to cause a
conflict.

• A user is responsible for adding new
patches, such that the repository is
consistent once again.

Darcs

• One of the largest and most popular
applications written in Haskell

• Darcs is great!

• Based on a theory of patches.

Theory of patches

• Rather vague at times

• Patches exist in a context.

• Commuting patches changes the patches:

• Conflictors are special patches.

• Algebraic theory is quite difficult.

AB ↔ B
′
A

′

What’s next?

• Explore the algebraic structure.

• Develop good algorithms.

• Implement ideas.

