
Isomorphisms for context-free types

Wouter Swierstra

April 7, 2006



Into the rabbit hole . . .

Add spine←−−−−−−
Remove spine−−−−−−−−→



Into the rabbit hole . . .

Add spine←−−−−−−
Remove spine−−−−−−−−→



Into the rabbit hole . . .

Add spine←−−−−−−
Remove spine−−−−−−−−→



What is an isomorphism?

An isomorphism between two types σ and τ consists of functions
psi :: σ → τ and isp :: τ → σ such that:

I psi ◦ isp = idτ

I isp ◦ psi = idσ

I No peeking!



When are two types different?

I What should we do if we can’t find an isomorphism between
two types?

I We can show two data types are distinct by counting the
number of inhabitants.

I Are the following familiar types isomorphic?

data List a = Nil | Cons a (List a)

data Tree a = Leaf | Node (Tree a) (Tree a)



What is a type?

Context-free types over an index set I are built from:

0, σ + τ coproducts
1, σ × τ products
i ∈ I parameters
X ,Y , . . . recursive variables
µX .σ least fixed point

For instance:

I Lists: µX .1 + A× X

I Binary trees: µX .1 + X × A× X



Types and grammars

I These context-free types resemble context-free grammars.
I There are two important differences:

1. Products commute σ × τ ' τ × σ
2. Coproducts are not idempotent σ + σ 6' σ

I Can we use parsing technology to distinguish different types?



Parser combinators

I Goal: Write a parser of type that recognizes when a given
string is in a language or not:

I ∗ → 2

I Intermediate: We write combinators of the following type:

I ∗ → Pfin(I
∗)

I We can run an intermediate parser by checking if the entire
input has been consumed.



Monadic parser combinators

I Lists and finite powersets have both certain structure.

I They form monoids.

0 :: a

⊕ :: a→ a→ a

I They form monads.

return :: a→ m a

>>=:: m a→ (a→ m b)→ m b

I We can define parser combinators using only these properties.



Rethinking the underlying monad

I How can we adapt monadic parser combinators to distinguish
different types?

I It suffices to only change the underlying structure!
I Instead of powersets and lists we use multisets:

• Order of input doesn’t matter.
• The number of parses is important.



Monadic parsers revisited

I Goal: Write a ‘parser’ that counts the number of inhabitants
of a given type:

M(I )→ N

I Intermediate: We write combinators of the following type:

M(I )→M(M(I ))

I We should show that multisets have the required structure. . .

I The actual parsers do not change!



Powerseries

I The multiset parsers give us a new interpretation of our types.

I We consider a type σ over a singleton index set I as:∑
n∈N

an × X n

where an is the result of running the σ parser on n.

I Lemma Two types are isomorphic iff their powerseries are
equal.

The essence of a type is a powerseries.



Powerseries

I The multiset parsers give us a new interpretation of our types.

I We consider a type σ over a singleton index set I as:∑
n∈N

an × X n

where an is the result of running the σ parser on n.

I Lemma Two types are isomorphic iff their powerseries are
equal.

The essence of a type is a powerseries.



Conclusions

I Formalizing these intuitions requires quite some work.

I We have a semi-algorithm for deciding whether or not two
types are isomorphic.

I Is the problem decidable?

I Is there a subset of types for which isomorphism is decidable?


