
Dependable software deployment

Wouter Swierstra
13 October 2006

Software configuration
mismanagement

Imperative software deployment

Imperative software deployment

• h-1 g f h ¿=? g f

• No reflection

Functional deployment

Functional deployment

word = component
 name = “MS Word”
 …
acroread = component
 name = “Adobe

Acrobat Reader”
 …
 AcroRd32.exe

Functional deployment

Install Word
 version > 10
 && only install
 trusted components

Functional deployment

B

C

D

A

Functional deployment

Configurations are:

• Immutable

• Reproducible

• Analyzable

The deployment problem

 Given a set of available components and a set of
rules and requirements, construct “the best”
configuration.

What is a configuration?

C = configuration
 notepad = component
 name = “Notepad”
 version = 5.0.3
 notepad.exe = executable

What is a configuration?

C = configuration
 winc = component
 name = “Windows Kernel”
 version = 5.0.3
 msvcrt.dll = library
 signal = proc

What is a configuration?

C = configuration
 winc = component
 name = “Windows Kernel”
 version = 5.0.3
 msvcrt.dll = library
 signal = proc
 ordinal = 759

Imports
C = configuration
 readline = component
 readline.dll

 …
 ghc = component
 name = “Glasgow Haskell Compiler”
 version = 6.4.2
 requires = readline readline.dll

When do configurations make
sense?

When do configurations make
sense?

 Resolved:
 Every name can be found:

freeVar(C) = Ø

What’s on disk?

Store

Readline-3.2

environment

GHC-6.4.2

environment

Word-11

environment

What’s on disk?

User environment

Word

ghc

Store

Readline-3.2

environment

GHC-6.4.2

environment

Word-11

environment

What’s on disk?

Store

Readline-3.2

environment

GHC-6.4.2

environment

Word-11

environment

GHC-6.6

environment

• Multiple versions of components

• Minimize interference

• Hidden from user

• Unambiguous bindings

Memory model
Programming
Languages

Example Software
Deployment

Example

Memory Disk
Values 5, “Hello”, … Components libc, ghc, …
Addresses 0x005aa772 Path names “/usr/local/”
Pointer
arithmetic

*(arr + 5) String
manipulation

“C:\wouter\” +
configDir

What are components?

Towards deployment
 How should a developer know how to refer to the

component called “readline” on your system?

 We need to parameterize components:

ghc rl = component
 name = “Glasgow Haskell Compiler”
 version = 6.4.2
 requires = rl name = “readline”

Deployment
 Finding a component with the right name might

not be enough…

ghc rl = component
 name = “Glasgow Haskell Compiler”
 version = 6.4.2
 requires = rl name = “readline” &&
 rl version > 3.0

Predicates - I
 We don’t want to fix our predicate language.

 First-order predicate logic.

 Versions:

readline version > 3.0

libc version <= 5.0

Predicates – II
 Disjunctive dependencies:

readline cc = component
 requires = cc name == “GNU C Compiler”
 or cc name “Visual Studio”

Predicates - III
 Defining recursive configurations allows global

constraints:

nvidia config = component
 requires =
 forall c in children config .
 c name == “Monitor driver”
 => c == nvidia

 A good predicate language is really, really
important.

Guiding the binding

Policies - I
 What if you have more than one choice?

 A policy is a partial order on components.

 State of the art:
 c.name == d.name => c.version > d.version

Policies - II

 Many websites publish lists that rate software.

 Security, given a rating function:
 rate(c) >= rate(d)

Policies - III

 Parsimony, given a size measure and installed
predicate:

 if installed(c) then 0 else size(c)
 <= if installed (d) then 0 else size(d)

Windows Installer
 Analyzed lots of msi files

 Declares complete component contents…

 …but deploy files in shared directories

 …and allow custom actions to affect where files
are deployed.

 No real predicate language.

Red Hat Package Manager
 Packages specify name, version, dependencies,

 Fixed, simple predicate language.

 No two versions of same component.

 Scripts to build and deploy can execute arbitrary
actions.

Conclusions
 A good idea of what the problem is.

 Still open questions:
 Plug-ins
 User settings
 Generating faithful component descriptions
 …

 Draft paper available.

