
Beauty in the Beast
A Functional Semantics of the Awkward Squad

Wouter Swierstra
joint work with Thorsten Altenkirch

Implement a stack.

type Stack a = [a]

top :: Stack a → Maybe a
top [] = Nothing
top (x : xs) = Just x

push :: a → Stack a → Stack a
push x xs = x : xs

Testing

lifoProp :: Int → Stack Int → Bool
lifoProp x xs = top (push x xs) ≡ Just x

Testing

lifoProp :: Int → Stack Int → Bool
lifoProp x xs = top (push x xs) ≡ Just x

Stacks> quickCheck lifoProp
OK, passed 100 tests.

Equational reasoning

top (push x xs)
= {definition of push }

top (x : xs)
= {definition of top}

Just x

Proof assistants

Theorem Fifo : ∀a : Set ,∀x : a,∀xs : Stack a,
top (push x xs) = Some x .

Proof assistants

Theorem Fifo : ∀a : Set ,∀x : a,∀xs : Stack a,
top (push x xs) = Some x .

Proof .
trivial .

Qed.

The Reasoning Toolkit

• QuickCheck

• Equational reasoning

• Proof assistants

Functional programming
is great for writing

high assurance software.

Implement a queue.

data Cell = Cell Int (IORef Cell)
| NULL

type Queue = (IORef Cell , IORef Cell)

enqueue :: Queue → Int → IO ()
dequeue :: Queue → IO (Maybe Int)
emptyQueue :: IO Queue

How can we show our
program is correct?

The Reasoning Toolkit

• QuickCheck

• Equational reasoning

• Proof assistants

The Reasoning Toolkit

• QuickCheck

The Reasoning Toolkit

The great divide
Pure

• Easy to reason about.

• ‘Clear semantics’

• Tool support for testing
and debugging.

Impure

• Not so much.

• Hardly.

• ...

The great divide
Pure

• Easy to reason about.

• ‘Clear semantics’

• Tool support for testing
and debugging.

Impure

• Not so much.

• Hardly.

• ...

• Very useful!

Pure specifications
of impure functions.

Overview

• Pure specifications of:

• teletype I/O;

• mutable state; and

• concurrency.

Plan of attack

• For every specification:

• Define a “run function” for this monad.

• Define a pure interface to this monad.

• Define a monad.

A monad
type Loc = Int
type Data = Int

data IOs a =
Write Loc Data (IOs a)

| Read Loc (Data → IOs a)
| New Data (Loc → IOs a)
| Return a

instance Monad IOs where
return = Return
(Write l d io) >>= f = Write l d (io >>= f)
(Read l rd) >>= f = Read l (λd → rd d >>= f)
(New d nw) >>= f = New d (λl → nw l >>= f)
(Return x) >>= f = f x

Plan of attack

• For every specification:

• Define a “run function” for this monad.

• Define a pure interface to this monad.

• Define a monad.

Plan of attack

• For every specification:

• Define a “run function” for this monad.

• Define a pure interface to this monad.

• Define a monad.

Pure interface

writeIORef :: Loc → Data → IOs ()
writeIORef l d = Write l d (Return ())
readIORef :: Loc → IOs Data
readIORef l = Read l Return
newIORef :: Data → IOs Loc
newIORef d = New d Return

Example

swap :: IORef → IORef → IOs ()
swap refX refY = do

x ← readIORef refX
y ← readIORef refY
writeIORef refX y
writeIORef refY x

Plan of attack

• For every specification:

• Define a “run function” for this monad.

• Define a pure interface to this monad.

• Define a monad.

Plan of attack

• For every specification:

• Define a “run function” for this monad.

• Define a pure interface to this monad.

• Define a monad.

See Monad Run.

run :: IOs a → a
run io = evalState (runIOState io) emptyStore
runIOState :: IOs a → State Store a
runIOState = ...

Idea: Use the state monad to model
how our pure interface behaves.

Store

data Store = Store
{fresh :: Loc,
heap :: Loc → Data }

emptyStore :: Store
emptyStore = Store{fresh = 0}

Return

runIOState :: IOs a → State Store a
runIOState (Return x) = return x

Read

runIOState :: IOs a → State Store a
runIOState (Read l rd) = do

h ← gets heap
runIOState (rd (h l))
-- Remember:
-- heap :: Loc -> Data
-- rd :: Data -> IOs a

Write
runIOState :: IOs a → State Store a
runIOState (Write l d wr) = do

store ← get
put (s{heap = update l d (heap s)})
runIOState wr

update :: Loc → Data → Heap → Heap
update l d h k

| l ≡ k = d
| otherwise = h k

New

runIOState :: IOs a → State Store a
runIOState (New d nw) = do

l ← gets fresh
put (s{fresh = l + 1})
extendHeap l d
runIOState (nw l)

Queues, revisited

• Now, if we choose:

• We can QuickCheck our queues...

• ... and even check that queue reversal is
possible in constant memory.

data Data = Cell Int IORef
| NULL

Limitations

• The heap only stores integers:

• Define your own Data type;

• Use Data.Dynamic.

What else?

• Teletype (getChar, putChar)

• Input: stream of characters

• Output: list of Maybe Chars, possibly
returning a final value.

• Concurrency (MVars and forkIO)

• Input: a scheduler

• Output: final heap and result

newtype Scheduler =
Scheduler (Int → (Int ,Scheduler))

The Reasoning Toolkit

• QuickCheck

• Equational reasoning

• Proof assistants

The Reasoning Toolkit

• QuickCheck

The Reasoning Toolkit

Real problems

• I’m using undefined values:

• What is the initial heap?

• What happens when you access of
unallocated memory?

• How can we store heterogeneous values,
without using Data.Dynamic?

• We need to talk about:

• the size of the heap;

• the types of data stored on the heap;

• what is a reference into a heap of size n.

Sexy types?

• We need to talk about:

• the size of the heap;

• the types of data stored on the heap;

• what is a reference into a heap of size n.

Sexy types?

Dependent types!

Related work

• Pre-monadic versions of the Haskell Report

• The Awkward Squad.

• ... many many others

IOSpec

• Code from the paper is available:

• on Hackage;

• homepage:

• Watch out for 0.2 with IO à la carte, STM, ...

www.cs.nott.ac.uk/~wss/repos/IOSpec/

http://www.cs.nott.ac.uk/~wss/repos/IOSpec/
http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

Summary

Summary

• Pure specification of impure functions

Summary

• Pure specification of impure functions

• Define a monad; pure interface; and run function.

Summary

• Pure specification of impure functions

• Define a monad; pure interface; and run function.

• Dependent types can help make run total.

