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Impredicativity

Rank-n types

Multiparameter type 
classes

Functional dependencies

Generalized algebraic data types

Associated 
types
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with dependent types
Proving



with dependent types
Programming



How to deal with 
effects?



Impurity

Implicit effects:

launchMissiles : Unit

launchMissiles     ()

But this is pretty dangerous!

→β



Conversion rule

Γ ! t : σ σ "β τ

Γ ! t : τ

p : T(launchMissiles) launchMissiles →β ()

p : T()



Purity

• We must avoid triggering effects statically.

• Use primitive functions with no associated 
operational behaviour.

putChar : Char -> IO ()

getChar : IO Char

• Placeholders for the “real” functions



Monadic I/O in Haskell

Combine effects using the usual monadic 
operations:

return : a -> IO a

>>= : IO a -> (a->IO b) -> IO b



Unsatisfactory

• This may be safe, but is it enough?

• We want to reason about our code.

• We don’t have a definition of putChar or 
getChar.

• We can’t prove anything about I/O functions.



Defining Teletype I/O

data Teletype a =

   PutChar Char (Teletype a)

 | GetChar (Char -> Teletype a)

 | Return a

• Teletype is a monad!



Defined functions

putChar : Char -> Teletype ()

putChar c = 

  PutChar c (Return ())

getChar : Teletype Char

getChar = GetChar Return



What does it mean?

data Output a = 

 | Finish a

 | Print Char (Output a) 

run : Teletype a 

        -> Stream Char 

        -> Output a



So what?

• We have defined our own version of 
getChar and putChar

• We have meaningful placeholders.

• A compiler should replace our definitions 
with appropriate calls to C functions...

  ... provided we have given an accurate 
description of how these functions behave.



Reasoning about effects

We can now prove:

echo = 

  getChar 

  >>= putChar 

  >>= \() -> echo

copies the input stream to the output.



A refinement...

• We would like to allow infinite streams of 
output:

printAs = putChar ‘a’ 

          >>= \x -> printAs

• Teletype should be coinductive.

• But what about:

sink = getChar >>= sink



Eating

• We need a mixed inductive-coinductive 
definition:

• See recent work by Peter Hancock.

νX.µY.Char× X + Y Char
+ A



What else?

• We can give similar definitions for many 
other effects:

• Mutable state

• Concurrency

• Software Transactional Memory

• ...



Mutable state

data State a = 

 NewRef Data (Loc -> State a)

 | WriteRef Data Loc (State a)

 | ReadRef Loc (Data -> State a)

 | Return a

data Loc = Nat

data Data = Nat



Semantics

runState : 

  State a -> Store -> (a,Store)

data Store = 

  Store Loc (Loc -> Data)

What’s the initial store? 

Why can references only store integers?



A better definition...

• We can define heterogeneous, well-scoped, 
well-typed references.

• The definition is a little bit tricky...



Heaps

Postulate a universe U...

data Shape = List U

data Heap : Shape -> Set

  | empty : Heap []

  | alloc : el a -> Heap s 

          -> Heap (a :: s) 



The State type

data State (A : Set) : 

  Shape -> Shape -> Set where

....



Running code

run : Heap s 

  -> State A s t 

  -> (A, Heap t)



Problems

• Is this still a monad?

• Need explicit “weakening” of references.

• The devil is in the details.



The last slide

• Check out the Haskell library:

www.cs.nott.ac.uk/~wss/repos/IOSpec

• Submitted ICFP paper on my homepage.

• Future work:

• Combining different effects

• Precise and total run functions


