
I/O in a
Dependently Typed

Programming Language
Wouter Swierstra

TYPES 2007

Polymorphic lambda calculus
with data types

Impredicativity

Rank-n types

Multiparameter type
classes

Functional dependencies

Generalized algebraic data types

Associated
types

Polymorphic lambda calculus
with data types

with dependent types
Proving

with dependent types
Programming

How to deal with
effects?

Impurity

Implicit effects:

launchMissiles : Unit

launchMissiles ()

But this is pretty dangerous!

→β

Conversion rule

Γ ! t : σ σ "β τ

Γ ! t : τ

p : T(launchMissiles) launchMissiles →β ()

p : T()

Purity

• We must avoid triggering effects statically.

• Use primitive functions with no associated
operational behaviour.

putChar : Char -> IO ()

getChar : IO Char

• Placeholders for the “real” functions

Monadic I/O in Haskell

Combine effects using the usual monadic
operations:

return : a -> IO a

>>= : IO a -> (a->IO b) -> IO b

Unsatisfactory

• This may be safe, but is it enough?

• We want to reason about our code.

• We don’t have a definition of putChar or
getChar.

• We can’t prove anything about I/O functions.

Defining Teletype I/O

data Teletype a =

 PutChar Char (Teletype a)

 | GetChar (Char -> Teletype a)

 | Return a

• Teletype is a monad!

Defined functions

putChar : Char -> Teletype ()

putChar c =

 PutChar c (Return ())

getChar : Teletype Char

getChar = GetChar Return

What does it mean?

data Output a =

 | Finish a

 | Print Char (Output a)

run : Teletype a

 -> Stream Char

 -> Output a

So what?

• We have defined our own version of
getChar and putChar

• We have meaningful placeholders.

• A compiler should replace our definitions
with appropriate calls to C functions...

 ... provided we have given an accurate
description of how these functions behave.

Reasoning about effects

We can now prove:

echo =

 getChar

 >>= putChar

 >>= \() -> echo

copies the input stream to the output.

A refinement...

• We would like to allow infinite streams of
output:

printAs = putChar ‘a’

 >>= \x -> printAs

• Teletype should be coinductive.

• But what about:

sink = getChar >>= sink

Eating

• We need a mixed inductive-coinductive
definition:

• See recent work by Peter Hancock.

νX.µY.Char× X + Y Char
+ A

What else?

• We can give similar definitions for many
other effects:

• Mutable state

• Concurrency

• Software Transactional Memory

• ...

Mutable state

data State a =

 NewRef Data (Loc -> State a)

 | WriteRef Data Loc (State a)

 | ReadRef Loc (Data -> State a)

 | Return a

data Loc = Nat

data Data = Nat

Semantics

runState :

 State a -> Store -> (a,Store)

data Store =

 Store Loc (Loc -> Data)

What’s the initial store?

Why can references only store integers?

A better definition...

• We can define heterogeneous, well-scoped,
well-typed references.

• The definition is a little bit tricky...

Heaps

Postulate a universe U...

data Shape = List U

data Heap : Shape -> Set

 | empty : Heap []

 | alloc : el a -> Heap s

 -> Heap (a :: s)

The State type

data State (A : Set) :

 Shape -> Shape -> Set where

....

Running code

run : Heap s

 -> State A s t

 -> (A, Heap t)

Problems

• Is this still a monad?

• Need explicit “weakening” of references.

• The devil is in the details.

The last slide

• Check out the Haskell library:

www.cs.nott.ac.uk/~wss/repos/IOSpec

• Submitted ICFP paper on my homepage.

• Future work:

• Combining different effects

• Precise and total run functions

